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Abstract

A measure of relative importance of network effects in the stochastic actor-oriented model

(SAOM) is proposed. The SAOM is a parametric model for statistical inference in longitudinal

social networks. The complexity of the model makes the interpretation of inferred results

difficult. So far, the focus is on significance tests while the relative importance of effects is

usually ignored. Indeed, there is no established measure to determine the relative importance

of an effect in a SAOM. We introduce such a measure based on the influence effects have on

decisions of individual actors in the network. We demonstrate its utility on empirical data by

analyzing an evolving friendship network of university freshmen.

Keywords: longitudinal networks, social networks, statistical models, interpretation of stochastic

actor-oriented models

Assessing the relative importance of multiple explanatory variables in statistical

models is a challenging task in all but the simplest cases. A general approach is not

available such that measures of relative importance have to be individually defined

for different models. But even for a specific model, a convincing definition of relative

importance does not necessarily exist such that multiple ambiguous explications are

conceivable and, in most cases, application-specific heuristics have to suffice.

Especially, if variables are correlated, an explicit decomposition of importance

is not possible. The existence of strong structural dependencies, however, is a

characterizing feature of network data such that strong correlations between network

effects are the rule and not the exception. This might be one reason why in statistical

models for network data questions regarding the relative importance of effects are

mostly ignored although, particularly in practical applications, information on the

strength of an effect seems to be more useful and relevant than merely whether or

not the effect exists.

In this article, we propose a measure of relative importance of effects in the

stochastic actor-oriented model (SAOM). The model was introduced by Snijders

and is described, e.g., in Snijders (2005) and Snijders et al. (2010a). SAOMs are

used to analyze social network panel data in order to identify network-specific

social mechanisms, referred to as network effects, such as reciprocity, transitivity,

or homophily, that may explain the unobserved evolution between observation

moments.

� The electronic version of this article contains color figures.
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Although the need of a measure of relative importance was already stated in

Snijders (1996), Snijders (2001), and Snijders and Bearveldt (2003), there is no

established approach so far to determine the relative importance of effects in a

SAOM. Hence, in most applications, interpretation of estimated SAOMs is restricted

to testing statistical significances indicating whether an effect plays a role in the

network evolution or not while the relative importance of effects is usually ignored.

A natural assumption is that sizes of estimated model parameters relate to

the importance of associated effects. Parameters in SAOMs, however, are unstan-

dardized. As a consequence, the relation between parameter values and impact of

corresponding effects varies between different effects and depends highly on the

specific model and on characteristics of the analyzed data. Therefore, parameter

estimates are not comparable, neither across different effects within a model nor

across one effect in different model specifications, and not even across the same

model applied to different data. Defining an appropriate standardization appears to

be difficult and we are not aware of such an approach.

Snijders (2004) proposes a measure of explained variation for SAOMs that

can be translated into a measure of relative importance. Due to the required

computation time, however, the resulting measure is hardly applicable in practice.

Further suggestions for the interpretation of parameter sizes based on odds ratios

can be found, e.g., in Snijders et al. (2010a) and Ripley et al. (2011).

The measure we propose in this article is, similarly to the measure of

Snijders (2004), based on the influence of effects on decisions of actors in the

network. It allows a direct interpretation of relative importance in terms of influence

of represented social mechanisms on individual actor choices. Since it takes the

sizes of parameters as well as the analyzed network data and the complete model

specification with possible correlations into account, it can be used to compare

the relative importance of effects within a model, among different models, and for

different data sets.

The article begins with a brief introduction of the SAOM, followed by a discussion

of the difficulties that make the interpretation of model parameters intricate in

Section 2. In Section 3, a measure of relative importance is proposed and applied to

a real data set in Section 4. We conclude with discussing the benefits and limitations

of the proposed measure and necessary or possible further work.

1 Stochastic actor-oriented models (SAOMs)

SAOMs are designed for analyzing network panel data, i.e, two or more discrete

observations of a network at different moments in time. For simplicity, we assume

dichotomous network relations and a set of actors {1, . . . , N} that is constant over

time. Hence, the sequence of networks at observation moments t1, . . . , tT , T > 1,

can be represented by a sequence of binary matrices X(1), . . . , X(T ) ∈ {0, 1}N×N , with

X
(h)
ij = 1 if there is a tie from i to j in observation h, and X

(h)
ij = 0 otherwise.

Note that we assume directed networks without self-ties such that X
(h)
ij �= X

(h)
ji is

possible and X
(h)
ii = 0 for all actors i at each point in time; thus, X(h) ∈ XN := {X ∈

{0, 1}N×N | Xii = 0}.
A basic model assumption is that the observed networks are snapshots of an un-

derlying dynamic process and that this process can be modeled as a continuous-time
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Markov process with state space XN . Consequently, each interval [th, th+1] can be

considered separately, and the transition probabilities at each moment th + Δt,

0 � Δt < th+1 − th, depend only on the current network structure X(th + Δt). The

Markov assumption allows us to restrict the considerations in this article to only

two networks X(pre) and X(post) observed at times t(pre) and t(post). This restriction

is solely for the sake of a concise notation and extension to more observations is

straightforward.

The Markov process leading from X(pre) to X(post) is implemented as a stochastic

sequence of single tie changes, called micro-steps, that do not occur synchronously,

but successively on single ties. SAOMs are actor-oriented in the sense that such tie

changes are performed by randomly chosen actors based on myopic decisions, with

each actor i, 1 � i � N, controlling only his outgoing relations to the N − 1 other

actors. Allowed decisions are either creating a single new outgoing tie, deleting a

single existing outgoing tie, or not changing any tie at all.

The waiting times between the random moments at which actors have the op-

portunity to perform a micro-step are exponentially distributed with rates λ1, . . . , λN
that may depend on the current network structure. For simplicity, we assume an

actor-homogeneous rate λ
N

that is constant during interval [t(pre), t(post)] such that the

waiting times between consecutive micro-steps follow an exponential distribution of

rate λ and that at each moment the probability for being chosen to perform the next

micro-step is the same for all actors.

For any network X and pair of actors (i, j), let X[¬ij] denote the network resulting

from X by flipping tie Xij into its opposite 1 − Xij . Note that X[¬ii] = X. When

actor i gets the opportunity to perform a micro-step in network X, the probability

of changing tie Xij grows with the relative enhancement of his/her position in X[¬ij]

compared to his/her position in X with respect to a utility function f. For a network

X, the utility function of actor i is composed of a determined component, referred

to as evaluation function, and a random component Ui that follows a Gumbel

distribution (also known as type I extreme-value distribution) and captures the

uncertainty stemming from unknown factors:

f(θ;X, i) =

K∑
k=1

θksk(X, i) + Ui (1)

with model parameters θ = (θ1, . . . , θK ) ∈ �K and statistics sk(X, i) counting

local network configurations as, e.g., the number of outgoing ties, the number

of reciprocated ties, or the number of transitive ties that actor i holds in network X.

Changes in the values of such statistics hint at certain local mechanisms. In fact,

each statistic sk included in the evaluation function represents a specific network

effect. Some common effects are listed in Table 1. The outdegree effect describes the

general tendency to create new ties in the network; the reciprocity effect describes

the influence of mutuality on the dynamics; and the transitive triplets as well

as the actors at distance 2 effect describe the tendency to transitivity, whereas

a negative estimate associated with the latter may indicate both a tendency to

transitivity and a tendency to disconnect from brokers.

The selection of statistics in the evaluation function, i.e., the selection of network

effects tested for their influence on the network dynamics, is referred to as the model
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Table 1. Examples of network effects and associated statistics.

Effect name sk(X, i) Statistic

outdegree

N∑
j=1

Xij outgoing ties

reciprocity

N∑
j=1

XijXji reciprocated ties

transitive triplets

N∑
j=1

N∑
l=1

XijXilXlj transitive triplets

actors at distance 2

N∑
j=1

(1 − Xij) · max
1�l�N

(XilXlj) indirect neighbors

specification. Parameters θ ∈ �K are estimated to fit the observed data and, thus,

indicate the influence of related network effects on local dynamics.

Note that our considerations are restricted to SAOMs in which the network

is the only dependent variable. The extension of the proposed concepts to more

complicated models is directly possible but would unnecessarily inflate the article.

An implementation of the SAOM is available in the R-package RSiena and can

be obtained from http://cran.r-project.org/web/packages/RSiena/. An extensive

manual is given in Ripley et al. (2011).

2 How to define relative importance of an effect in a SAOM?

In regression-type analyses where associations between a dependent variable and

one or more explanatory variables are investigated, a common concept of relative

importance is the amount of change in the outcome caused by a one unit change of

the corresponding explanatory variable (Menard, 2011; Hosmer & Lemeshow, 2000;

Mayer & Younger, 1976) or, more general, the amount of variation in the outcome

explained by the corresponding explanatory variable (Kruskal, 1987; Pratt, 1987;

Grömping, 2007). Both formulations require a clear definition of the response and

the explanatory variables. For SAOMs, however, this classification is not directly

evident.

Immediate candidates are the network structure of the initial observation X(pre)

as explanatory variable explaining the network structure of the outcome X(post).

Citing Snijders (1996), p.150, however, “[in SAOMs] the development of networks is

considered rather than observations of networks at single time points.” It is not the

purpose to explain X(post) given X(pre) but to explain the dynamic process between

observations, given that it starts at X(pre) and results in X(post) (or in a network

similar to X(post)). This process is modeled as a continuous-time Markov chain with

state space XN; thus, it is completely defined by the transition probabilities between

elements of XN .

Let us assume a fitted SAOM with estimates (λ̂, θ̂) where λ̂ is the rate parameter

and θ̂ = (θ̂1, . . . , θ̂K ) are the parameters of the evaluation function. The transition

probabilities are determined by two components: a temporal component, determining

the number of random moments at which changes in the current network are
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possible, modeled as a Poisson process of rate λ̂ and a structural component,

determining the actual changes, modeled in the micro-steps. As we assume a

time- and actor-homogeneous rate, the temporal and structural components are

independent from each other, and λ̂ can be directly interpreted as the expected

number of micro-steps performed by each actor during the interval [t(pre), t(post)].

Thus, explaining the evolution process is reduced to explaining the actor decisions

in the micro-steps.

The actor decisions can be regarded as rational choices in the sense that they

are supposed to maximize the random utility function (1). In particular, choice

probabilities follow a multinomial logit model as derived by McFadden (1974).

Given a network X with N actors and a SAOM with estimated parameters θ̂ and

assuming that actor i is going to perform the next change in order to maximize

Equation (1), the conditional probability πi(θ̂;X, j) that actor i will choose to flip

tie Xij is (as shown, e.g., in Maddala (1983), 3.1)

πi(θ̂;X, j) =
e
f
(
θ̂;X[¬ij] ,i

)

∑N
h=1 e

f
(
θ̂;X[¬ih] ,i

) =
eθ̂1s1(X[¬ij] ,i)+···+θ̂K sK(X[¬ij] ,i)

∑N
h=1 e

θ̂1s1(X[¬ih] ,i)+···+θ̂K sK(X[¬ih] ,i)
. (2)

Note that the choice of not changing any tie (choice i) is represented by term

ef(θ̂;X[¬ii] ,i). According to the above regression-type notion of relative importance,

changes in the dependent variable, i.e., in the probabilities of the N choices, caused

by changes in the explanatory variables, i.e., in statistics Δsk(X, i, j) := sk(X
[¬ij], i) −

sk(X, i), 1 � j � N, resulting from corresponding choices, are to be considered. But

how to assess these changes?

A general approach for multinomial logit models, suggested in textbooks on

logistic regression (Maddala, 1983; Hosmer & Lemeshow, 2000; Agresti, 2002) and

suggested for SAOMs, e.g., in Snijders et al. (2010a) and Ripley et al. (2011), is

based on odds ratios. Taking the choice of not changing any relation (choice i) as

the reference, the odds in favor of choice j are given by

πi(θ̂;X, j)

πi(θ̂;X, i)
= eθ̂1Δs1(X,i,j)+...+θ̂KΔsK (X,i,j) .

A one-unit increase of statistic Δsk that would result from choice j increases the

odds in favor of choice j by a multiplicative factor of eθ̂k .

Assuming positive estimates, say 2.0 and 0.5, for the reciprocity and the

transitive triplets parameters, respectively, the odds of creating a new outgoing

tie are increased by a factor of e2.0 ≈ 7.4 if the new tie would reciprocate an incoming

tie and only by a factor of e0.5 ≈ 1.6 if the new tie would close a transitive triplet. The

odds ratio of almost 5(≈ 7.4
1.6

) leads to the conclusion that the reciprocity effect

is more important than the transitive triplets effect. Considering, however,

Actor 3 in Figure 1a, the odds ratio of Choice 1 to Choice 2 is given by e2.0−4×0.5 = 1,

which may lead to the conclusion that both effects are equally important. Assuming,

however, that Actor 3 follows Model θ̂ex of Figure 1b, the odds ratio of Choice 1 to

Choice 2 is only e2.0−2−0.7 ≈ 0.5. The potential conclusion that now the transitive

triplets effect is more important than the reciprocity effect is misleading since

the preference for Choice 2 is confounded by a decrease of the number of indirect

neighbors of Actor 3 and, thus, by the actors at distance 2 effect.
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(a) Example graph

Effect Parameter values

outdegree −1.8
reciprocity 2.0
transitive triplets 0.5
actors at distance 2 −0.7

(b) Model θ̂ex

Fig. 1. Comparing odds of Actor 3’s choices implied by Model θ̂ex demonstrates

interpretational difficulties arising already in simple examples: The odds ratio of Choice 1

to Choice 2 is about 0.5. Does this imply that the transitive triplets effect is more

important than the reciprocity effect? How should we treat the different scales of resulting

statistics (one reciprocated tie as opposed to four transitive triplets)? Should the actors at

distance 2 effect be taken into account when comparing reciprocity and transitive

triplets?

Already this small example illustrates that, depending on data and model spec-

ification, conclusions drawn from odds ratios are ambiguous. If the data is more

realistic or the assumed model contains several effects, caution is required. The main

issues are:

1. Different scales of explanatory statistics:

One micro-step increases the number of reciprocated ties by at most 1 but

may result in up to 2(N − 2) new transitive triplets. Hence, comparing both

effects by comparing the impact of an increase of corresponding statistics by 1

is in most cases fallacious. Instead, the potential range of explanatory statistics

must be taken into account. Accordingly, it might be more reasonable to assess

the impact of g new transitive triplets where g is, for instance, the expected

number of new transitive triples resulting from a random micro-step.

2. Correlations and causalities between explanatory statistics:

A new tie (i, j) abridging a two-path {(i, h), (h, j)} yields a new transitive

triplet for actor i and, at the same time, turns the indirect neighbor j into a

direct neighbor. If j had only common neighbors with i, the number of indirect

neighbors of i would be decreased by one. Imputing that this decrease is caused

by the transitive triplets effect, it might be reasonable to concede no

importance to the actors at distance 2 effect but rather attribute its impact

on the decision of actor i to the transitive triplets effect. However, the

causal relationship between the two effects could also be reversed, or observed

correlations could be engendered by third effects. In any case, the model cannot

distinguish such causalities. To what extent they should influence the evaluation

of relative importance of an effect, depends on whether the interest is in the

substantive importance for explaining the observed outcome or rather in the

share of explained model predictions. From the first perspective, the analysis

of relative importance could be regarded as part of the modeling process (with

one aim, among others, being the improvement of the model) whereas from

the second perspective, which will be our perspective in the following, it rather

serves as a descriptive method for interpreting and understanding the model

and its implications.
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3. Multiple choices instead of only two possible outcomes:

Odds ratios, describing the proportions between two quantities, are an appro-

priate measure to relate the two possible outcomes in a logistic regression.

The multinomial logit model, however, allows multiple outcomes. Due to the

property of “independence of irrelevant alternatives” (IIA, discussed in, e.g.,

Train (2009), 3.3.2), the odds ratio of two choices is still a meaningful quantity

to compare the likeliness of two particular outcomes in multinomial logit

models. But for assessing the influence of effects on the probability distribution

of all alternatives, mere information about pairs of choices is insufficient,

except for artificial example cases in which each choice represents a particular

effect. In network applications where correlated effect statistics are inevitable,

it is typical that one network effect influences the probabilities of several

alternatives that are, in turn, influenced by a combination of several effects.

Therefore, the contributions of effects to the complete probability distribution

has to be taken into account when analyzing their relative importance.

4. Data that is changing over time and only partly observed:

The impact of an effect on a micro-step depends largely on the local network

structure of the focal actor i. If i has no incoming tie, and thus no opportunity

to reciprocate a tie, the reciprocity effect cannot influence his/her decision.

However, as the network is endogenously changing over time, it is still possible

that at a later moment the decision of actor i will be indeed influenced by

reciprocity. By this means, specific characteristics of the evolving network

data may temporarily prevent an effect of being expressed although it is a

significant part of the model. For instance, if a longitudinal network is sparse

at the beginning and gets denser over time, actors are likely to have less

opportunities to close transitive triplets at earlier moments than later on. It

is therefore plausible to expect that the relative influence of the transitive

triplets effect is gradually increasing. As a consequence, the influence of

an effect might be heterogeneous over time even if the model specification

is time-homogeneous. In view of this time dependence, obvious difficulties

arise from the fact that micro-steps between observation moments are not

observed.

The above considerations imply that the way in which effects influence choice

probabilities is individual for each micro-step and too diverse and complex to

construct a typical choice situation representative for the population. Therefore,

we have to refer to a sample of possible choice situations given, e.g., in network

measurements X(pre)and X(post)or in simulated data.

3 A Measure of relative importance

Following the argument that a measure of relative importance in SAOMs must be

based on the impact of effects on micro-steps, our first step in Section 3.1 is to define

a measure of relative impact on actor decisions that can be applied to the actual

network data X(pre)and X(post). To get further insight into the unobserved dynamics,

the measure will be extended to simulated network sequences in Section 3.2.
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3.1 Relative impact on actor decisions

We identify a model specification with the associated parameters θ of the eval-

uation function and a certain instance of this specification, i.e., the estimated

model, with its estimated parameters θ̂. The term actor decision of an actor i

will refer to the set Ci = {1, . . . , N} of available alternatives actor i could choose

together with a probability distribution πi assigning to each choice j ∈ Ci a value

πi(j), referred to as choice probability of choice j, such that
∑N

j=1 πi(j) = 1. We

use the expression actor decision according to θ̂ if distribution πi is implied by

model θ̂.

We assume a network X with N actors and an estimated model θ̂ = (θ̂1, . . . , θ̂K ).

Let actor i be chosen to perform the next micro-step in X. The probability

distribution of Ci is given by Equation (2) and will be referred to as

πi := πi(θ̂;X, ·).
To assess the impact of the kth effect on this actor decision, πi is compared with the

distribution implied by a model with parameters

θ̂(−k) := (θ̂1, . . . , θ̂k−1, 0, θ̂k+1, . . . , θ̂K ).

Thus, by almost the same model with the difference that the statistics associated

with the kth effect are ignored, we denote this distribution by

π
(−k)
i := πi(θ̂

(−k), X, ·).
To compare the two probability distributions πi and π

(−k)
i , we use the L1-difference,

i.e., the sum of the absolute values of pointwise differences

‖πi − π
(−k)
i ‖1 =

N∑
j=1

|πi(j) − π
(−k)
i (j)|.

Note that the L1-difference is non-negative and for any probability distributions g

and f at most 2 because ‖f − g‖1 � ‖g‖1 + ‖f‖1 and ‖g‖1 = ‖f‖1 = 1. Moreover,

‖f − g‖1 = 0 only if g = f.

Figure 2 shows an example network Xex together with the choice probabilities

π2 (gray plot) of Actor 2 in this network according to the example model θ̂ex of

Figure 1b in the previous section. Creating ties to Actors 1, 3, or 4 is represented

by Choices 1, 3, and 4, respectively, while Choice 2 represents the option of keeping

the network as it is. According to Model θ̂ex, Actor 2 is most probably going to

reciprocate the incoming tie of Actor 4. No change (Choice 2) is almost as likely

as the relation to Actor 4 whereas a new relation to Actor 1 or Actor 3 is rather

unlikely. Figure 2 further shows distribution π
(−1)
2 (green plot) implied by θ̂(−1)

ex .

According to π
(−1)
2 , i.e., ignoring the outdegree statistic in the evaluation function

of Actor 2, Choice 2 is rather unlikely while Choice 4 is by far the most probable

choice. The lengths of the vertical dotted segments between the two plots equal the

absolute values of the pointwise differences between π2 and π
(−1)
2 . Hence, the sum

of the lengths of all four segments equals the L1-difference ‖π2 − π
(−1)
2 ‖1 between π2

and π
(−1)
2 .
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Choice j
1 2 3 4

0.5

1.0

π
(−1)
2ππ ( j)π2( j)

Fig. 2. Example network Xex and choice probabilities of Actor 2 in Xex. Depicted are

π2 (gray plot) and π
(−1)
2 (green plot) according to Model θ̂ex of Figure 1b. Numbers on

the horizontal axis represent the available choices and values on the vertical axis reveal

corresponding probabilities. The vertical dotted segments equal the pointwise differences

between distributions π2 and π
(−1)
2 ; thus, the sum of their lengths equals ‖π2 − π

(−1)
2 ‖1.

(color online)

Choice j
1 2 3 4

0.5

1.0

π2( j) π
(−k)
2 ( j)

∑4
k=1

∥∥∥π2 −π
(−k)
2

∥∥∥
1

outdegree
reciprocity
trans. trip.
actors at dist. 2

Fig. 3. Choice probabilities of Actor 2 in network Xex implied by Model θ̂ex and modified

probability distributions π
(−1)
2 (green plot), π(−2)

2 (purple plot), π(−3)
2 (orange plot), and π

(−4)
2

(yellow plot). Heights of segments in the bar chart equal the L1-differences between given

and modified distributions and indicate the relative influences of corresponding effects on the

decision of Actor 2. (color online)

The diagrams in Figure 3 display, additionally to π2 and π
(−1)
2 , distributions

π
(−2)
2 , π

(−3)
2 , and π

(−4)
2 that ignore the reciprocity, transitive triplets, and

actors at distance 2 statistic, respectively. Note that π
(−3)
2 equals π2 such that

the gray plot is invisible because it is covered by the orange plot. Hence, ignoring

the transitive triplets statistic has no influence on the choice probabilities of

Actor 2, which means that the effect itself has no influence on the decision of

Actor 2. This is also reflected in the bar chart on the right in which the heights

of the segments equal the L1-differences between the given distribution π2 and the

corresponding modified distributions. Further, the chart reveals that ignoring the

reciprocity statistic affects the decision of Actor 2 most while the impact of the

outdegree and actors at distance 2 statistics are slightly weaker.

For an actor i and 1 � k � K , we interpret ‖πi−π
(−k)
i ‖1 as the direct contribution of

the kth effect to the model-implied choice distribution of actor i, and, consequently,

as the influence of the kth effect on the decision of actor i. According to this

interpretation, the heights of the segments in the bar chart of Figure 3 depict the

importance of associated effects for the decision of Actor 2.



Relative importance in stochastic actor-oriented models 287

We define the relative influence of the kth effect on the decision of actor i in

network X by

Ik(X, i) :=

∥∥∥πi − π
(−k)
i

∥∥∥
1∑K

l=1

∥∥∥πi − π
(−l)
i

∥∥∥
1

. (3)

The normalization in Equation (3) is intentional; thus, Ik(X, i) is explicitly defined

as a relative value. If actor i is chosen to perform the next change, Ik(X, i) gives the

proportional contribution of the kth effect to the implications of the complete model

independent from the absolute influence of the complete model on this change. Since

we assume the same rate parameter for each actor, the probability of performing the

next change is uniformly distributed over all actors such that the expected relative

importance of the kth effect for the next change in network X is given by

Ik(X) :=
1

N

N∑
i=1

Ik(X, i) . (4)

The use of the L1-difference to quantify the change from πi to π
(−k)
i is not imperative.

Other measures for assessing the difference between two probability distributions

might be appropriate as well. Examples of conceivable measures are the L2-difference,

the Kullback-Leibler divergence, or the Hellinger distance. In the absence of a general

guideline, the decision for a specific measure should be made by the researcher based

on features of the choice probabilities he or she regards as characteristic or important

in the investigated context. If, for instance, the context suggests that a great difference

in the probability of only one choice is of higher relevance than proportionately

smaller changes in the probabilities of several choices, the L2-difference, defined

by ‖f − g‖2 :=
√∑

j (fj−gj )2 for discrete probability distributions f and g, might be

preferable to the L1-difference.1 Similarly, a characteristic of the Kullback-Leibler

divergence (Kullback & Leibler, 1951), defined by DKL(f‖g) =
∑

j fj log(
fj
gj

) for

discrete probability distributions f and g, is that, in general, DKL(f‖g) �= DKL(g‖f).

Hence, DKL is not a metric in the mathematical sense but may still be attractive in

certain contexts for its information-theoretic interpretation (Khinchin, 1957).

Although limited experiments comparing the results based on the above-mentioned

divergence measures revealed very similar substantial implications—we essentially

obtained identical orderings of effects by their relative importance, with comparable

relative magnitudes on varying scales—further research is necessary in order to make

recommendations which measure to use. We opted for the L1-difference as, for now,

we have no reasons to place special emphasis on specific forms of deviations between

distributions πi and π
(−k)
i . Moreover, the L1-difference has a simple definition and

can be interpreted directly.

Figure 4 shows bar charts of values Ik(Xex, ·) for all actors in the example

network Xex. Averaging over these values yields the expected relative importance of

effects in Model θ̂ex for the next change in Xex. Apparently, the outdegree effect

accounts for almost half of the influence, the reciprocity effect for more than a

quarter, and the remaining quarter is shared by the two transitivity effects whereas the

1 Note that for vectors f, g, f̃, g̃ ∈ �N that satisfy ‖f − g‖1 = ‖f̃ − g̃‖1 and
∑N

j=1(|fj − gj | − |f − g|)2 �
∑N

j=1(|f̃j−g̃j |−|f̃ − g̃|)2 (where · indicates the mean of all vector entries), it follows ‖f−g‖2 � ‖f̃−g̃‖2.
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Actor 1 Actor 2 Actor 3 Actor 4

1
N ∑N

i=1

∥∥∥πi−π
(−k)
i

∥∥∥
1

∑K
l=1

∥∥∥πi−π
(−l)
i

∥∥∥
1

exp. rel. imp.

outdegree (-1.8) reciprocity (2.0) trans. trip. (0.5) actors at dist. 2 (-0.7)

Fig. 4. If the the probability of being chosen to perform the next change is the same for all

actors, averaging over the relative influences Ik(Xex, ·) of effects on individual actors yields the

expected relative importance Ik(Xex) for the next network change in Xex. (color online)

actors at distance 2 effect explains much more than the transitive triplets

effect.

The example illustrates that, depending on the local network structure, the propor-

tions of influence vary considerably across actors. According to the considerations in

Section 2, relative influences (Formula (3)) and, consequently, the expected relative

importances (Formula (4)) depend strongly on the analyzed network data. The

sequence of networks leading from X(pre) to X(post), however, is unobserved. Therefore,

expected relative importance can be calculated only at the observation moments t(pre)
and t(post).

The example application in Section 4 will show that already from the discrete

network observations much information can be gained by using the proposed

measure. Even so, it is a basic assumption of the SAOM that the observed networks

are only snapshots of an underlying evolution process, and explaining this process

between observations is the aim of the modeling. Therefore, and particularly in view

of the issue of changing data listed at the end of Section 2, a measure of relative

importance should be based on the impact of effects on the complete evolution

process not just on the impact at observation moments.

3.2 Relative impact on network evolution

Since the actual network evolution is unobserved, we refer to the evolution predicted

by the model. Given a SAOM with estimates (λ̂, θ̂) and an initial network X(pre),

an evolution according to (λ̂, θ̂) can be simulated via a sequence of micro-steps

conforming to the rules and assumptions described in Section 1 with an adequate

termination condition (see, e.g., Snijders, 2001, or Snijders, 2005). We denote such a

sequence by S = S((λ̂, θ̂);X(pre)).

In the following, we assume C simulations, i.e., C finite sequences {S1, . . . , SC}
of networks with each network Xl resulting from the preceding network Xl−1 by a

single micro-step. Since the number of micro-steps during a simulation is stochastic,

the number of networks in the sampled sequences varies from sequence to sequence.

For 1 � c � C , we denote the length of sequence Sc by Tc; hence,

Sc =
[
Xc

1 , X
c
2 , X

c
3 , . . . , X

c
Tc−1, X

c
Tc

]

with Xc
1 = X(pre). Note that, in general, simulated sequences lead to a network similar

but not equal to observation X(post).
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Let (J1, . . . , JP ) be a partition of the time span [t(pre), t(post)] into P intervals. This

partition implies a partition of each sequence Sc into P subsequences by

Sc
|J1

=
[
Xc

1 , X
c
2 , . . . , X

c
� Tc

P
	
]

(5)

Sc
|J2

=
[
Xc

� Tc
P

	+1
, . . . , Xc

2� Tc
P

	
]

...

Sc
|JP =

[
Xc

(P−1)� Tc
P

	+1
, . . . , Xc

Tc

]
.

Note that partition (5) is based on expected waiting times between consecutive

micro-steps rather than the sampled waiting times, which is a reasonable simplifi-

cation as the waiting times depend only on rate parameter λ̂ that is constant over

time and the same for all actors.

Let Ik(S
c
|Jp ) be the average relative influence of the kth effect on actor decisions in

sequence c during time interval Jp. Formally, if scp := #Sc
|Jp denotes the number of

elements in Sc
|Jp and i(1)

cp , . . . , i
(scp)
cp denotes the ordered sequence of actors performing

the micro-steps of sequence c during time interval Jp, i.e., the decision of actor i(l)cp
turns network Xc

(p−1)� Tc
P

	+l
into network Xc

(p−1)� Tc
P

	+(l+1)
, then

Ik

(
Sc

|Jp
)

:=
1

scp

scp∑
l=1

Ik

(
Xc

(p−1)� Tc
P

	+l
, i(l)cp

)
(6)

with Ik(X
c
(p−1)� Tc

P
	+l

, i(l)cp) according to the definition of relative influence in

Equation (3). Note that Ik(S
c
|Jp) refers to a sampled micro-step sequence. Therefore,

at each moment, it is predetermined which actor will perform the next change such

that only the relative influence on this actual actor decision is added rather than the

expected relative influence on the next network change as defined in Equation (4)

where an uncertainty about the next acting actor was supposed.

If time intervals Jp are suitably short, i.e., the number of network changes in

subsequence Sc
|Jp are small compared to the size of the network, it might be assumed

that variations in terms on the right side of Equation (6) are due to local differences

in the structural neighborhoods of actors i(l)cp rather than due to global differences in

the network structure caused by the evolving dynamics (cf. experiments in Lerner

et al. (2013)). Based on this, we proceed on the assumption that the set of micro-steps

in Sc
|Jp can be regarded as a sample of actor decisions rather than a sequence of

conditionally dependent network changes.

Since all sequences {S1, . . . , SC} are generated by the same process obeying the

same model, we further assume that the union of sets S1
|Jp ∪ . . . ∪ SC

|Jp represents a

sample of actor decisions from the model-implied network dynamics during interval

Jp. Consequently, averaging over sequences {S1, . . . , SC} reveals an estimate

Ik(Jp) :=
1

C

C∑
c=1

Ik

(
Sc

|Jp
)

(7)

of the expected relative importance of the kth effect for the network dynamics during

interval Jp.
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We finally consider the cost of calculating the expected relative importances

(Formula (7)). During the last phase of the estimation algorithm implemented in

the R-package RSiena, sequences {S1, . . . , SC} are simulated by default to obtain

estimates of standard errors and diagnostics for convergence checks. Hence, for each

simulated micro-step, the corresponding choice distribution πi from Equation (2) is

available, as are the weighted contributions θ̂ksk(X
[¬ij], i), 1 � k � K , of potential

choices j.

The associated modified distributions π(−1)
i , . . . , π

(−K)
i can therefore be determined

with an additional K · (3N − 1) basic arithmetic operations and K · N exponential

function evaluations. For calculating the L1-differences between the original and

the modified distributions, another K · (3N − 1) basic operations are needed, and

combining them to relative importances (Formula (3)) requires another 2K −1 basic

arithmetic operations.

Note that for K > 1, the cost of calculating a modified distribution π
(−k)
i is less

than the cost for calculating the original distribution πi by N(K−2) basic arithmetic

operations, since the values of θ̂ksk(X
[¬ij], i) are already available.2 For K � 5 and

with σ denoting the cost of performing a particular micro-step, Kσ + (K − 1) is

therefore a conservative upper bound for the extra costs for calculating relative

importances. The weaker upper bound of 2Kσ + (2K − 1) is valid for any K > 1.

Let Σ denote the time needed for simulations in the last phase of the estimation

algorithm, then 2K(Σ + 1) is a (conservative) upper bound for the extra cost of

calculating the expected relative importances during time intervals as defined by

Formula (7). Consequently, there are no extra costs during the preceding phases of

the algorithm, including the phase of the actual parameter estimation, which is by

far the most time-intensive part of the computations.3

4 Application to a longitudinal network of university freshmen

We demonstrate the use of the proposed measure of relative importance by an

application to a friendship network of 32 students measured during their first term

at the University. The data was collected by G. G. Van de Bunt and analyzed in

Van de Bunt (1999) and also in Van de Bunt et al. (1999) and Snijders (2005). It is

available on http://www.stats.ox.ac.uk/snijders/siena/and consists of seven network

observations with intervals of three weeks between the first four measurements and

six weeks between the last three measurements. The students were asked about

their relations to the other students. Possible answers range from best friend to

troubled relationship. The networks considered in this application represent a friendly

relationship as defined in Van de Bunt (1999). The students were further asked about

several individual characteristics among which we consider the gender and the

smoking behavior of the students. The university offered three education programs

(2-year, 3-year, 4-year). The pursued program is another individual covariate that

2 The costs for calculating the contribution terms θ̂ksk(X
[¬ij], i) depend on the effects included in the

model and on the specific implementation of the algorithm. Usually, they exceed the costs for the
subsequent computation of choice probabilities.

3 This is in contrast to the approach in Snijders (2004) where restricted models are reestimated.
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Fig. 5. Longitudinal friendship network among 32 university freshmen. The data was

collected by G. G. Van de Bunt and is available and described on http://www.stats.ox.ac.

uk/∼snijders/siena/. The displayed networks differ from the original data in the treatment

of missing data.

will be considered in the analysis. This data set was also analyzed in Snijders (2004)

where he applied the measure of explained variation mentioned in the introduction.

The original measurements contain some missing data. We derived networks

without any missings by replacing a missing relation by the last observation of

that relation. Note that there were no missing values in the first observation.4

Figure 5 depicts the imputed networks that will be analyzed in the following

example application.

4.1 Model specification and estimation results

Analogous to the example application in Snijders (2004), we analyze two nested mod-

els. The first (Model 1) consists of five structural effects, and the second (Model 2)

comprises, additionally to the structural effects, five covariate related effects. Model 1

4 In principle, the algorithm implemented in the R-package RSiena is able to deal with missing data by
deriving replacements of missing values in the same way as described above with the addition that the
imputed data has no direct influence on the estimation process (Ripley et al., 2011). However, as the
purpose of the following application is only illustrative, we avoid additional complications in order to
facilitate the interpretation of our results.
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Table 2. Two SAOMs estimated for the longitudinal friendship network depicted in Figure 5.

Model 1 Model 2

Effect Estimate (s.e.) p Estimate (s.e.) p

rate period 1 23.362 (6.769) 22.293 (8.564)

rate period 2 3.611 (0.562) 3.802 (0.630)

rate period 3 3.665 (0.609) 3.876 (0.749)

rate period 4 4.177 (0.615) 4.263 (0.625)

rate period 5 5.132 (0.571) 5.369 (0.754)

rate period 6 2.950 (0.384) 3.015 (0.415)

outdegree −1.128 (0.099) <0.001 −1.476 (0.103) <0.001

reciprocity 2.021 (0.132) <0.001 1.874 (0.142) <0.001

transitive triplets 0.105 (0.020) <0.001 0.111 (0.019) <0.001

actors at distance 2 −0.300 (0.034) <0.001 −0.275 (0.036) <0.001

1/(outdegree + 1) 1.838 (0.669) 0.006 2.225 (0.717) 0.002

gender alter 0.381 (0.104) <0.001

gender ego 0.015 (0.108) 0.888

same gender 0.444 (0.099) <0.001

program similarity 0.648 (0.116) <0.001

smoking similarity 0.342 (0.094) <0.001

includes the effects outdegree, reciprocity, transitive triplets, actors at

distance 2, and the inverse outdegree effect. The mathematical formulas of

statistics related to the first four effects were given in Table 1. For measuring the

inverse outdegree effect on actor i, statistics

1

1 +
∑N

j=1 Xij

(8)

are considered so that a positive parameter estimate indicates the reluctance of

actors to gain a high outdegree. Note that Formula (8), so the strength of reluctance,

grows inversely proportional to the outdegrees of the actors so that the effect of

increasing the number of outgoing ties from one to two is much stronger than

increasing it, e.g., from 10 to 11.

In Model 2, the influence of covariates gender, smoking, and program is analyzed by

expanding Model 1 by effects gender ego, indicating whether the gender has impact

on reported increase of friends, gender alter, indicating whether the gender has

impact on popularity, same gender, indicating whether friendly relations between

students of the same gender are more likely than between students of different

gender, and program similarity and smoking similarity, indicating whether

the probability of a friendly relation between two students increases with their

similarity with respect to their education program or smoking behavior, respectively.

Explicit formulas of the statistics representing the covariate-related effects are given,

e.g., in the appendix of Snijders et al. (2010).

Table 2 shows estimates and standard errors fitted by the R-package RSiena

(version 1.1-219, R version 2.13.2). Listed p-values result from the Wald-type test

described in Ripley et al. (2011) and proposed in Snijders (1996).
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The data reveals strong evidence for all tested effects except for the gender

ego effect. As generally expected, the algebraic signs of the structural parameters

yield in both models a preference for reciprocated relations and transitivity. The

algebraic signs of covariate-related parameters in Model 2 support the assumption

that selection based on similarity with respect to gender, smoking behavior, and

education program plays a role in the formation of friendship. The covariate gender

was coded as 1 for females and 2 for males. Therefore, the positive estimates

associated with the gender alter and gender ego effects indicate that among

these students men tend to be more often nominated as new friends than women

and, albeit not significantly, tend to be more active.

4.2 Relative importance of effects at observation moments

Let X(t1), . . . , X(t7) denote the network observations as depicted in Figure 5 and

t1, · · · , t7 the moments of measurement. In order to analyze the expected relative

importance of the effects in Model 1 for the next network change at times

t1, · · · , t7, measures (3) and (4) are applied to X(t1), . . . , X(t7). The results are

visualized in Figure 6, revealing seven rows of bar charts with row u displaying the

results computed for X(tu). Analogous to Figure 4 of the introductory example in

Section 3.1, the relative height of a colored segment in bar chart i of row u represents

the relative influence Ik(X(tu), i) of the corresponding effect on a potential decision of

actor i at time tu according to Model 1. Aggregated measures Ik(X(t1)), . . . , Ik(X(t7))

of expected relative importances for the next change, as defined in Equation (4),

are visualized in an additional bar chart as well as in a pie chart at the end of

each row. The bar chart enables direct comparisons of the aggregated values with

individual values of single actors, whereas the pie chart facilitates the comparison

and assessment of proportions and emphasizes the fact that the results have to be

interpreted as relative shares.

4.2.1 Cross-sectional perspective

Comparing, at a fixed time point tu, values Ik(X(tu), i), 1 � i � N, reveals a great

variation in the shares of influence on different actors i. Nevertheless, there are

actors exhibiting similar patterns. Consider, for instance, the second observation

X(t2). Bar charts 11, 18, and 25 in the second row exhibit identical segmentation,

indicating that at time t2 actors 11, 18, and 25 are all in the same way influenced by

the outdegree, the actors at distance 2, and the inverse outdegree effect. In

fact, Observation 2 in Figure 5b reveals that at time t2 the structural positions of the

three actors in the network are equivalent with respect to Model 1. As all of them

are isolated in X(t2), neither the reciprocity effect nor the transitive triplets

effect influences their decisions. Likewise, in the same observation, actors 1 and 9 or

actors 5 and 13 are influenced by Model 1 in the exact same way.

Comparing the segmentation of the last bar chart in the second row, representing

the aggregated values Ik(X(t2)), with bar charts of individual actors in this row,

reveals that although the bar charts of some actors, as for instance 4, 8, or 22,

resemble the last, none of them exhibits an identical segmentation.
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−1.13 (0.10)  outdegree
 2.02 (0.13)  reciprocity

 0.10 (0.02)  transitive triplets
−0.30 (0.03)  actors at distance 2

 1.84 (0.67)  1/(outdegree+1)

Fig. 6. The bar charts (except for the last in each row) display the relative impacts of effects

in Model 1 on individual actor decisions for all observations according to Formula (3). The

last bar chart in each row as well as the pie charts display expected relative importances of

included effects for the next step according to Formula (4). (color online)

Considering the second pie chart visualizing the aggregated values Ik(X(t2)), it is

to be expected that the next network change in X(t2) is mainly influenced by the

outdegree, the reciprocity, and the actors at distance 2 effect whereas the

influence of the first two effects is somewhat stronger. The effects transitive

triplets and inverse outdegree are expected to influence the next change
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only slightly. The marginal importance of the transitive triplets effect is not

surprising since the network at time t2 is still very sparse (110 from 992 possible

ties, with 72 reciprocated ties) such that opportunities for network closure are rare.

4.2.2 Longitudinal perspective

Supplementing the cross-sectional perspective, Figure 6 facilitates a longitudinal

perspective on the relative importance of effects. Comparing expected shares of

influence Ik(X(tu)) at consecutive time points t1, . . . , t7 gives an impression whether

an effect gets more important over time or whether its importance decreases.

As may be conjectured from Figure 5 or from the high rate parameters in Table 2,

the first period of the example application plays a special role, which becomes also

apparent in Figure 6. No bar chart in the first row contains an orange segment,

implying no influence of the transitive triplets effect. Instead, the outdegree

and the inverse outdegree effects are most influential, except for those students

with an incoming tie, thus, with the prospect of a mutual friendship captured

by the reciprocity effect. Apparently, the influence of the inverse outdegree

effect diminishes tremendously in the second observation, which is caused by the

increase of the average outdegree from 0.19 in X(t1) to 3.44 in X(t2): Formula (8)

together with the estimate of about 1.8 implies that the inverse outdegree effect

decreases the probability that an actor with no outgoing tie will create a new tie by

a multiplicative factor of e1.8×(−0.5) ≈ 0.4. If the actor had one outgoing tie, however,

the decreasing factor would be e1.8×(−0.167) ≈ 0.74, and 0.86 or 0.91 in the case of three

or four outgoing ties, respectively. Hence, as the network gets continually denser,

the relative importance of the inverse outdegree effect decreases. As opposed to

this, the relative importance of the transitive triplets effect grows over time

with the density of the network.

By comparing, for particular actors i, longitudinal sequences Ik(X(t1), i), . . . ,

Ik(X(t7), i) of relative impacts on their decisions, strong variations between the

evolutionary patterns get apparent. There are actors, like Actor 18 and Actor 5,

whose decisions are at all observation moments influenced by the same or similar

mechanisms indicating that there is only little change in the structure of their

network positions. On the other hand, there are actors, like Actor 6, whose bar

charts vary extremely along the time line indicating that there are remarkable

changes in the structure of their neighborhoods. Since the model assumes that

changes in the network evolve continuously, it may be expected that changes in

the relative influences of effects on single actors change rather gradually as well.

Indeed, the majority of actors, for instance, actors 2, 13, 15, 16, or 30, seem to grow

continuously into a more embedded position in the network. Note that such extreme

cases as Actor 6, starting with 1 outgoing tie at t1, followed by 3 at t2, 0 at t3, 4 at

t4, and again 0 at t6 to end up with 3 outgoing ties t7, may also hint at errors during

the process of data collection or editing.

4.2.3 Comparing relative importance across models

So far, we considered only Model 1. Figure 7 shows the expected relative importance

of effects implied by Model 1 and by Model 2. Each bar chart represents the
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−1.48 (0.10)  outdegree
 1.87 (0.14)  reciprocity
 0.11 (0.02)  transitive triplets

−0.28 (0.04)  actors at distance 2
 2.23 (0.72)  1/(outdegree+1)
 0.38 (0.10)  gender alter

 0.02 (0.11)  gender ego
 0.44 (0.10)  same gender
 0.65 (0.12)  program similarity

 0.34 (0.09)  smoking similarity

Fig. 7. Expected relative importance of effects in the two models of Table 2 for the next

change at observation moments t1, . . . , t7. The parameter estimates given in the legend refer to

Model 2. Each bar chart represents the same results as the corresponding pie chart below it.

While the bar charts facilitate longitudinal comparisons within one model as well as the

comparison of proportions of relative importance between several effects of the same model,

the pie charts remind us that the results are not to be understood as absolute but only as

relative contributions and facilitate the perception of relative shares contributed by one or

several effects to the complete influence of a model. (color online)

same results as the corresponding pie chart below it. While the bar charts facilitate

longitudinal comparisons within one model as well as the comparison of proportions

of relative importance between several effects of the same model, the pie charts

remind us that the results are not to be understood as absolute but only as relative

contributions and facilitate the perception of relative shares contributed by one or

several effects to the complete influence of a model.

Apparently, the covariate related effects in Model 2 account for slightly less than

25% of the expected impact on the next change, in all observations, except for the

first. Due to the lack of network structure at time t1, almost 50% of the impact on

the next change in X(t1) is expected to come from covariate related effects. While

Model 1 distinguishes only between four different types of actors in X(t1), namely,

isolates, actors with one incoming tie, actors with one outgoing tie, and actors with

one reciprocated tie, the covariate-related effects in Model 2 imply a lager variety.

We observe that the relative proportions between the structural effects at t1
change slightly after including the covariate-related effects. The major share of the

structural influence comes still from the outdegree and the inverse outdegree

effect similarly proportioned as in Model 1. However, the actors at distance 2

and the reciprocity effect become less important compared to the other effects,

albeit the latter to a lesser extent. Also in subsequent observations X(t2), . . . , X(t7),
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both effects lose relative importance to the other structural effects, in particular to

the outdegree effects. This corresponds to the fact that, in contrast to the other

structural effects, the absolute values of parameter estimates of the reciprocity and

the actors at distance 2 effect decreased in Model 2. A possible explanation is

that the covariate-related effects in Model 2 explain primarily those parts of the actor

decisions that have been explained in Model 1 by the reciprocity and the actors

at distance 2 effect. As opposed to this, it seems that changes explained by the

transitive triplets effect cannot be alternatively explained by covariate-related

effects.

It is important to remark that the above comparisons between the results for two

different models are valid since they refer exclusively to relative shares of importance

not to absolute values. Therefore, they are independent of the absolute influences

of the complete models and are not distorted by issues of rescaling as discussed in

Karlson et al. (2012).

Apart from observation X(t1), observations X(t2), . . . , X(t7) reveal only slight

variation in the relative importance of the covariate-related effects. Their relative

influence on expected actor decisions is slightly less than 25% whereas the same

gender effect is most important, followed by similarity with respect to smoking

behavior and education program and the gender alter effect. The gender ego

effect, however, has no influence, which is in line with the fact that its statistical

significance could not be shown.

4.3 Relative importance of effects for the network dynamics

Finally, we apply the extended measure of Section 3.2 to sampled sequences of micro-

steps representing the evolution as predicted by the given model. For each period

h, 1 � h � 6, 100 sequences of micro-steps leading from X(th) to a network similar

to X(th+1) were simulated according to Model 1. Each time interval [th, th+1] was

divided into 10 subintervals (Jh1, . . . , Jh10) implying subsequences Sc
|Jhp of micro-steps

as in partition (5).

For each subsequence Sc
|Jhp and each effect in Model 1, the average relative

influence Ik(S
c
|Jhp), 1 � k � K , on micro-steps in Sc

|Jhp was calculated according to

Formula (6). Averaging over the 100 sampled sequences yields an estimate of the

expected relative importance Ik(Jhp) of the kth effect during subinterval Jhp of

period h as defined in Formula (7).

These longitudinal sequences are depicted in Figure 8. In each period, the graphs

feature 10 dots indicating values Ik(Jhp) joined by straight line segments. As the

network consists of 32 actors and, except for the first period, the rate parameters

of Model 1 have on average values of approximately 4, a rough estimate of the

expected number of micro-steps per period is 128 (recall that the rate parameter

equals the expected number of micro-steps performed by each actor during the

interval). Thus, overlooking the first period, the expected number of micro-steps in

a subsequence Sc
|Jhp is about 13 such that each dot in the plot represents the average

over approximately 13 × 100 micro-steps. Note that due to the high change rates

during the first period, a dot represents here almost five times as many micro-steps as

in the subsequent periods. The circlets next to the axes indicate the expected relative
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−1.13 (0.10)  outdegree
 2.02 (0.13)  reciprocity
 0.10 (0.02)  transitive triplets

−0.30 (0.03)  actors at distance 2
 1.84 (0.67)  1/(outdegree+1)

Fig. 8. Relative importance of effects in Model 1 for the unobserved network dynamics

leading from one observation to the next. Periods between observations are divided into

10 intervals. Averages of interval values over 100 simulated chains, as specified in Formula (7),

are depicted as small dots. The circlets next to the axes indicate the expected relative

importances at observation moments as defined in Formula (4). (color online)

importances at observation moments as defined in Formula (4) and correspond with

the respective shares of pie charts in Figures 6 and 7.

It becomes apparent that in most cases the averages over relative importances of

effects for potential decisions of actors at the observation moments (indicated by

the circlets) coincide well with the corresponding averages over micro-steps taking

place during the first subintervals Jh1, 2 � h � 6 (indicated by the first dots of the

respective periods).

This is not true, however, for the first period, which is to some extent explainable

by the five times larger number of micro-steps aggregated in the subintervals of the

first period compared to the subsequent periods. At the same time, it emphasizes

that during this phase noticeable structural changes seem to be in progress. At

the beginning where there is almost no network structure, the most important

effects are the outdegree and the inverse outdegree effect. While the basic

outdegree effect keeps its strong influence till the end of the period, the inverse

outdegree gets remarkably less important already after few micro-steps. In contrast,

the reciprocity and the actors at distance 2 effect are less important at the

beginning but exceed the inverse outdegree effect expeditiously. As expected, the

transitive triplets effect is not important during the first period and keeps

this subordinate position for the next two periods. During the last three periods,

however, its influence increases steadily until it is nearly the second most important

effect in the model. The other effects show less change, though the outdegree effect

and the reciprocity effect change their positions in the ranking and drift apart in

the last two periods after having been on a similar level during the fourth period.

Since the values displayed in Figure 8 are averagings over both micro-steps

during a certain time interval and micro-steps of different simulations, we deemed

it necessary to investigate how values of relative importance are distributed over

such amalgamated sets. The results are not presented but convinced us of the

validity of the presented means. For all effects and during all periods (with two
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−1.48 (0.10)  outdegree
 1.87 (0.14)  reciprocity
 0.11 (0.02)  transitive triplets
−0.28 (0.04)  actors at distance 2
 2.23 (0.72)  1/(outdegree+1)

 0.38 (0.10)  gender alter
 0.02 (0.11)  gender ego
 0.44 (0.10)  same gender
 0.65 (0.12)  program similarity
 0.34 (0.09)  smoking similarity

Fig. 9. Relative importance of effects in Model 2 for the unobserved network dynamics

leading from one observation to the next. Periods between observations are divided into

10 intervals. Depicted are averages of interval values in 100 simulated chains as specified

in Formula (7). The circlets next to the axes indicate the expected relative importances at

observation moments as defined in Formula (4). (color online)

exceptions, reciprocity during the first and transitive triplets during the

last period) the values of relative importance revealed interquartile ranges of less

than 0.2. The relative importance of the outdegree effect and the reciprocity

effect seems to be rather symmetrically distributed, while the importance of the

actors at distance 2 effect and the inverse outdegree effect is skewed, having

a lion’s share of very low values and also a considerable number of outliers that are

strongly influenced by the effects, presumably caused by actors with a low outdegree.

The example application is concluded by Figure 9 displaying the evolution of the

relative importance of effects in Model 2. Supporting the results of Section 4.2.3,

the covariate-related effects are most important at the beginning of the first period

but lose their influence rapidly and stay on a constant level less important for the

subsequent dynamics. The covariates exert their influence on the dynamics mainly in

terms of similarity effects, in particular the same gender effect. The graphs confirm,

as already presumed from Figure 7, that the relative importance of the outdegree,

the transitive triplets, and the inverse outdegree effect are less affected by

the inclusion of the new effects, whereas the reciprocity and actors at distance

2 effect lose more of their influence to the covariate-related effects.

5 Discussion

We proposed a measure of relative importance of effects in SAOMs that enables the

interpretation of model results beyond significance tests, and allows comparisons of

effects within a model and among different models. It relates directly to the analyzed

data and reveals time-dependent changes in the data and their consequences for

model interpretation. The derivation of the measure required several methodological

decisions, which are pointed out and discussed in the following.
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In Section 2, we argued that the relative importance of an effect in a SAOM is

determined by its relative importance for individual actor decisions. As the actor

decisions follow a multinomial logit model, a discussion of the general approach of

comparing odds ratios led to the conclusion that it is not sufficient for describing the

relative influence of effects in realistic network data. Four main issues were identified:

(1) different scales of explanatory variables, (2) correlations between explanatory

variables, (3) multiple and complex choice sets, and (4) data that changes largely

unobserved over time. The first two points refer to problems generally occurring

when analyzing relative importance; cf. Menard (2004), Healy (1990), Pratt (1987), or

Kruskal (1987). The third point is a special shortcoming of the odds ratio approach

in trying to describe the outcome of a multinomial logit model by comparing only

pairs of possible alternatives; it confirms the necessity of taking entire distributions

of choice probabilities into account when assessing the relative influence of effects

on actor decisions. The fourth point refers to the strong dependency of such a

measure on the structure of the evolving network data, which is, however, assumed

to be largely unobserved and thus implies a need of artificially generated data

samples.

Analogous to the concept of analyzing the amount of change in the dependent

variable caused by a certain change in the respective independent variable, the basic

element of the proposed measures is to compare the predicted outcome of an actor

decision according to the given model θ̂ with the predicted outcome in a modified

situation. In particular, we measure the difference between choice distribution πi and

choice distribution π
(−k)
i as described in Section 3.1. The concrete implementation of

this idea entails two main points for discussion. First, the use of the L1-difference to

quantify the relation between π
(−k)
i and πi. And second, the definition of π

(−k)
i and

its capability to delineate the influence of the kth effect on πi.

Regarding the first point, a major argument for using the L1-difference is its

straightforward interpretation. Other measures for assessing the difference between

two distributions might be appropriate as well. We discussed this in Section 3.1,

where we also mentioned that the comparison of results based on different measures

revealed similar substantial implications, i.e., identical orderings of effects by their

relative importance with comparable relative magnitudes on varying scales.

Regarding the second point, the modifications leading to π
(−k)
i , namely, setting

θ̂k = 0 and keeping all the other model parameters as they are, can be interpreted in

two ways: either as excluding the kth effect from the model, or as changing the in-

dependent variables associated with the kth effect from (Δsk(X, i, 1), . . . ,Δsk(X, i, N))

to (0, . . . , 0).

The first perspective engenders immediate criticism: A fitted model not containing

the kth effect would exhibit adjusted parameters for the remaining effects. Hence,

instead of setting θ̂k = 0 and keeping all other parameters as they are, the model

should be estimated anew, subject to the constraint θ̂k = 0. This strategy would

respond to the question whether the kth effect is necessary to obtain predictions

from the data that closely resemble the predictions of model θ̂. However, it would not

answer the question to what extent the predictions of model θ̂ are constituted by the

kth effect. In fact, reestimating the modified model is geared to a sort of significance

analysis for model selection rather than the analysis of relative importances for the

interpretation of a given model.
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To clarify the difference, consider a model containing two positively correlated

effects denoted by el and em. Further assume that both effects describe related

mechanisms such that they are responsible for similar characteristics of the predicted

choice distribution πi. From excluding el and reestimating the remaining parameters,

we would expect an increased absolute value of θ̂m so that mechanisms previously

explained by el are now captured by em. Therefore, the choice distribution predicted

by the modified model would not necessarily differ from πi and the methods

proposed in Section 3.1 would suggest that el has no influence on the actor decision.

Likewise, from excluding em, we would conclude that em has no influence. Hence, by

underestimating the importance of both effects, the represented mechanisms would

be erroneously regarded as not involved in determining the predictions of model θ̂,

although the correct conclusion would be that, provided em [el] is still in the model,

el [em] is not necessary to obtain the predictions of model θ̂.

This conclusion may hint at a way of improving the model. However, the proposed

measures of relative importance are not intended for improving the model or

assessing its ability to describe the data compared against alternative models, but

for interpreting the given model and understanding its implications by understanding

the meaning and relative influence of the included effects. In a way, we assume that

the model perfectly represents the data-generating process (i.e., all included effects k

with |θ̂k| > 0 are necessary to explain the process and all process-driving mechanisms

are captured by the included effects) and our interest is solely in the relative shares

explained by the individual effects. This is in contrast to the approaches proposed in

Snijders (2004), investigating the increase of information due to additional network

effects, and in Snijders and Steglich (2013), investigating the sensitivity of specific

macro-structures to manipulations of single parameters, both of which are indeed

reestimating the restricted model.

Therefore, instead of considering π
(−k)
i to result from modifications of the model,

another perspective might be to regard it as the result of changing the independent

variable by (Δsk(X, i, 1), . . . ,Δsk(X, i, N)). In terms of issue (1), concerning the different

ranges of explanatory variables, our procedure leads to changes in the independent

variable that equal on average the expected value of this variable. Regarding issue

(2), changing exclusively statistics associated with one effect is usually not possible

because of potential correlations with other statistics. Considered as a gedanken

experiment, however, this isolated treatment of effects enables a separation of their

relative importance. Let us continue the above example scenario of the two correlated

effects el and em that explain similar mechanisms. After excluding em [el], we expect

that, due to the influence of el [em], π(−m)
i [π(−l)

i ] still exhibits the characteristics

caused by the represented mechanisms, yet in a weaker form than πi. Accordingly,

by the proposed method the joint influence of the represented mechanisms on πi is

divided into shares of relative importance respectively assigned to el and em.

We emphasize that, due to the large variety and complexity of possible choice

sets of actor decisions, extrapolations of results obtained from a certain network

to general statements about a population are doubtful. Instead, reported findings

are descriptive and refer exclusively to the analyzed network data. Since concrete

decisions made by the actors are not observed, however, we had to refer to

generated data (cf. issue (4)). In the context of parameter estimation for SAOMs,

two approaches of data augmentation have been proposed. The method of moments,
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described in Snijders (2001) or Snijders (2005), employs simulations of model

predictions yielding sequences of micro-steps that start from X(pre)and result in

networks similar to X(post). A second method, employed for maximum likelihood

estimation and proposed in Snijders et al. (2010b) and Koskinen and Snijders (2007),

is sampling chains of micro-steps leading from X(pre) to X(post) by a Markov

Chain Monte Carlo algorithm. Both methods generate data that is appropriate

for estimating measure (7) as described in Section 3.2. While the results presented

in this article are based on the first approach (simulated sequences from X(pre)to

networks similar to X(post)), limited tests based on the second approach (sampled

chains from X(pre) to X(post)) yielded qualitatively similar results.

Work on extensions of the proposed measure to more complicated models for the

simultaneous evolution of networks and individual behavior of actors (Snijders et al.,

2007; Steglich et al., 2010) and the co-evolution of multiple dependent network

variables (Ripley et al., 2011; Snijders et al., 2013) is in progress.

An obvious next step would be the analysis of the joint relative importance of

several effects. It seems to be a natural extension to define the relative importance

of a group of effects by comparing πi with the distribution that would result from

setting all corresponding parameters to 0. This could be useful for models that

allow for a meaningful grouping of effects where effect groups might be defined, for

instance, with respect to the covariate they are related to (e.g., gender ego, gender

alter, same gender) or the sort of structural configurations they describe (e.g.,

transitive ties, transitive triplets, and 3-cycles, thus, the group of effects

describing the states of triads). Considerations on effect classifications that enable a

reasonable application of a joint version of the proposed measure is a possible topic

of a follow-up study.

We are further interested in examining to what extent time-dependent changes

of relative importance (cf. Figures 8 and 9 in Section 4.3) imply the necessity to

account for time-heterogeneity (Lospinoso et al., 2011) in the model specification. As

pointed out in issue (4) and discussed explicitly in the example application, the time

dependent-changes in relative importance are explainable by the changing network

structure and, therefore, primarily no reason for supposing time-heterogeneity.

However, the occurrence of strong changes in the data might give in some cases

reason to validate the assumption of time-homogeneity.

The same applies to the assumption of homogeneity across actors. Figure 6

clearly illustrates that the different model components affect each actor in a distinct

way. This is neither surprising nor inherently problematic, since, for similar reasons

as discussed in issue (4), effects can influence actors heterogeneously even if the

assumption of actor homogeneity is valid. However, in cases where the preconditions

of actors and, therefore, the way in which they are influenced by the model are

extremely diverse, it might be arguable whether the assumption is sustainable that

rules implied by the model apply to all actors identically. Moreover, it still has to

be investigated whether overviews as Figure 6 can be helpful for classifying actors

in heterogeneous data.

Our approach to measure relative importance may also apply to the exponential

random graph models (ERGM) proposed by Frank and Strauss (1986) and Wasser-

man and Pattison (1996) and developed further in, e.g., Snijders et al. (2006) and

Robins et al. (2007). Snijders (2001) shows that an ERGM can be viewed as the
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limiting distribution of a SAOM as t → ∞, and Amati and Brandes (2012) give an

actor-oriented interpretation for ERGMs. While connections thus are strong, further

research is required to assess whether interpretations are preserved.

We conclude by pointing out that the presented measures are implemented in the

R-package RSiena available from http://cran.r-project.org/web/packages/RSiena/.
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