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Abstract

A fundamental goal of systems biology is to create models that describe relationships between 

biological components. Networks are an increasingly popular approach to this problem. However, 

a scientist interested in modeling biological (e.g., gene expression) data as a network is quickly 

confounded by the fundamental problem: how to construct the network? It is fairly easy to 

construct a network, but is it the network for the problem being considered? This is an important 

problem with three fundamental issues: How to weight edges in the network in order to capture 

actual biological interactions? What is the effect of the type of biological experiment used to 

collect the data from which the network is constructed? How to prune the weighted edges (or what 

cut-off to apply)? Differences in the construction of networks could lead to different biological 

interpretations.

Indeed, we find that there are statistically significant dissimilarities in the functional content and 

topology between gene co-expression networks constructed using different edge weighting 

methods, data types, and edge cut-offs. We show that different types of known interactions, such 

as those found through Affinity Capture-Luminescence or Synthetic Lethality experiments, appear 

in significantly varying amounts in networks constructed in different ways. Hence, we 

demonstrate that different biological questions may be answered by the different networks. 

Consequently, we posit that the approach taken to build a network can be matched to biological 

questions to get targeted answers. More study is required to understand the implications of 

different network inference approaches and to draw reliable conclusions from networks used in the 

field of systems biology.
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Introduction

Motivation and background

High-throughput biological data such as protein-protein interactions (PPIs), gene expression 

profiles, and metabolic interactions contain information about how different components of 

a cell interact in concert and can be used, for example, to elucidate potential drug targets and 

to further our understanding of disease (van’t Veer et al., 2002; van de Vijver et al., 2002). 

Because biological data are generally noisy and expensive to obtain, modern “systems 

biology” has produced integrative analysis frameworks to help overcome the challenges and 

pitfalls of these important collections.

One particular analysis is network-driven, where genes can be nodes and specific—but 

different—approaches are often used to infer edges that predict relationships between them 

(Nayak et al., 2009; Ivliev et al., 2010; Feizi et al., 2013). For example, gene co-expression 

networks constructed with correlation-based measures have been used to identify transitive 

relationships (Zhou et al., 2002), gene regulatory patterns (van Noort et al., 2004), and 

biological modules (Mason et al., 2009). Further, they have been successfully combined 

with transcription factor, eQTL, and PPI data into integrative Bayesian networks (Zhu et al., 

2008). Gene co-expression networks are therefore one commonly used example of a 

complex model built from the high-throughput biological data collections. For this reason, 

we focus on gene co-expression networks, but our study is applicable to any type of 

biological networks.

Despite their importance in systems-level analysis, however, there is currently is no 

consensus about how to construct biological networks and gene co-expression networks in 

particular. Moreover, the link between a chosen network inference method to network 

topology and functional content (i.e., how to generate edges that encapsulate some 

biological knowledge) is not well understood. If the choice of a specific network 

construction has significant effects on the subsequent interpretation, biological advances will 

be significantly challenged unless done with considerable care.

To demonstrate this point, we investigate how variables in network construction affect the 

content of the resulting networks. Of all biological network types, we focus on gene co-

expression networks as a proof of concept. Gene co-expression networks are commonly 

constructed as follows. Given a gene expression data set, the strength (or weight) of the co-

expression relationship between each pair of genes can be quantified in a number of ways, 

each of which may be revealing different biological insights (Rider et al., 2011; Mason et 

al., 2009). Then, an arbitrary cut-off is chosen in order to include only the strongest edges 

into the network (Butte & Kohane, 2000; De Smet & Marchal, 2010; Markowetz & Spang, 

2007; Barabasi & Oltvai, 2004). If the edge strength is positively correlated with the 

underlying biological knowledge, then the choice of a cut-off can be a major factor in 

determining the network’s ability to accurately uncover this knowledge.

Here we report significant differences in the biological information captured using two 

different types of gene expression data sets and different choices of network inference 

variables. This work shows that substantial care must accompany network analysis and is 
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driven by the principle of induction: to conclude that a network construction variable has an 

effect, it is enough to find an example of two different choices for the variable (e.g., two 

different edge weighting measures) that result in significant differences; this constitutes a 

proof that the choice for that variable matters. And given one such example, it stands to 

reason that there may be other choices for the variable (e.g., other edge weighting measures) 

that also result in network differences. Because many other network inference methods rely 

on choosing an edge weighting method and a cut-off, and because in addition to gene co-

expression networks many other biological network types rely on network inference, this 

study also has broad implications.

Our approach and contributions

In brief, we studied the effects of different edge weighting methods, data types, and edge 

cut-offs on the functional content and topology of resulting gene co-expression networks.

Edge weighting methods—To maximize the significance of the observations derived 

from the experiments discussed in the next sections, we chose popular edge weighting 

methods: correlation-based measures (Pearson’s correlation in particular) and mutual 

information (MI) (see Methods). Pearson’s correlation is vulnerable to perturbation from 

outliers and is constrained in that it captures only linear relationships. Mutual information is 

the common alternative, and has been used extensively in relevant frameworks such as 

ARACNE (Margolin et al., 2006), MRNET (Meyer et al., 2008), and CLR (Faith et al., 

2007).

Data types—Because not all genes are active at all times, under all conditions, or in all 

strains (Jansen, 2001; Hughes et al., 2000), we studied the effect of the type of biological 

experiment used to collect gene expression data. We constructed networks from expression 

data obtained from two types of biological experiments: line cross (Brem & Kruglyak, 2005) 

and treatment. In the line cross experiment, two strains of yeast (Saccharomyces cerevisiae) 

were crossed and microarray experiments were performed on the strains and their progeny. 

In the treatment experiment, the same species of yeast was subjected to different chemicals 

or mutations before having expression levels measured through microarray experiments 

(Hughes et al., 2000) (see Methods). These are two very different types of experiments, 

which could affect the functional content and topologies of gene co-expression networks 

created from the data.

Edge cut-offs—For each combination of edge weighting method and data type we first 

constructed a network containing the top k strongest edges by varying k from 0% to 100% of 

the strongest edges (in increments of 6,000 edges). For our more detailed analyses, we 

focused on stronger edges by varying k from 2,500 to 75,000 of the strongest edges (in 

increments of 2,500 edges).

Evaluation—To evaluate how accurately a given co-expression network captured existing 

biological knowledge, we tested in a systematic precision-recall setting whether edges in the 

network corresponded to known interactions (e.g., PPIs), as well as whether genes that were 

connected by an edge in the network shared Gene Ontology (GO) annotations. This is a 
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common approach to evaluation of biological networks (De Smet & Marchal, 2010; Ucar et 

al., 2007; Nayak et al., 2009; Ashburner et al., 2000; Faith et al., 2007; Marbach et al., 

2010; Grigoriev, 2001). We focused on yeast data types (see above) because yeast is among 

the most studied and best annotated species to date.

Summary—We show that different network inference strategies result in networks that 

may contain answers to distinct biological questions. These results and conclusions highlight 

challenges in network construction, along with their impact, which most urgently require the 

attention of the systems biology community.

Methods

Data

Gene expression data sets—We use gene expression data resulting from two types of 

experiments: line cross and treatment.

• In the line cross experiment, expression levels were measured from 130 segregants 

of a cross of two strains of yeast (Brem & Kruglyak, 2005). Just as Smith & 

Kruglyak (2008), we used all probes for which more than 80% of the expression 

data was present, resulting in a total of 5,829 unique open reading frames. We 

measured the strength of relationships between genes by relying on the normalized 

log ratios provided. Expression values for repeated probes were averaged. Line 

cross experiments can reveal relationships between heritability and expression 

(Jansen, 2001).

• In the treatment experiment, 300 expression profiles were generated from mutant or 

chemical-treated cultures for 6,314 open reading frames. We measured the strength 

of relationships between 6,207 unique ORFs by relying on p-values resulting from 

a gene-specific error model that accounts for variation in genes as well as variation 

across chips (Hughes et al., 2000). Repeated measurements were averaged. 

Treatment experiments cause perturbations (whether due to environment or 

mutation) that affect gene expression levels and thus enable one to elucidate 

relationships between genes that may not be evident when the cell is “at rest” 

(Pe’er et al., 2001).

Known interactions—By known interactions, we mean the set of interactions that are 

already available in public databases. Known interactions are a valuable collection of ground 

truth data, but the completeness of the data can vary greatly between organisms. For 

example, baker’s yeast (Saccharomyces cerevisiae) is relatively well characterized, whereas 

non-model organisms, such as the pathogen of malaria (Plasmodium falciparum), are not. 

Hence, in our study, we focus on the well-studied yeast. Known interactions of various types 

were obtained from SGD (Saccharomyces Genome Database) (Supporting Table 2). 17 of 

the 26 interaction types have more than 500 genes involved into the corresponding 

interactions, and 14 of the 26 interaction types have more than 1,000 genes involved into the 

corresponding interactions (Supporting Table 2). Hence, known interaction data provides a 

strong basis for network comparison. Different interaction types describe relationships 
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between genes that were discovered in experiments with different biological meanings. For 

example, Affinity Capture-MS interactions are determined by using a “bait” protein that is 

“captured” by a polyclonal antibody or an epitope tag. The associated partners are then 

identified by mass spectrometry. Affinity Capture-MS interactions typically correspond to 

physical interactions between proteins. In contrast, Synthetic Lethality interactions are 

determined by observing when mutations or deletions in separate genes, each of which 

causes a minimal change in phenotype alone, result in lethality to a cell.

Gene Ontology (GO) data—GO assigns biological process, molecular function, and 

cellular component labels (i.e., terms) to genes. GO terms are arranged in a hierarchical 

fashion. Genes that share a GO term are typically functionally related and may thus be more 

likely to interact than genes that do not share a GO term. We use GO-slim biological process 

data (Christie et al., 2009). GO-slim terms are a reduced set of GO terms corresponding to 

higher levels of the GO hierarchy.

Edge weighting methods

We measure the strength of the relationship between two genes by using either a signed 

variation of Pearson’s correlation or mutual information.

Correlation—The signed variation of Pearson’s correlation is given in Equation 1 (Mason 

et al., 2009).

(1)

Estimation of mutual information—Mutual information is a measure of the mutual 

dependence of two random variables (Equation 2) (Mason et al., 2009).

(2)

Calculation of mutual information is complicated by two factors. First, there are a low 

number of instances from which to estimate probability distributions. Second, expression 

data is continuous. To overcome these issues, we utilized the Parzen window approach to 

density estimation (Parzen, 1962). Equation 3 estimates the density function  over N 

samples of variable x:

(3)

where δ (…) is the Parzen window function described in Equation 4, x(i) is the ith sample, 

and h is the window size. When d = 1, this equation returns the estimated marginal density. 
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When d = 2, it gives an estimate of the joint density, p(x, y), which can be used to calculate 

the mutual information in Equation 2.

(4)

In Equation 4, z = x − x(i), his the window size, d is the dimension of the sample, and σ is the 

covariance of z. For further details and the implementation used, see Peng et al. (2005).

Evaluation

Precision and recall are defined in terms of true positives (t p), false positives ( f p), and 

false negatives ( f n). In the case of the networks we consider, a true positive is an edge in 

the network that corresponds to a known interaction or whose end nodes share a GO term. A 

false positive is an edge in the network that is not among the known interactions or whose 

end nodes do not share a GO term. A false negative is a pair of genes that are linked by a 

known interaction or that share a GO term but that are not linked by an edge in the network. 

Equations 5 and 6 define precision and recall.

(5)

(6)

Precision-recall curves have been identified as useful alternatives to receiver operating 

characteristic (ROC) curves in situations in which there is a large imbalance in the data (Kok 

& Domingos, 2005; Landgrebe et al., 2006). Namely, with only 220,009 known interactions 

and 5,892,199 pairs of genes that share a GO term out of approximately 18 million possible 

edges, the problem of network inference qualifies as imbalanced.

Increase in precision typically results in decrease in recall, and vice versa. The F-score 

reconciles precision and recall by combining them into a single score, namely their 

harmonic mean (Equation 7).

(7)

Given a network constructed using a given edge weighting method, data type, and edge cut-

off, for each known interaction type, we counted how many interactions of the given type 

are present in the network. Then, we computed p, the probability of observing the same or 

higher number of interactions of the same type purely by chance, by using the model of 

hypergeometric distribution. If we denote by N the number of possible edges, by m the total 

number of known interactions of a given type, by n the number of edges in the network, and 

by k the number of known interactions of a given type that are in the network, the 
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probability of observing exactly k known interactions in the network purely by chance is 

computed as shown in Equation 8. Then, to compute probability p, we sum Equation 8 over 

all possible numbers of known interactions equal to or greater than k.

(8)

Given a set of networks corresponding to 30 different edge cut-offs in the [2,500, 75,000] 

range, where the same edge weighting method and the data type are used for all 30 

networks, we form a vector of 30 probabilities p for the set, where the probabilities are 

computed for a given known interaction type as explained above. We then compare two 

vectors of 30 elements corresponding two network sets constructed using the same data type 

but different edge weighting methods (Supporting Table 1). We also compare vectors of 30 

elements corresponding to two network sets constructed using the same edge weighting 

method but different data types (Supporting Table 1). We do this for each known interaction 

type. We compare any two vectors by using the Wilcoxon signed-rank test, a nonparametric 

analog of the t-test (Demsar, 2006).

Topological analysis of networks

We use three network topological measures: the clustering coefficient, the closeness 

centrality, and the betweenness centrality (Milenkovic et al., 2008; Milenković et al., 2011).

The clustering coefficient of node v describes the proportion of v’s neighbors that are 

connected to each other. It is computed as shown in Equation 9, where d is the number of 

neighbors of v and k is the number of connected pairs of the neighbors (Luce & Perry, 

1949). The global clustering coefficient of the network is the average of the clustering 

coefficients of all nodes.

(9)

The closeness centrality of node v measures the distance from v to every other node t in the 

network. It is computed as shown in Equation 10, where SP(v,t) is the length of the shortest 

path between v and t, and V is the set of nodes of the network (Sabidussi, 1966).

(10)

The betweenness centrality of node v measures the proportion of shortest paths in the 

network that go through v. It is computed as shown in Equation 11, where SPst is the number 

of shortest paths between nodes s and t and SPst(v) is the number of shortest paths between s 

and t that pass through v (Freeman, 1977).
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(11)

For each of the three measures, we compute the corresponding “spectrum” as the average 

over all nodes of degree k, for each value of k. For example, clustering spectrum of a 

network is the average clustering coefficient of all nodes of degree k in the network 

(Supporting Figure 3). Spectra are often displayed in log scale for ease of interpretation.

Results

We constructed networks using each combination of edge weighting method, data type, and 

edge cut-off. We then compared networks of a given size constructed from the same data 

type but using different edge weighting methods. We additionally compared networks of a 

given size constructed using the same edge weighting method but from different data types. 

This was done for each of the edge cut-offs.

Effects of network construction on functional content of networks

In this section, we aim to answer whether the choice of edge weighting method, data type, 

and edge cut-off affects the functional content of networks.

Different networks uncover different amounts of functional content

We measured the functional content of networks in terms of known interactions and shared 

GO terms (see Methods). These are commonly used approaches to evaluate the extent to 

which networks reflect existing biological knowledge (De Smet & Marchal, 2010; Ucar et 

al., 2007; Nayak et al., 2009; Ashburner et al., 2000; Faith et al., 2007; Marbach et al., 

2010). For example, there is a relationship between the similarity of genes’ expression 

patterns and interaction of the proteins that the genes encode (Grigoriev, 2001).

Specifically, we computed precision, recall, and the F-score in a network as follows. 

Precision is the proportion of edges in the network that correspond to known interactions or 

whose end nodes share a GO term. Recall is the proportion of the known interactions or 

gene pairs sharing a GO term that are in the network. Because there is a trade-off between 

precision and recall, in the sense that higher precision means lower recall and vice versa, the 

two measures were combined into F-score, their harmonic mean (see Methods). We 

computed precision, recall, and F-score for each combination of edge weighting method and 

data type, varying edge cut-off from 0% to 100%.

We found that the choice of edge weighting method affected the functional content in terms 

of both known interactions (when known interactions are combined independent of 

interaction type) and shared GO terms. Networks constructed with correlation nearly always 

had higher precision and recall (Figure 1), as well as F-score (Supporting Figure 1) than 

networks constructed with mutual information. This indicates that correlation-based 

networks more accurately uncover existing biological knowledge, where the level of their 

superiority varies depending on the edge cut-off (Figure 1 and Supporting Figure 1). This 

was much more pronounced for the line cross data than for the treatment data. The choice of 
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data type also affects functional content: precision and recall were higher for networks 

constructed from the line cross data than for networks constructed from the treatment data. 

This was more pronounced for correlation than for mutual information.

As expected, precision tended to decrease and recall tended to increase with an increase in 

edge cut-off, independent of edge weighting method or data type. This was true for both 

known interactions and shared GO terms. However, at smaller cut-offs, precision tended to 

drop significantly. Hence, the edge cut-off just before this drop in precision could be a good 

cut-off for constructing the network. Alternatively, one could choose the cut-off where 

precision and recall cross or where F-score starts to decrease (e.g., see “peaks” in Supporting 

Figure 1 c and d). Ultimately, which edge cut-off to choose depends on one’s preference for 

the trade-off between precision and recall or the desired network density. We conclude that 

the smaller the edge cut-off, the higher the precision, the lower the recall, and the sparser the 

network.

Note that, whereas uncovering existing knowledge is desirable for the purpose of testing the 

accuracy of network construction, there is no reason to assume that gene co-expression 

networks should fully uncover existing knowledge, as each piece of biological data could be 

capturing somewhat complementary functional slices of a cell.

Different networks uncover different types of known interactions

We also evaluated known interactions in greater detail by focusing on individual interaction 

types, instead of considering all known interactions combined as done above. For each 

network and interaction type, we counted how many interactions of the given type were 

present in the network. We then computed the probability of observing the same or higher 

number of interactions of the same type in the network purely by chance using the model of 

hypergeometric distribution (see Methods). Here, instead of varying the edge cut-off over 

the entire [0%, 100%] range, as above, we varied it from 2,500 to 75,000 edges in 

increments of 2,500 edges, hence focusing on stronger edges only. Such a more detailed, 

type-specific analysis of known interactions allowed us to make more biologically relevant 

observations about the potential differences in the functional content between networks 

constructed in different ways.

We found that the choice of edge weighting method affected the functional content in terms 

of individual interaction types (Figures 2, 3, and 4, and Supporting Figure 2). For example, 

if we focus on Affinity Capture-RNA interactions, we observe that the choice of edge 

weighting method made a noticeable difference for the line cross data: the presence of 

interactions of this type was statistically significant in networks constructed using 

correlation at each of the 30 cut-offs, while it was not significant in networks constructed 

using mutual information at any of the 30 cut-offs. On the other hand, the choice of edge 

weighting method made a small difference for the treatment data when it came to this 

interaction type: the presence of interactions of this type was statistically significant in 

networks constructed using both correlation and mutual information at most of cut-offs, and 

the two edge weighting methods differed in only six out of the 30 cut-offs (Figure 4). Hence, 

the choice of data type also affected the functional content in terms of individual interaction 

types.
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In general, the significance of the enrichment of a network constructed when using one edge 

weighting method is often different than when using another edge weighting method. The 

same holds for using one data type compared to using another data type. This observation, 

specifically that significance may be unique to one edge weighting approach or one data 

type), allowed us to systematically quantify these differences further and determine that:

1. The difference between mutual information and correlation is more pronounced in 

the line cross data than in the treatment data, independent of the edge cut-off. 

Namely, the number of known interaction types (out of 26 of them) at which we 

observed a difference between the two edge weighting methods was higher for the 

line cross data than for the treatment data. Specifically, this number varied between 

7 (27%) and 14 (54%) for line cross data and between 3 (12%) and 8 (31%) for 

treatment data, depending on the edge cut-off (Figure 3 a).

2. The difference between the line cross data and the treatment data is more 

pronounced for correlation than for mutual information, independent of the edge 

cut-off. Namely, the number of known interaction types (out of 26 of them) at 

which we observed a difference between the two data types was higher for 

correlation than for mutual information. Specifically, this number varied between 8 

(31%) and 15 (58%) for correlation and between 4 (15%) and 13 (50%) for mutual 

information, depending on the edge cut-off (Figure 3 b).

3. Although there are some exceptions, for each of the two results above the 

differences tended to decrease with an increase of the edge cut-off used (Figures 3 a 

and b).

We reached the above conclusions by counting, for each cut-off, at how many of the 26 

known interaction types the significance of the network constructed using one edge 

weighting method and one data type is different than the significance of the network 

constructed using either the different edge weighting method or the different data type. We 

reached the same conclusions when we counted, for each known interaction type, at how 

many of the 30 edge cut-offs we observe the difference in significance of the networks 

constructed in different ways, as follows:

1. The difference between mutual information and correlation is more pronounced in 

the line cross data than in the treatment data. Namely, mutual information and 

correlation were different at more cut-offs in the line cross data than in the 

treatment data (Figure 4 a).

2. The difference between the line cross data and the treatment data is more 

pronounced for correlation than for mutual information. Namely, the line cross data 

and the treatment data were different at more cut-offs for correlation than for 

mutual information (Figure 4 b).

3. The majority of the known interaction types show disagreement between the line 

cross data and the treatment data. Namely, only 11 out of the 26 known interaction 

types showed agreement between the line cross data and the treatment data in the 

sense that the number of cut-offs in which correlation and mutual information 

differ was similar for the two data types.
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4. The majority of the known interaction types show disagreement between 

correlation and mutual information. Namely, only 11 out of the 26 known 

interaction types showed agreement between correlation and mutual information in 

the sense that the number of cut-offs in which the line cross data and the treatment 

data differ was similar for the two edge weighting methods.

Supporting Table 1 further supports the above conclusions: for the majority (18-21 out of 

26) of known interaction types, there is a statistically significant difference (p-value ≤ 1.7 × 

10−03) between the different edge weighting methods and data types with respect to the 

proportion of known interactions that they uncover across networks (corresponding to the 30 

different cut-offs).

Different networks target different biological questions

In addition to quantifying the differences in the functional content between networks 

constructed using different edge weighting methods or data types, as above, we also 

qualitatively studied which combination of edge weighting method and data type can (or 

fails to) capture a given known interaction type. For each known interaction type, we 

checked whether its enrichment was significant in the majority of the 30 networks 

(corresponding to the 30 cut-offs) constructed using the given edge weighting method and 

data type. We then grouped known interaction types into those that were significantly 

enriched for both correlation and mutual information in both the line cross data and the 

treatment data, those that were significantly enriched for both correlation and mutual 

information in the line cross data but only for mutual information in the treatment data, 

those that were significantly enriched for both correlation and mutual information in the 

treatment data but only for correlation in the line cross data, … , and those that were 

significantly enriched for neither correlation nor mutual information in neither the line cross 

data nor the treatment data (Table 1).

Only 6 out of the 26 known interaction types were found by both edge weighting methods in 

both data types. Specifically, if one’s goal was to construct networks that would enrich for 

Affinity Capture-MS, Co-crystal Structure, Co-fractionation, Positive Genetic, Synthetic 

Rescue, or Two-hybrid interactions, one could use either of the two edge weighting methods 

or data types (Table 1). Note however, that the actual interactions uncovered by the different 

networks could be different, because the overlap between the networks is small (Section ). 

Seven of the 26 known interaction types are missed by both edge weighting methods in both 

data types. In other words, neither the two edge weighting methods nor data types 

considered in this study enriched for Co-localization, Dosage Growth Defect, Phenotypic 

Enhancement, Phenotypic Suppression, Protein-peptide, Synthetic Growth Defect, or 

Synthetic Lethality interactions.

Clearly for 6 + 7 = 13 out of the 26 known interaction types, all four combinations of edge 

weighting methods and data types agree. For the same number of known interaction types, 

however, at least two of the four combinations disagree. For example, there exist interaction 

types that were captured by correlation in the line cross data but not in the treatment data. 

Also, there exist interaction types captured by mutual information in the treatment data but 

not in the line cross data. Interestingly, there are no interaction types captured by mutual 
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information in the line cross data but not in the treatment data or by correlation in the 

treatment data but not in the line cross data (Table 1).

Bottom line

All of the above results demonstrate that networks constructed in this study with different 

combinations of edge weighting methods or data types were enriched with different 

functional content. Therefore, we have strong evidence that both the edge weighting method 

and the type of biological experiment underlying the data affect the functional content of 

networks, implying that they can optimized to answer certain—but different—biological 

questions.

Effects of network construction on topology of networks

In this section, we aim to answer whether the choice of edge weighting method, data type, 

and edge cut-off affects the topology of constructed networks.

Overlap of different networks is small

Considerable topological differences between networks constructed in different ways were 

immediately apparent based on the intersection of their edges (Table 2). Intersections were 

calculated between pairs of networks of a given size that shared either edge weighting 

method or data type. Because the size of the intersection between the networks appeared to 

have a linear relationship with the cut-off (networks with more strict cut-offs had nearly the 

same proportion of overlap as networks with less strict cut-offs), the intersections were 

averaged over different network sizes. Such averaged intersections were smaller between 

networks constructed by using the same edge weighting method but different data sets than 

between networks constructed by using the same data set but different edge weighting 

method (Table 2). This indicates that the choice of the data set may have a stronger effect on 

network construction than the choice of the edge weighting method. Nonetheless, the 

intersection was relatively small between all compared networks. This is an important result, 

since it is likely that different edges would lead to different biological interpretations, which 

is exactly what we demonstrated in the previous section.

Different networks have different topologies

By comparing overall topological characteristics of networks constructed using different 

edge weighting methods or data types, we found that networks varied as follows. In general, 

average clustering coefficients (see Methods) were higher for networks constructed using 

mutual information than for networks constructed using correlation, independent of the data 

type, and they were higher for networks constructed from the line cross data than for 

networks constructed from the treatment data, independent of the edge weighting method 

(Figure 5 a). Figure 5 b and Figure 5 c further demonstrate topological differences between 

networks constructed with different edge weighting methods and data types. For example, 

networks for the line cross data and correlation had the most connected components (Figure 

5 b) but they had the second fewest nodes involved in the components (Figure 5 c), 

indicating that these networks had many small components. On the other hand, networks for 

the treatment data and mutual information in general had the second fewest connected 
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components (Figure 5 b) but they had the most nodes involved in the components (Figure 

5c), indicating that these networks had few large components.

To further understand the observed topological differences, we focused on one of the 30 

analyzed edge cut-offs: 25,000. We chose the cut-off of 25,000 because it is a compromise 

between the the peak precision in Figures 1 a-d. We compared the different networks 

corresponding to this cut-off with respect to the clustering coefficient, closeness centrality, 

and betweenness centrality spectra (see Methods). Topological differences were 

immediately apparent. For example, in the line cross data-based networks, average 

clustering coefficients tended to decrease as node degrees increased for mutual information, 

whereas this was not necessarily the case for correlation (Supporting Figure 3 a). Clustering 

spectra were also different for the line cross data-based networks (Supporting Figure 3 a) 

and treatment-based networks (Supporting Figure 3 b): correlation-based networks in 

particular appear to have almost the opposite trends for the two data types. The observed 

differences were statistically significant for each pair of clustering spectra, both when the 

data type was shared but the edge weighting method was different (p-values < 2.2 × 10−16) 

and when the edge weighting method was the same but the data type was different (p-values 

of 0.008 and < 1.07 × 10−15) (Supporting Figure 3).

Similar observations were made with respect to closeness centrality spectra. For example, in 

the line cross data-based networks, while average closeness centralities were higher for 

correlation than for mutual information for low-degree nodes, they were lower for 

correlation than for mutual information for high-degree nodes (Supporting Figure 4 a). 

While the observed difference between the two edge weighting methods was not statistically 

significant for the line cross data (p-value of 0.3511), it was statistically significant for the 

treatment data (p-value of 0.0063; Supporting Figure 4 b). Further, the difference between 

closeness spectra was statistically significant when the edge weighting method is the same 

but the data type is different, with respect to both correlation (p-value of 2.81 × 10−6) and 

mutual information (p-value of 1.6 × 10−12) (Supporting Figure 4). Betweenness centrality 

spectra are statistically significantly different for all four combinations of edge weighting 

methods and data types as well (Supporting Figure 5).

We conclude that networks constructed using different edge weighting methods or data 

types have different topologies.

Discussion

The network construction problem is analogous to the problem of clustering genes based on 

similarity between their expression profiles (Hanisch et al., 2002; Datta & Datta, 2003; 

Eisen et al., 1998). Many clustering algorithms exist (each with its (dis)advantages 

(Fortunato, 2010; Solava et al., 2012; Ho et al., 2010)) that attempt to group together genes 

that have similar expression with respect to some distance metric. Hence, analogous to a 

network construction method, a clustering method first computes distances (or equivalently, 

similarities) between each pair of genes. Then, it partitions the resulting weighted fully 

connected network by employing a distance cut-off to determine cluster membership 

(Hartigan & Wong, 1979). Examples of popular clustering methods in this context include 
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Walktrap (Pons & Latapy, 2005) and Markov Clustering (MCL) (Wittkop et al., 2007). The 

wide variety of available algorithms typically result in different clustering solutions, for 

reasons that are analogous to those studied in this paper.

One goal of this work was to study the effect of the choice of edge weighting method on the 

functional content and topology of the resulting network. We note that this is not the first 

study to analyze how different edge weighting methods affect biological content of the 

networks. For example, it has been found that modules in networks constructed with signed 

correlation show different functional enrichment than modules in networks constructed with 

the absolute correlation (Mason et al., 2009), and that correlation and mutual information 

are strongly related in the treatment data when their values are high (Steuer et al., 2002). 

This is the first study, however, to analyze how the choice of edge weighting method affects 

networks in terms of individual interaction types. This study is also more comprehensive 

than the previous ones because it examines multiple edge weighting methods and data types.

Our hypothesis is that the two edge weighting methods might be capturing different types of 

relationships. For example, Supporting Figure 6 represents a known Biochemical Activity 

interaction for which the gene pair ranking is discordant, i.e., high with respect to one edge 

weighting method but low with respect to the other edge weighting method. Supporting 

Figure 7 and Supporting Figure 8, on the other hand, represent known Synthetic Lethality 

interactions in the line cross data and the treatment data, respectively, for which the gene 

pair rankings are consistent across the two edge weighting methods—both rank each of 

these gene pairs high. Note that in our study we focus on answering whether different edge 

weighting methods captured different functional content to bring this important issue to the 

attention of the community, not on answering why different types of known interactions 

were captured differently by the different networks. The later is an important but complex 

question that is out of the scope of this study.

Another goal of this work was to study whether the type of biological experiment underlying 

the data affects the functional content of inferred networks because different types of 

biological experiments are expected to capture somewhat complementary aspects of the cell 

(Jansen, 2001; Hughes et al., 2000). To our knowledge this is the first study explicitly 

comparing networks constructed from line cross data with networks constructed from 

treatment data. We note that since we use one data set of each type, and since we do so for 

one species, our results should be used with caution: it is difficult to determine how much of 

the variation between the different networks is due to the data type versus noise in these 

particular data sets. Nonetheless, our analysis could be used as a strong suggestion that data 

types considered should also be carefully chosen to match the desired biological question(s).

Finally, we studied the effect of edge cut-off on resulting networks. There are a number of 

approaches to choosing a cut-off for network construction, including the precision-recall 

trade-off (Section ), the approximate topology of the resulting network, or the false 

discovery rate (FDR) (Carlson et al., 2006; Ucar et al., 2007). Under the assumption that 

gene co-expression networks should capture known biological knowledge, be it interactions, 

GO functional similarity, or anything else, the strongest relationships should hold the most 
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reliable known biological information (which would be reflected in higher precision at lower 

edge cut-offs).

We demonstrated systematically and comprehensively that the four combinations of edge 

weighting methods and data types disagreed with respect to the functional content and 

topology of the corresponding networks. Because the overlap was small between networks 

constructed in different ways, and since their overall topologies were different, it is no 

surprise that the different networks led to different biological interpretations. We showed 

that: (1) of the two edge weighting methods, correlation seemed to more accurately uncover 

existing biological knowledge, especially for the line cross data; (2) of the two data types, 

the line cross data seemed to more accurately uncover existing biological knowledge, 

especially for correlation; (3) the strongest edges indeed hold the most reliable known 

biological information; (4) the difference between mutual information and correlation was 

more pronounced in the line cross data than in treatment data, independent of the edge cut-

off; (5) the difference between the line cross data and the treatment data was more 

pronounced for correlation than for mutual information, independent of the edge cut-off; (6) 

the differences in points (4) and (5) above tended to decrease with an increase of the cut-off; 

(7) the type of experiment underlying the data can have at least as much of an effect on the 

functional content of networks as the choice of edge weighting method; and (8) different 

types of known interactions could be uncovered with different combinations of edge 

weighting methods and data types.

In summary, these results demonstrate that there is no single correct way to construct a 

network—and different approaches can produce different networks that are better suited to 

answer different biological questions. For example, using correlation and treatment data 

results in networks that contain the most significant amounts of Synthetic Lethality 

interactions among all considered networks. Thus, this combination of edge weighting 

method and data type may be the most appropriate for studying genes that are essential to an 

organism’s survival in combination with other genes. However, the same networks are the 

worst in terms of capturing Far Western interactions, which are a type of protein-protein 

interaction data set. As such they should probably not be used to study molecular processes 

that are carried out via physical interactions between proteins. We conclude that the three 

ubiquitous factors in network inference that were considered in this study each have 

significant effects on the functional content and topology of resulting biological networks 

and therefore do matter for future work in systems biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Precision-recall curves measuring how accurately networks constructed in different ways 
capture known biological knowledge
Panel (a) shows curves for networks constructed from the line cross data with respect to 

shared GO terms. Panel (b) shows curves for networks constructed from the treatment data 

with respect to shared GO terms. Panel (c) shows curves for networks constructed from the 

line cross data with respect to known interactions. Panel (d) shows curves for networks 

constructed from the treatment data with respect to known interactions.
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Fig. 2. 
Heat maps showing where the enrichment of a network of a given size (i.e., at a given edge 

cut-off; x-axis) in known interactions of a given type (y-axis) is statistically significant 

(denoted by black color) according to the hypergeometric test (see Methods). The cut-off for 

statistical significance was computed at a False Discovery Rate (FDR) of 0.05. Panel (a) 
shows enrichment results for networks constructed from the line cross data using mutual 

information. Panel (b) shows enrichment results for networks constructed from the line cross 

data using correlation. Panel (c) shows enrichment results for networks constructed from the 

treatment data using mutual information. Panel (d) shows enrichment results for networks 

constructed from the treatment data using correlation. For example, “Affinity Capture-

RNA” interaction type is not significantly enriched at any edge cut-off in panel (a), it is 

enriched at all cut-offs in panel (b), and it is enriched at most cut-offs (particularly larger 

ones) in panels (c) and (d).
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Fig. 3. 
The absolute differences between networks constructed using different edge weighting 

methods (a) or data types (b) at different edge cut-offs (x-axis) with respect to the number of 

known interaction types that the networks are statistically significantly enriched in (y-axis). 

That is, based on Figure 2, for a given data type (line cross or treatment), for a given cut-off, 

we count for how many of the 26 known interaction types the significance of the enrichment 

of the network constructed using mutual information is different than the significance of the 

enrichment of the network constructed using correlation (panel (a)). By “different”, we 

mean that the enrichment with respect to one edge weighting method is significant (denoted 

by black color in Figure 2), while it is not significant with respect to the other edge 

weighting method (denoted by white color in Figure 2). Analogously, for a given edge 

weighting method (mutual information or correlation) and a given cut-off, we count for how 

many of the 26 known interaction types the significance of the enrichment of the network 

constructed from the line cross data is different than the significance of the enrichment of 

the network constructed from the treatment data (panel (b)). Now, by “different”, we mean 

that the enrichment with respect to one data type is significant (denoted by black color in 

Figure 2) while it is not significant with respect to the other data type (denoted by white 

color in Figure 2).
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Fig. 4. 
The differences between networks constructed using different edge weighting methods (a) 
or data types (b) for different known interaction types (x-axis) with respect to the number of 

edge cut-offs at which the enrichment in the known interactions is different (y-axis). That is, 

based on Figure 2, for a given data type (line cross or treatment), for a given known 

interaction type, we count for how many of the 30 edge cut-offs the significance of the 

enrichment of the network constructed using mutual information is different than the 

significance of the enrichment of the network constructed using correlation (panel (a)). 
Analogously, for a given edge weighting method (mutual information or correlation) for a 

known interaction type, we count for how many of the 30 edge cut-offs the enrichment of 

the network constructed from the line cross data is different than the significance of the 

enrichment of the network constructed from the treatment data (panel (b)).
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Fig. 5. 
Global clustering coefficient (a), the number of connected components with at least two 

nodes (b), and the number of nodes that participate in the connected components (c) for 

networks constructed from a given data type (line cross or treatment) using a given edge 

weighting method (correlation or mutual information) at a given edge cut-off (x-axis).
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Table 1

Combinations of edge weighting methods/data types for which the given interaction type is significantly 

enriched at the majority of edge cut-offs.

Combinations of edge weighting methods/data types Interaction types

Found by both correlation and mutual information in both the line
cross data and the treatment data.

Affinity Capture-MS
Co-crystal Structure
Co-fractionation
Positive Genetic
Synthetic Rescue
Two-hybrid

Found by both correlation and mutual information in the line cross
data but only by mutual information in the treatment data.

Affinity Capture-Luminescence

Found by both correlation and mutual information in treatment data
but only by correlation in line cross data.

Affinity Capture-RNA
Reconstituted Complex

Found by both correlation and mutual information in line cross data
but none of correlation or mutual information in treatment data.

Biochemical Activity
FRET

Found only by correlation in line cross data and only by mutual
information in treatment data.

Synthetic Haploinsufficiency

Found by neither correlation nor mutual information in treatment
data, but found only by correlation in line cross data.

Co-purification
Dosage Lethality
Dosage Rescue
PCA
Protein-RNA

Found by neither correlation nor mutual information in line cross
data, but found only by mutual information in treatment data.

Affinity Capture-Western
Far Western

Found by neither correlation nor mutual information in neither line
cross data nor treatment data.

Co-localization
Dosage Growth Defect
Phenotypic Enhancement
Phenotypic Suppression
Protein-peptide
Synthetic Growth Defect
Synthetic Lethality
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Table 2

Edge overlap between networks constructed using different data types and edge weighting methods, averaged 

over all edge cut-offs. Each column denotes the edge weighting method or data type used as the basis for 

comparison between networks. The column denoted by “Line cross” compares networks constructed from the 

line cross data using correlation to networks constructed from the line cross data using mutual information. 

The column denoted by “Treatment” compares networks constructed from the treatment data using correlation 

to networks constructed from the treatment data using mutual information. The column denoted by 

“Correlation” compares networks constructed from the line cross data using correlation to networks 

constructed from the treatment data using correlation. The column denoted by “MI” compares networks 

constructed from the line cross data using mutual information to networks constructed from the treatment data 

using mutual information.

Line cross Treatment Correlation MI

mean 30.85% 40.23% 11.98% 14.06%

min 29.41% 32.08% 9.23% 11.70%

max 33.12% 45.82% 13.37% 18.82%

stdev 0.51% 4.30% 1.35% 2.13%

Netw Sci (Camb Univ Press). Author manuscript; available in PMC 2015 October 23.


