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Abstract

We derive properties of Latent Variable Models for networks, a broad class of

models that includes the widely-used Latent Position Models. These include the

average degree distribution, clustering coefficient, average path length and degree

correlations. We introduce the Gaussian Latent Position Model, and derive an-

alytic expressions and asymptotic approximations for its network properties. We

pay particular attention to one special case, the Gaussian Latent Position Models

with Random Effects, and show that it can represent the heavy-tailed degree distri-

butions, positive asymptotic clustering coefficients and small-world behaviours that

are often observed in social networks. Several real and simulated examples illustrate

the ability of the models to capture important features of observed networks.

Keywords: Fitness models, Latent Position Models, Latent Variable Models, So-

cial networks, Random graphs.

1 Introduction

Networks are tools for representing relations between entities. Examples include social

networks, such as acquaintance networks (Amaral et al. 2000), collaboration networks

(Newman 2001) and interaction networks (Perry and Wolfe 2013), technological net-

works such as the World Wide Web (Albert et al. 1999), and biological networks such

as neural networks (Watts and Strogatz 1998), food webs (Williams and Martinez 2000),

and protein-protein interaction networks (Raftery et al. 2012).

Social networks, specifically, tend to exhibit transitivity (Newman 2003a), clustering,

homophily (Newman and Park 2003), the scale-free property (Newman 2002b) and small-

world behaviours (Watts and Strogatz 1998).
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Networks are typically modelled in terms of random graphs. The set of nodes is

fixed, and a probability distribution is defined over the space of all possible sets of edges,

thereby considering the observed network as a realisation of a random variable.

One way to study networks is to define a simple generative mechanism that captures

some important basic properties, such as the degree distribution (Newman et al. 2001),

clustering (Newman 2009), or small-world behaviour (Watts and Strogatz 1998). These

models are deliberately made simple so to be easily fitted and studied. Theoretical

tractability can allow the asymptotic properties of the fitted models to be assessed, and

this can give help to determine how well the models might fit real large networks. It can

also allow the relationships between statistics measuring clustering, power-law behaviour

and small-world behaviour to be assessed (Kiss and Green 2008; Newman 2009; Watts

and Strogatz 1998).

On the other hand, various statistical models have been proposed, including Exponen-

tial Random Graph Models (Frank and Strauss 1986; Caimo and Friel 2011; Krivitsky and

Handcock 2014), Latent Stochastic Blockmodels (Nowicki and Snijders 2001; Latouche

et al. 2011; Airoldi et al. 2008), and Latent Position Models (Hoff et al. 2002; Raftery

et al. 2012). These try to capture all the main features of observed networks within a uni-

fied framework. However, due to their more complicated structure, only limited research

has been carried out to assess their properties (Daudin et al. 2008; Channarond et al.

2012; Ambroise and Matias 2012; Mariadassou and Matias 2015). Moreover, recent de-

velopments (Chatterjee and Diaconis 2013; Shalizi and Rinaldo 2013; Schweinberger and

Handcock 2015) have shed light on some important limitations of ERGMs, questioning

their suitability as statistical models for networks.

In this paper, we attempt to fill this gap by deriving theoretical properties of a wide

family of network models, which we call Latent Variable Models (LVMs). This family

includes one well-known class of statistical network models as a special case, namely the

Latent Position Models (LPM) (Hoff et al. 2002; Handcock et al. 2007; Krivitsky et al.

2009). These are defined by associating an observed latent position in Euclidean space

with each node, and postulating that nodes that are closer are more likely to be linked,

with the probability of connection depending on the distance, typically through a logistic

regression model. In the last decade, LPMs and their extensions have been widely used

for applications such as the analysis of international investment (Cao and Ward 2014),

trophic food webs (Chiu and Westveld 2011, 2014), signal processing (Wang et al. 2014),

and education research (Sweet et al. 2013).

Analytic expressions for the clustering properties of this model in its original form are

hard to derive. Because of this, we propose a new but closely related model, the Gaussian

Latent Position Model. This yields simple analytic expressions or asymptotic approxima-
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tions for several important clustering properties, including a complete characterisation of

the degree distribution, the clustering coefficient, and the distribution of path lengths.

The availability of analytic expressions facilitates the analysis of very large graphs since,

for example, simulation is not required.

One result is that the Gaussian LPM can represent transitivity asymptotically, be-

cause its clustering coefficient can be asymptotically non-zero, unlike the Erdős-Rényi

and Exponential Random Graph Models, whose clustering coefficient converges to zero.

One implication of our results is that the Latent Position Model in its original form

cannot represent heavy-tailed degree distributions, such as power-law behaviour, or small-

world behaviour, as measured by the average path length. As a result, we introduce the

Gaussian Latent Position Model with Random Effects (LPMRE), and show that it can

overcome these limitations and capture important features of large-size real networks.

These results suggest that the Gaussian LPMRE may be a good model for social networks.

The paper is organised as follows. In Section 2 the notation is set and the main models

of interest are defined. Section 3 gives the core theoretical results used in the paper.

Section 4 makes use of such results to further analyse important features of LPMs, such

as transitivity, homophily, scale-free properties and small-world behaviours. In Section 5,

the appealing properties of Gaussian LPMREs are illustrated through empirical studies

and examples. Section 6 provides several real data studies, while Section 7 concludes the

paper with some final remarks.

2 Latent Variable Network Models

2.1 Notation and model assumptions

Here we introduce our notation and define the various latent variable models for networks

that we consider.

A1. G = (V,E) is a binary random graph where V is the set of node labels and E is

the set of random edges. The observed data consist of a realisation of G. We denote

V = {1, . . . , n} and represent the observed edges through the adjacency matrix Y =

{yij}(i,j)∈V×V
, where:

yij =

{

1, if an edge from i to j appears in the graph,

0, otherwise.
(2.1)

Furthermore we assume that edges are undirected and self-edges are not allowed, i.e.

yij = yji, ∀(i, j) ∈ Ṽ := {(i, j) : 1 ≤ i < j ≤ n} and yii = 0, ∀i ∈ V , respectively. Our
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analysis can easily be extended to the case of directed edges, however.

A Latent Variable Model (LVM) for networks is defined by associating an unobserved

random variable Zi ∈ Z to actor i, ∀i ∈ V , for some discrete or continuous set Z. The set

of quantities P = {z1, . . . , zn} denotes a realisation of the corresponding random process.

A2. The latent variables Z1, . . . ,Zn are independent and identically distributed, where

each Z is distributed according to the probability measure p( · ).

A3. Edges are assumed to be conditionally independent given the latent variables. Thus

∀(i, j) ∈ Ṽ , Yij is a Bernoulli random variable such that

Pr (Yij = 1|zi, zj) = 1− Pr (Yij = 0|zi, zj) = r (zi, zj) . (2.2)

The modelling assumptions A1-A3 are very general, and in fact various models of

interest satisfy these, including the Random Connection Models of Meester (1996), the

Fitness models of Caldarelli et al. (2002); Söderberg (2002), the LPMs of Hoff et al.

(2002); Handcock et al. (2007); Krivitsky et al. (2009), and the Stochastic Blockmodel

of Nowicki and Snijders (2001), among others. We now give more specific modelling

assumptions that characterise Latent Position Models.

A4. In the LPM, the realised latent variables Zi in A2 are points in the Euclidean

space R
d, for a fixed d, and they are normally distributed:

p (P |γ) =
n
∏

i=1

fd (zi; 0, γ) =

n
∏

i=1

(2πγ)−
d
2 exp

{

− 1

2γ
ztizi

}

. (2.3)

In (2.3), γ is a positive real parameter and fd ( · ;µ, γ) is the multivariate Gaussian den-

sity function with parameters µ (mean) and γId (covariance), where Id is the d×d identity

matrix and At denotes the transpose of the matrix or vector A.

A5. In our specification of the LPM, the Gaussian LPM, the Bernoulli parameters in

A3 are given by:

r (zi, zj) = τ exp

{

−(zi − zj)
t (zi − zj)

2ϕ

}

, (2.4)

where ϕ > 0, τ ∈ [0, 1].
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Assumption A5 is slightly different from the original formulation of the LPM of Hoff

et al. (2002), in that the logistic connection function for the edges has been replaced by

a non-normalised Gaussian density. The reasoning behind this choice will be addressed

in Section 2.2.

A6. In the Logistic LPM of Hoff et al. (2002), the Bernoulli parameters in A3 are given

by:

r (zi, zj) =
exp {α− βd (zi, zj)}

1 + exp {α− βd (zi, zj)}
, (2.5)

where α ∈ R, β > 0 and d (zi, zj) is the Euclidean distance between the latent positions

zi and zj.

2.1.1 Extensions of Latent Position Models

Two major extensions of the LPMs of Hoff et al. (2002) are Handcock et al. (2007)

and Krivitsky et al. (2009). In the former, clustering is introduced through a mixture

distribution on the latent process for nodal positions, while in the latter, nodal random

effects are introduced to capture degree heterogeneity. In a similar fashion we introduce

two variations of A4 and A5 to characterise the two cases:

A7. The latent positions are distributed according to a finite mixture of Gaussian dis-

tributions, i.e.:

p (P |π,µ,γ, G) =
n
∏

i=1

[

G
∑

g=1

πgfd (zi;µi, γi)

]

(2.6)

where π are the mixture weights, µ and γ are the parameters for the components and

G is the number of groups. The components are all assumed to arise from densities with

circular contours, but possibly different volumes.

A8. For every node s ∈ V , the latent information z̃s is composed of the realisation

of a random latent position Zs, which is distributed according to p ( · ), and a random

effect ϕs. This random effect is independent of Zs and is distributed according to an

Inverse Gamma distribution with parameters β0 and β1. Also, the connection probability

is modified as follows:

Pr (Yij = 1|zi, zj, ϕi, ϕj, τ) = τ exp

{

− 1

2 (ϕi + ϕj)
2 (zi − zj)

t(zi − zj)

}

. (2.7)

We call this the Gaussian Latent Position Model with Random Effects, or Gaussian

LPMRE.
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Different combinations of assumptions A1-A8 generate different Latent Variable Mod-

els. The main cases considered in the present paper are summarised in Table 1.

Table 1: Latent Variable Models considered in the present paper. Latent variables are omitted
from model parameters.

Notation Description Assumptions Model parameters

LVM Latent Variable Model A1-A3 unspecified
Logistic LPM LPM of Hoff et al. (2002) A1-A4, A6 α, β, γ
Gaussian LPM Gaussian connection LPM A1-A5 τ, ϕ, γ
Gaussian LPCM Clustering LPM A1-A3, A5, A7 τ, ϕ,π,µ,γ, G
Gaussian LPMRE 1-cluster with random effects A1-A4, A8 τ,ϕ, γ, β0, β1

2.2 Motivation for the Gaussian likelihood assumption

The Logistic LPM has been widely used in network models. Assumption A5 introduces a

new function to define the probability of edges, which is proportional to a non-normalised

Gaussian density. Other variations in the form of the likelihood function have been

proposed in the statistical community (Gollini and Murphy 2014), but the reasoning

behind the Gaussian function mainly comes from the physics literature (Deprez and

Wüthrich 2013; Penrose 1991; Meester 1996). The main advantage of using the Gaussian

function in place of the Logistic function is that it makes it easier to derive theoretical

properties without much changing the generative process of the networks.

In the Gaussian function the model parameters τ and ϕ appear. The role of τ is to

control the sparsity in the network, and to allow for the fact that nodes having the same

latent position might not be connected.

The parameter ϕ encompasses the core idea of the LPM, relating the probability

of edges to the distance between latent positions. Indeed, the larger the parameter ϕ

the more long range edges are supported. Moreover, as ϕ goes to infinity, the model

degenerates to an Erdős-Rényi random graph with connection probability τ .

Essentially, the difference between the two assumptions reduces to the fact that, as

a function of the distance between nodes, the slopes of the curves are different (Figure

2.1). Even though an equivalence result is not provable, we argue that the properties of

the Gaussian LPM are comparable and analogous to those of the Logistic LPM.

3 Theoretical results

In this section, we provide several theoretical results about LVMs, describing the distri-

butions of features of networks realised from such models.
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Figure 2.1: Comparison between the Logistic and Gaussian connection functions, with τ = γ = 1.
As a function of the distance between the nodes, the likelihood of a connection in both cases
reaches its maximum when the distance is null, and decreases to zero as the distance increases.

3.1 Properties of the degrees

The degree of an arbitrary actor s is a discrete random variable defined by Ds =
∑

j∈V Ysj.

In this subsection, the properties of the degrees are characterised, describing their mixing

behaviour and the distribution of the degree of a randomly chosen node, identified by the

vector p = (p0, . . . , pn−1), where pk = Pr (D = k) , ∀k = 0, . . . , n−1. To study the degree

distribution of general LVMs (including LPMs), we propose a framework resembling that

of Newman et al. (2001), which relies on the use of Probability Generating Functions

(PGFs).

The study will focus on the following quantities:

• D1: θ (zs), defined as the probability that an actor chosen at random is a neighbour

of a node with latent information zs.

• D2: The PGF of the degree of a randomly chosen actor, G(x) =
∑n−1

k=0 x
kpk.

• D3: The factorial moments of the degree of a randomly chosen actor. Note that

central and non-central moments can be recovered iteratively from factorial mo-

ments.

• D4: The first factorial moment, i.e. the average degree of a random node: k̄.

• D5: The values of pk, for every k = 0, . . . , n− 1.

• D6: k̄(zs), defined as the average degree of a node with latent information zs.
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• D7: k̄nn(zs), defined as the average degree of the neighbours of a node with latent

information zs.

• D8: k̄nn(k), defined as the average degree of the neighbours of a node with degree

k.

The following main result characterises all of the quantities listed under a very general

LVM:

Theorem 1. Under assumptions A1 −A3, the following results hold:

D1: θ(zs) =

∫

Z

p (zj) r (zs, zj) dzj (3.1)

D2: G(x) =

∫

Z

p (zs) [xθ(zs) + 1− θ(zs)]
n−1 dzs (3.2)

D3:
∂rG

∂xr
(1) =

(n− 1)!

(n− r − 1)!

∫

Z

p (zs) θ(zs)
rdzs (3.3)

D4: k̄ = (n− 1)

∫

Z

p (zs) θ(zs)dzs (3.4)

D5: pk =

∫

Z

p (zs)

(

n− 1

k

)

θ(zs)
k [1− θ(zs)]

n−k−1 dzs (3.5)

D6: k̄(zs) = (n− 1)θ(zs) (3.6)

D7: k̄nn(zs) = 1 +
(n− 2)

θ (zs)

∫

Z

p (zj) r (zs, zj) θ (zj) dzj (3.7)

D8: k̄nn(k) =
1

pk

∫

Z

p(zj)

(

n− 1

k

)

θ(zj)
k [1− θ(zj)]

n−k−1 k̄nn(zj)dzj (3.8)

The proof of Theorem 1 is provided in Appendix A.1.

Remark. Equation (3.8) is a generalisation of a result from Boguná and Pastor-Satorras

(2003), where a general framework to study the degree correlations for the fitness model

of Caldarelli et al. (2002) and Söderberg (2002) is introduced.

Remark. Particular instances of some of the results of Theorem 1 have been already

shown in Olhede and Wolfe (2012) and Channarond et al. (2012); Daudin et al. (2008)

for Stochastic Block Models and Fitness models, without resorting to PGFs. Theorem 1

encompasses those special cases and extends the range of results offered.

The results presented in Theorem 1 are valid for all LVMs. Essentially, they relate

the distributional assumptions about the latent variables and the edge probabilities to

the properties of the degrees of the realised networks.

We now apply these results to LPMs. The following Corollaries show how the formulas

involved in D1-D8 simplify under the Gaussian models of Table 1. Proofs are shown in

Appendices A.1.1 and A.1.2.
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Corollary 1. Under the Gaussian LPM, the following quantities have an explicit form:

D1: θ(zs) = τ

(

ϕ

γ + ϕ

)
d
2

exp

{

− 1

2(γ + ϕ)
ztszs

}

(3.9)

D3:
∂rG

∂xr
(1) =

(n− 1)!

(n− r − 1)!
τ r

{

ϕr

(γ + ϕ)r−1 [(r + 1)γ + ϕ]

}
d
2

(3.10)

D4: k̄ = (n− 1)τ

{

ϕ

2γ + ϕ

}
d
2

(3.11)

D7: k̄nn(zs) = 1 + k̄

(

n− 2

n− 1

) fd

(

zs;0,
γ2+3γϕ+ϕ2

2γ+ϕ

)

fd (zs;0, γ + ϕ)
(3.12)

Note that θ ( · ) has an explicit expression, thus evaluation of the quantities in D2,

D5 and D8 boils down to an approximation of a single integral.

Corollary 2. Under the Gaussian LPCM, the following results hold:

D1: θ(zs) = τ (2πϕ)
d
2

G
∑

g=1

πgfd
(

zs;µg, γg + ϕ
)

(3.13)

D4: k̄ = (n− 1)τ (2πϕ)
d
2

G
∑

g=1

G
∑

h=1

πgπhfd (µg − µh;0, γg + γh + ϕ) . (3.14)

Also, the degree distribution is a continuous mixture of binomial distributions, where the

mixture weights are themselves distributed as mixtures of Gaussians:

D7: pk =

∫

Rd

[

G
∑

g=1

πgfd (zs;µg, γg)

]

(

n− 1

k

)

θ(zs)
k [1− θ(zs)]

n−k−1 dzs. (3.15)

Under the Gaussian LPMRE, none of the equations can be written explicitly, since

the integrals over the random effects cannot be evaluated analytically. However, we will

make use of the following two quantities, which will be calculated in an approximate

form:

θ(zs, ϕs) =

∫

Rd

∫ ∞

0

fd (zj; 0, γ) p (ϕj|β0, β1) r (zs, zj) dϕjdzj, (3.16)

G(r)(1) =
(n− 1)!

(n− r − 1)!

∫

Rd

∫ ∞

0

fd (zs; 0, γ) p (ϕj|β0, β1) θ(zs, ϕs)
rdzsdϕs, (3.17)

Remark. The advantage of using the Gaussian function rather than the Logistic function

of Hoff et al. (2002); Handcock et al. (2007); Krivitsky et al. (2009) is mainly highlighted

in Corollary 1: under the Gaussian hypothesis most of the integrals of Equations 3.1-3.8

can be evaluated analytically since they become a convolution of two Gaussian densities,

which is solvable for any d. Also, quantities that do not have an exact expression, such as

pk or k̄nn(k), can be efficiently evaluated through numerical methods, since the number

of integrals to approximate is constant (depending on d, but not on n).
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Remark. In Gaussian LPMs, a nonidentifiability issue arises between the parameters ϕ

and γ, since the factorial moments depend only on their ratio, ϕ/γ. We argue, however,

that both parameters should be included in our study, to keep the model as close as

possible to the original LPM of Hoff et al. (2002), and to provide a proper basis for

possible extensions, such as the Gaussian LPCM and the Gaussian LPMRE.

3.2 Clustering coefficient

In this section, we take advantage of the Gaussian assumption to study the clustering

coefficient value for Gaussian LPMs analytically.

Since there is more than one definition for the clustering coefficient, we clarify that

the one used in this paper is the global clustering coefficient of Newman (2003a), equal to

three times the number of triangles divided by the number of connected triples of nodes.

Thanks to the exchangeability of actor labels, this quantity is an unbiased estimator of

the probability that, given two consecutive edges, the extremities of such 2-steps path

are connected themselves.

Proposition 1. Under assumptions A1-A3, the global clustering coefficient C can be

written as:

C =

∫

Z

∫

Z

∫

Z
p(zi)p(zk)p(zj)r (zi, zk) r (zk, zj) r (zj, zi) dzidzkdzj

∫

Z

∫

Z

∫

Z
p(zi)p(zk)p(zj)r (zi, zk) r (zk, zj) dzidzkdzj

. (3.18)

Under the Gaussian LPM both the numerator and the denominator can be expressed

analytically, yielding the following result:

C = τ

(

γ + ϕ

3γ + ϕ

)
d
2

. (3.19)

A proof of Proposition 1 is provided in Appendix A.4. We note that the (3.19) gives

an exact result for the clustering coefficient of an LPM of any size. This is an interesting

result and contrasts with many network models, where the clustering coefficient can only

be recovered asymptotically. Some interesting consequences of (3.19) will be illustrated

in Section 4.3.

3.3 Connectivity properties

The study of the theoretical properties of LPMs can be further extended, characterising

the connectivity structure of realised networks. To do so, we give the definition of a path

for a random graph, and show a general result about the connection of two nodes in

Gaussian LPMs, once their latent position is known.
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Definition 3.3.1 (Path). Under assumptions A1-A3, a k-step path is a sequence of k+1

distinct nodes {i0, i1, . . . , ik} such that an edge is present between every two consecutive

nodes, i.e. yi0i1 = yi1i2 = · · · = yik−1ik = 1.

Under the same assumptions, the probability of a k-step path appearing between two

nodes with latent information zi and zj can be written as:

Ik(zi, zj) =

∫

Z

· · ·
∫

Z

p(z1) . . . p(zk−1)r (zi, z1) r (z1, z2) · · · r (zk−1, zj) dz1 · · · dzk−1.

(3.20)

For a Gaussian LPM, the integrals on the right-hand side of (3.20) involve Gaussian

kernels only, and therefore they can be evaluated exactly. We provide a more explicit

formula for Ik(zi, zj) in the following Proposition:

Proposition 2. Under the Gaussian LPM, let Ik(zi, zj) be defined as in (3.20), for any

k = 1, 2, . . . , n− 1, zi ∈ R
d and zj ∈ R

d. Define the following recurrence relations:















hr+1 = hrα
−d
r τ (2πϕ)

d
2 fd

(

zi;0,
ωr+γ

α2
r

)

αr+1 = αrγ

ωr+γ

ωr+1 = ωrϕ+ωrγ+γϕ

ωr+γ

, with











h1 = τ (2πϕ)
d
2

α1 = 1

ω1 = ϕ

. (3.21)

Then, the following result holds:

Ik(zi, zj) = hkfd (zj − αkzi;0, ωk) , for k = 1, 2, . . . , n− 1. (3.22)

The proof of Proposition 2 is provided in Appendix A.2.

Remark. Note that the previous result could be extended by integrating out the latent

positions zi and zj as well. However, this is not of interest for the present work.

The result of Proposition 2 is a useful tool for studying the statistical properties of

path lengths for Gaussian LPMs, which we develop in Section 4.4.

4 Properties of realised networks

We now use the results in the previous section to obtain properties of the Gaussian LPM.

A main drawback of all LPMs is that, given the complete set of latent positions, the

evaluation of the likelihood for the corresponding realised graph requires the calculation

of a distance matrix, with a computational and storage cost of O(n2). This cost is the

main obstacle to inference for large graphs, making estimation impractical for networks

larger than a few thousands nodes. The issue extends also to the generation of LPMs,

which is usually performed in two sequential steps: firstly latent positions are sampled,

and then edges are created with the Gaussian probability. The evaluation of the distance
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matrix is thus needed in between the two steps. This makes any empirical study of the

properties of LPMs rather inefficient and limited to relatively small graphs, only.

By contrast, the results presented in Theorem 1 and related Corollaries involve either

exact formulas, which have negligible computational cost, or integral approximations

whose computational cost is independent of n. Hence, the analysis that we propose in

this Section does not require any intensive calculation and can be performed on networks

of any size. Note that Raftery et al. (2012) proposed a computational approximation to

overcome this difficulty, whereas here we provide exact results and analytical approxima-

tions.

4.1 Characterisation of the degree distribution for LPMs

Empirical evaluations (Newman 2003b) suggest that typically the proportion of nodes

with degree greater than k is expected to be proportional to k−α, for a positive α which

can be as small as 2. Networks exhibiting such behaviour are usually referred to as scale-

free, and the corresponding degree distribution is said to follow a power-law decay. The

highly connected nodes, denoted hubs, fulfil a crucial role in defining the structure of the

network (Albert et al. 2000), and as a result this is a feature which many network models

aim to capture (Barabási and Albert 1999; Newman et al. 2001).

According to the results of the previous section, the theoretical degree distribution of

a Gaussian LPM has the form of a continuous mixture of binomials, and can be approxi-

mated efficiently for any network size. Figure 4.1 shows approximate degree distributions

for various choices of model parameters.
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Figure 4.1: Gaussian Latent Position Model: Approximate degree distribution for different sets
of model parameters τ, γ, ϕ.
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While the degree distributions of sparse networks often resemble Poisson distributions,

denser networks tend to be associated with more left-skewed shapes. However, the theo-

retical degree distribution of LPMs in Figure 4.1 resembles a truncated shape, suggesting

that the model may not successfully represent heavy tails. It should be noted, however,

that truncated shapes do arise in social networks: data are often collected through sur-

veys, where each actor is asked to specify up to a fixed number of preferences, so that

the degree distribution will exhibit an artificial truncation at the corresponding value.

Popular social datasets have been obtained using such a design, such as Sampson’s monks

data (Sampson 1968) and the Adolescent Health data (Handcock et al. 2007). Moreover,

some important empirical evidence has been shown in Dunbar (1992) demonstrating the

existence of a theoretical cognitive limit on the number of stable relationships that so-

cial actors can maintain. Hence both power-laws and non-power-laws behaviours are of

interest in statistical modelling of networks.

We now propose a more rigorous analysis of the degree distribution using the disper-

sion and skewness indexes, which can be evaluated through the exact formulas for the

factorial moments in (3.10).

Corollary 3. Under the Gaussian LPM, the dispersion index is given by:

D = 1 + (n− 2)τ

(

ϕ(2γ + ϕ)

(γ + ϕ)(3γ + ϕ)

)
d
2

− (n− 1)τ

(

ϕ

2γ + ϕ

)
d
2

. (4.1)

The proof is given in Appendix A.3.

Remark. The calculation of the skewness does not involve any simplification, and so it is

omitted here.

The dispersion index can be used to assess how dispersed the distribution is when

compared to a Poisson, which has an index of 1. A value greater than 1 corresponds to an

overdispersed distribution while a value smaller than 1 corresponds to an underdispersed

one. The Binomial distribution arising from a finite Erdős-Rényi random graph has a

dispersion index smaller than 1, and so it qualifies as underdispersed.

Corollary 3 allows us to study how the model parameters τ, γ and ϕ affect the disper-

sion of the distribution. For d = 2, our results can be summarised as follows:

• When ϕ = γ(
√
n− 1 − 2), the distribution has dispersion index 1, typical of a

Poisson distribution.

• When ϕ < γ(
√
n− 1− 2), the distribution has dispersion index greater than 1, so

that the distribution is overdispersed.

• When ϕ > γ(
√
n− 1 − 2), the distribution has dispersion index smaller than 1,

typical of a Binomial distribution, and so is underdispersed.
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Note that the characterisation does not depend on τ .

The left panel of Figure 4.2 shows the dispersion as a function of the model param-

eters. The motivation behind this result is that the Erdős-Rényi random graph model

is recovered as a special case asymptotically, as ϕ gets larger. Therefore, as ϕ increases,

the model degenerates and the degree distribution becomes binomial and thus underdis-

persed, regardless of how sparse the network is. If ϕ is small enough, namely below the

threshold, then the model is nondegenerate and produces networks with an overdispersed

degree distribution. Hence, Gaussian LPMs are able to represent degree heterogeneity,

since for many choices of the model parameters the degree distribution is overdispersed.

However, degree heterogeneity does not imply heavy tails or power-law behaviour.

0 5 10 15 20

1
2

3
4

Dispersion index for LPM

ϕ γ

D
is

pe
rs

io
n 

in
de

x

ϕ
γ

= n − 1 − 2
τ

0.4
0.75
1

d = 2
n = 100 −

3
−

2
−

1
0

1
2

3

Skewness for LPM and Erdös Rényi random graph

k

S
ke

w
ne

ss
 in

de
x

0 0.2n 0.4n 0.6n 0.8n n

Latent position model
Erdös Rényi random graph

d = 2
τ = 1

Figure 4.2: Gaussian Latent Position Model: Left: Dispersion index versus the ratio between
ϕ and γ. The vertical line is the threshold corresponding to a Poisson dispersion. For larger
values of ϕ, the distributions arising are not more dispersed than an Erdős-Rényi random graph,
asymptotically degenerating to such model as ϕ gets larger. Right: Unless the graph is very
sparse, the skewness index for Gaussian LPMs (red line) is smaller than the skewness of a
Erdős-Rényi random graph (blue line) with the same average degree.

We now analyse the skewness index, which is useful for identifying asymmetries in

overdispersed distributions. In the case of degree distributions of networks, a negative

value of the skewness index corresponds to shapes exhibiting a left tail heavier than the

right one, while a positive value corresponds to the opposite behaviour. As a tool to assess

the presence of hubs, we expect a scale-free network to have a positive and relatively large

skewness index. However, as shown in the right panel of Figure 4.2, this scenario does

not arise in Gaussian LPMs.

Given that in Erdős-Rényi random graphs pk goes to zero at the rate 1/k! (i.e. power

laws are not represented), the right panel in Figure 4.2 shows that, unless the graph is
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very sparse, Gaussian LPMs exhibit degree distributions that are always more skewed to

the left than those of the Erdős-Rényi model with the same average degree. Even for very

sparse networks, the difference is not large enough to justify the presence of a low-order

power-law tail.

This shows that Gaussian LPMs cannot capture power-law behaviour. They are able

to represent degree heterogeneity, but in the sense that degrees will not be concentrated

around the mean value, but will rather have a nontrivially dispersed distribution between

0 and a maximum degree value, confirming the shapes already shown in Figure 4.1.

4.2 Degree correlations

In the study of networks, one is often interested in the mixing properties of the graph.

One mixing structure arises when nodes that share common features are more likely to

be linked. In the context of social networks, this behaviour is called homophily.

A special case is mixing according to the nodes’ degrees, called degree correlation. For

example, one might be interested in whether the degrees of two random nearest neigh-

bours are positively or negatively correlated. Positive correlation, or assortative mixing

of the degrees, is a recurring feature in social networks (Newman and Park 2003; Newman

2002a), in contrast to many other kinds of networks (World Wide Web, protein interac-

tions, food webs; see Newman (2003b)), which typically have negative degree correlation

or dissortative mixing.

Here, we illustrate the fact that Gaussian LPMs can represent assortative mixing in

the degrees, using the results of Theorem 1. Equation (3.12) shows that the Average

Nearest Neighbours’ Degree (ANND) of an arbitrary node i is an exact function of its

latent position zi. The left panel of Figure 4.3 displays this function in terms of the

distance between zi and the centre of the latent space.

It is not surprising that nodes located closer to the centre have highly connected neigh-

bours. Instead, (3.8) provides a less explicit formula for the ANND index as a function

of the degree of node i, rather than its distance from the centre. This quantity can be

efficiently approximated for every degree value. The right panel of Figure 4.3 represents

this case. The average degree of the neighbours of a node of degree k, k̄nn(k), appears

to be a nondecreasing function of the degree k, indicating the presence of assortative

mixing in the degrees, using the same criterion as Boguná and Pastor-Satorras (2003). It

follows that realised Gaussian LPM networks exhibit assortative mixing of the degrees,

suggesting them to be well suited for social networks (Newman and Park 2003).
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Figure 4.3: Gaussian Latent Position Model: Left: Average degree of the closest neighbours of
a node as a function of its distance from the centre. Nodes located in the centre will more likely
connect to high degree nodes. Right: Average degree of the closest neighbours as a function
of the degree of a node. The ANND index is clearly a nondecreasing function, verifying that
Gaussian LPMs exhibit assortative mixing in the degrees of the nodes.

4.3 Asymptotics for the clustering coefficient

Transitivity, defined as the propensity of two neighbours of a node also to be neighbours

of one another, is ubiquitous in network analysis. In social networks, the tendency of

three or more nodes to cluster is a feature of interest since it has a nontrivial relation

with the structure of path lengths, for example impacting the dynamics of the spread of

diseases (Newman 2003a, 2009; Kiss and Green 2008).

LPMs capture transitivity in a very natural way. Indeed, when two actors have a

neighbour in common, it is expected that the three corresponding nodes will be close in

the latent space, making triangles more likely. This reasoning extends to higher order

configurations as well. In this section, we show how Proposition 1 provides a more

objective justification to this intuition.

One well-known drawback of the Erdős-Rényi model is that it cannot capture tran-

sitivity when the network is large. To see this, let p be the connection probability and

k̄ = p(n − 1) be the expected average degree of the corresponding realised network. We

focus on the realistic case where the size of the network increases (n tends to infinity),

while k̄ remains constant with respect to n. It follows that p must tend to zero as n

increases, as well as C → 0 since C = p. Hence, asymptotically, the clustering coefficient

for Erdős-Rényi random graphs is zero.

Even more structured models such as Exponential Random Graph Models, have been
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shown to degenerate asymptotically to Erdős-Rényi random graphs, under some nonre-

strictive conditions (Chatterjee and Diaconis 2013), thus losing the ability to represent a

nontrivial transitivity structure.

In contrast, Gaussian LPMs can represent transitivity, even asymptotically. To see

this, first, recall (3.11), which defines the average degree of a random node in a Gaussian

LPM. In order to have an asymptotically constant average degree k̄0, the parameters ϕ

and γ should satisfy:

ϕ =
2k̄

2

d

0 γ

(n− 1)
2

d τ
2

d − k̄
2

d

0

. (4.2)

In the limit of large n, the corresponding clustering coefficient satisfies:

C =
τ

3
d
2

. (4.3)

Thus the limiting clustering coefficient has a non-zero value that can be as large as

3−
d
2 . This highlights an important difference between the Erdős-Rényi and Exponential

Random Graph models on one hand, and LPMs on the other, in that the latter are able

to represent transitivity in large networks.

Furthermore, the non-null clustering coefficient classifies Gaussian LPMs as highly

clustered networks. Such models lack the loopless tree structure which simplifies the

study of component sizes and path lengths. A review of the main difficulties arising when

dealing with highly clustered models can be found in Newman (2002b).

4.4 Path lengths

In a well known experiment, Milgram (1967) observed that any two strangers are con-

nected by a chain of intermediate acquaintances of length at most six. Later on, similar

observations were made in Albert et al. (1999) about the connectivity of certain portions

of the Internet, stating that any two web pages are at most 19 clicks away from one

another. The small-world effect defines this behaviour exactly: given any two connected

nodes, the shortest path from one node to the other will have an average length which is

very small when compared to the size of the network n, typically comparable to log(n)

or smaller (Newman 2001). The small-world property has motivated research on the con-

nectivity of graphs, relevant to fields such as communication systems, epidemiology and

optimisation.

Hence, understanding how a statistical model relates to the small-world property

is important. For LPMs, not much is known about the diameter and connectivity of

the realised networks. Here, we use Proposition 2 to apply a procedure similar to that

of Fronczak et al. (2004), showing how the distribution of the geodesic distances can

be evaluated in a Gaussian LPM. We also characterise the average path length (APL)
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for Gaussian LPM networks of any size, giving appropriate insights on the asymptotic

behaviour of such an index.

Fronczak et al. (2004) focused on the family of fitness models for networks, which

includes Erdős-Rényi random graphs and the preferential attachment model of Barabási

and Albert (1999). These models satisfy assumptions A1-A3, where the latent informa-

tion is coded by a fitness value hi, for every i ∈ V . Then, edge probabilities are given

by:

r (hi, hj) =
hihj

β
, (4.4)

where β is a suitable constant. The model degenerates to an Erdős-Rényi random graph

when hi = k̄ for every i, and β = k̄(n− 1).

Here, we exploit the fact that fitness models and LPMs both originate from LVMs,

generalising the work of Fronczak et al. (2004) to a wider family of models. To study the

connectivity of the networks and the path lengths’ distribution, we focus on the quantities

ℓk (zi, zj), defined as the probability that the shortest path between two nodes located

in zi and zj has length k. We also define rk (zi, zj) as the probability that a path of

length k exists between two nodes. In both definitions, and from now on, we condition

on the fact that the two nodes are connected, i.e. that there exists a finite-length path

that has the two nodes as extremes. Such an assumption is natural since usually statistics

of path lengths are defined only for sets of connected nodes. Note that Ik (zi, zj) differs

from rk (zi, zj) in that the latter is the probability that there is at least one k-step path

between the two nodes. We now describe a way to evaluate ℓk (zi, zj) efficiently, as a

function of the model parameters of a Gaussian LPM.

A9. The graphs considered are dense enough, such that for every (i, j) ∈ Ṽ , if there

exists a path of length k between nodes i and j, then a path of length t exists between

the same nodes for every t = k + 1, . . . , n− 1.

Proposition 3. Under the Gaussian LPM and assumption A9, let i and j be any two

nodes. Then the following two statements are equivalent:

• The geodesic distance between i and j is less than k.

• There exists a k-step path between i and j.

The proof of Proposition 3 relies heavily on A9 and is straightforward. From Propo-

sition 3 it follows that, for any i and j:

rk (zi, zj) =

k
∑

t=1

ℓt (zi, zj) . (4.5)
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Moreover, since ℓ1 (zi, zj) = r1 (zi, zj) = r (zi, zj), the following holds:

ℓk (zi, zj) = rk (zi, zj)− rk−1 (zi, zj) . (4.6)

Hence, we aim to characterise rk (zi, zj), thereby deducing the properties of ℓk (zi, zj).

Each possible path of length k from i to j can be thought of as a Bernoulli random

variable, having a success if all the edges involved in the path appear, or not having

a success if any of those edges fail to appear. For an Erdős-Rényi random graph with

average degree k̄ = (n−1)p, the parameter of such a random variable is pk. For Gaussian

LPMs, the success probability is Ik (zi, zj), which has been characterised in Proposition

2.

However, we are interested in rk (zi, zj), which is the probability of the union of all

the k-steps paths from i to j. Unfortunately, these variables are not independent, since

different paths will have edges in common. We circumvent this issue by pretending that

all such paths are mutually independent, following the reasoning of Fronczak et al. (2004).

This assumption makes sense when k is much smaller than n. In fact, for the purpose of

the study of shortest path lengths, estimates of rk (zi, zj) will be needed only for small

ks, since in the general case ℓk (zi, zj) will drop to zero very quickly.

Using the results of Proposition 2 and Lemma 1 of Fronczak et al. (2004), we obtain:

ℓk (zi, zj) ≈ exp
{

−nk−1Ik−1(zi, zj)
}

− exp
{

−nkIk(zi, zj)
}

. (4.7)

Equation (4.7) gives a general formula to evaluate the distribution of the geodesic distance

ℓk (zi, zj) for every k << n for dense Gaussian LPM networks.

In Figure 4.4 a comparison between the empirical and theoretical values obtained

is shown. The first two panels of Figure 4.4 give a representation of how close the

approximation of the path length distribution can be, for a dense Gaussian LPM network

and a less dense one. Note that in less dense networks the assumption that k << n is

less likely to hold because more sparsity will imply longer shortest paths.

Also, once ℓk (zi, zj) is known for every k, a straightforward evaluation of the APL

can be obtained by averaging over all possible values of k, zi and zj . The agreement of

the estimation with the results from an empirical study is shown in the right panel of

Figure 4.4. As expected, the estimation is more accurate for graphs with a higher average

degree. However, the results show that such an index is more tolerant when assumptions

tend to be violated, possibly because the bias is limited when values are averaged.

Figure 4.5 shows that Gaussian LPMs typically have a higher APL than corresponding

Erdős-Rényi random graphs. In the left panel, the APL is plotted against the average

degree of the network. It appears that the sparser the network, the more marked the

difference with Erdős-Rényi random graphs is. Instead, as the network gets denser,
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Figure 4.4: Geodesic distances and average path lengths for the Gaussian LPM model. Left and

centre: Comparison between empirical and theoretical values for the distribution of geodesic
distances. Networks generated are composed of 100 nodes. The left panel corresponds to a more
dense graph (average degree is approximately 42) while the one in the centre corresponds to a
more sparse graph (average degree is approximately 11). Right: Comparison between empirical
(lines) and theoretical (dots) values of APL. The parameters τ and γ are set to 1.

Gaussian LPMs tend to behave more and more similarly to Erdős-Rényi random graphs.

In the right panel of Figure 4.5, APL values are shown for larger Gaussian LPMs networks.

In this case the average degree is kept constant, highlighting the asymptotic behaviour

of the statistic.

APL values for the corresponding Erdős-Rényi random graphs are also shown in Figure

4.5. The Gaussian LPM networks typically have a higher APL, which grows faster than

the logarithm of the size of the network.

Figure 4.6 illustrates a possible reason for this behaviour. The distance from a node to

the centre of the latent space is plotted versus its geodesic distance to a second node picked

at random. There is clear heterogeneity, in contrast with the behaviour of Erdős-Rényi

random graphs. Clearly, when averaging over all the possible positions of the second ran-

domly chosen node, important contributions are given by distant isolated nodes, thereby

increasing the APL value.

5 Advantages of random effects models

In the previous section, we have shown that, although the Gaussian LPM can capture de-

gree heterogeneity, it cannot represent the power-law behaviour of many observed degree

distributions. In addition, the model has shortcomings in representing the small-world

behaviour, in that the APL grows faster than the log of the number of actors.

In the Logistic LPM context, Krivitsky et al. (2009) addressed similar issues by adding

node-specific random effects to represent different levels of social involvement. Here, we

propose an extension of the Gaussian LPM (namely the Gaussian LPMRE of Table 1)
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Figure 4.5: Left: APL against the average degree of a 1000 nodes network, compared with the
corresponding Erdős-Rényi random graph. The two behaviours diverge for sparse graphs, in
which case Gaussian LPMs exhibit a larger APL. Right: Asymptotic behaviour for the APL is
shown. Average degree of the network is kept constant while the size n is on the horizontal axis.
The continuous lines represent the APL value for corresponding Erdős-Rényi random graphs with
same average degrees. APL is typically higher in LPM, and grows proportionally to a function
which dominates the logarithm.

following the same reasoning.

In the Gaussian LPMRE, the connectivity parameter ϕ becomes node dependent, and

is a realisation of an Inverse Gamma distribution with parameters β0 and β1. Essentially,

an increase in ϕ will mainly affect how prone the corresponding actor is to creating long-

range connections, rather than short-range ones. This behaviour is in line with typical

scenarios in large social networks, where hubs differ from ordinary nodes in that they

entail connections between distant areas (or communities) of the graph, decreasing the

average path length (Watts and Strogatz 1998).

We can approximate (3.16) and (3.17) and characterise the factorial moments of the

degree of a random node as a function of the model parameters τ, γ, β0, β1, allowing an

assessment of the extent to which such models can represent heavy tails. Since the value

of τ makes no difference here, we fix it to 1.

Table 2 shows that the variance of random effects does not have much influence on

the average degree of the network. This is relevant for studying heavy tails, since sparser

networks will naturally have a higher skewness index. Hence, if we keep the mean of the

random effect constant and change the variance, not much of the change in the skewness

index will be due to the network becoming sparser.

Figure 5.1 shows that an increase in the variance of the random effects does yield
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Figure 4.6: Average geodesic distance from a node as a function of its distance from the centre
of the latent space. The network is composed of 10000 nodes, with τ = 1. Clearly, nodes which
are closer to the centre will be better positioned to reach easily many other nodes, thus having
a smaller APL index. Such heterogeneity in the connectivity structure characterises Gaussian
LPMs and separates them from Erdős-Rényi random graphs, justifying the larger values for global
APL.

an increase in the skewness index, corresponding to a right-skewed heavy-tailed shape.

Therefore, these two results indicate that the heaviness of the tails can be controlled

by changing the variance of the random effects, without changing the average degree of

the network by much. The smallest skewness index is obtained with a null variance for

random effects, which corresponds to the Gaussian LPM.

But how heavy are the tails corresponding to a given positive skewness? Figure

5.2 shows the empirical degree frequencies obtained through simulations of Gaussian

LPMREs. The two panels on the left side of Figure 5.2 show the degree distribution for a

LPM (on both standard and log-log scale), where the variance of random effects is set to

a very small value. The right-hand panels are obtained with the same parameters, except

for the variance of the random effect, which is increased to 105. The average degrees for

the two cases are: 0.151n and 0.144n respectively and the skewness indexes are −0.07

and 2.53 respectively. The log-log scale plots are represented to show that the decay

switches from a high-order power-law (reasonably comparable to a Poissonian tail) to a

power-law with an exponent which falls between 2 and 3.

The results shown confirm that random effects can extend the family of networks

represented using LPMs. However, other features of interest are non-trivially influenced.

Hence, we propose an empirical study to explore how random effects affect the asymptotic

behaviour of LPMRE with respect to small-world behaviour and transitivity. Simulations
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Table 2: Average degree of a network of 100 actors for different values of mean and variance of
the nodal random effects. The variance has very little impact on the overall average degree of the
network. This is an important property which is needed to state that any increase of skewness is
not due to the network getting sparser.

Variance

Mean 0.0001 0.1 1 10 100 1000 100000

0.1 1.95 2.88 2.73 2.91 2.85 2.81 2.83
0.2 7.34 8.30 8.25 8.20 8.30 8.21 8.17
0.3 14.97 15.19 14.83 14.35 14.40 14.33 14.38
0.4 24.11 23.28 21.14 20.49 20.73 20.60 20.37
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Figure 5.1: Skewness index versus variance of nodal random effects. An increase in the variance
of the random effects leads to an increase of the skewness index, corresponding to heavier tails.

of LPMREs are very inefficient, so the results are rather limited. However, such a proce-

dure is the only feasible one, since theoretical results on the LPMRE are not available.

In fact, we are currently investigating alternative ways to approach this analysis using

more rigorous theoretical frameworks.

In this experiment, we have selected a particular set of model parameters, generated

a sequence of IID networks and studied the average features exhibited. Since we are

interested in the asymptotic behaviour of APL and C, we have held the average degree

approximately constant by imposing γ ∝ n, with n increasing. Figure 5.3 illustrates the

results. The left panel shows that an increase in the variance of the random effects results

in a smaller APL. Furthermore, the APL growth as a function of n becomes slower than

the log function, exhibiting the small-world behaviour. The right panel represents instead
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Figure 5.2: Top: degree distributions for Gaussian LPMREs with null-variance random effects
(left) and large-variance random effects (right). Bottom: corresponding degree distribution on
the log-log scale. An increase in the variance of the random effects results in a heavier power-law
tailed degree distribution. The average degrees are: 0.151n and 0.144n for the case on left and
right respectively, while skewness indexes are −0.07 and 2.53 respectively.

the empirical asymptotic clustering coefficient. Here, it appears that C tends to stabilise

to a non-zero limiting value, which clearly depends on the variance of the random effects.

Such interaction between the presence of hubs and the clustering coefficient could be

somehow expected, since for an extreme case, the n-nodes star, C is equal to zero.

Considering the results shown in this Section, random effects can be regarded as a

useful addition to LPMs to capture several important features that arise in large social

networks.
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Figure 5.3: APL (left) and clustering coefficient (right) as a function of n, holding an approx-
imately constant average degree. The remaining model parameters are τ = 1, E[ϕ] = 0.6 and
γ = 0.05(n − 1). The number of networks generated for each value of n is 1000. The dashed
black lines represent the log function and the asymptotic value for C under the Gaussian LPM
for the left and right panel respectively.

6 Real data examples

We have characterised the models introduced by showing how some important statistics

of realised networks depend on the parameters of LPMs. We now show that several well

known real social networks have statistics that can be well captured by a fitted LPM,

using the following datasets:

• Dolphins: This is a social network of frequent associations between 62 dolphins in

a community living off Doubtful Sound, New Zealand (Lusseau et al. 2003).

• Monks: This describes the interpersonal relations among 18 monks in a monastery

(Sampson 1968).

• Florentine: This describes the connections by marriage between 16 noble families

in Florence during Renaissance (Padgett 1994).

• Prison: Data collected in the 1950s by John Gagnon from 67 prison inmates, each

one being asked to specify his preferences among other participants (MacRae 1960).

• High-tech: This network contains the friendship ties among 36 employees of a hi-

tech company, which were gathered by means of the question: who do you consider

to be a personal friend? (Krackhardt 1999).

• Math method: 38 school superintendents were asked to indicate their friendship

ties with other superintendents in the county with the following question: among

the chief school administrators in Allegheny County (PA, USA), who are your three

best friends? (Carlson 1965).
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• Sawmill: 36 employees of a sawmill were asked to quantify the time they spent

discussing work matters with each of their colleagues (Michael and Massey 1997).

• San Juan: Study carried out in a rural area in Costa Rica. Edges represent visiting

frequencies between 75 families living in farms in a neighbourhood called San Juan

Sur (De Nooy et al. 2011).

• Network sciences (1589 nodes): Coauthorship network of scientists working on

network theory and experiment (Newman 2006).

• Geometry (7343 nodes): Coauthorship network of scientists working on computa-

tional geometry (Jones 2002).

• Condensed Matter (16726 nodes): Coauthorships between scientists posting

preprints on the Condensed Matter E-Print Archive (Newman 2001).

• High energy (27770 nodes): Coauthorships between scientists posting preprints

on the High-Energy Theory E-Print Archive (Newman 2001).

Where necessary, the datasets have been transformed into binary undirected (no self-

edges) graphs, using standard reasonable procedures.

We can obtain the following network statistics for the Gaussian LPM using Theorem

1: the average degree k̄, the clustering coefficient C, the average path length APL and

the skewness index S. Table 3 shows their observed and theoretical values for the smaller

datasets.

The theoretical values shown in Table 3 correspond to model parameters chosen to

match the observed with the theoretical k̄ and C. This simple criterion performs well for

the networks presented, as indicated by Figure 6.1, which shows theoretical and observed

degree distributions.

A slightly different study was carried out for the larger datasets, to assess to what

extent the Gaussian LPMRE can represent the asymptotic scale-free decay of the degree

distribution, for different orders of the power-law. We consider several collaboration

networks where nodes correspond to authors and two nodes are linked if the corresponding

scientists published a paper as coauthors. All the networks shown exhibit a power-law

degree distribution, with different slopes, which vary in the range 1 to 4. Figure 6.2 shows

the theoretical and observed degree distributions on the log-log scale, indicating that the

asymptotic behaviour is reasonably well represented in all the cases.

7 Conclusions

The main contribution of this paper is to advance our understanding of Latent Position

Models for networks by providing several probabilistic results. Our main results describe

features of realised Latent Position networks, characterising their degree distribution,
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Table 3: Theoretical and observed statistics for small-sized social networks. Statistics shown are
the average degree k̄, the clustering coefficient C, the average path length APL and the skewness
index S. Following the criterion described, the average degree and the clustering coefficient are
matched exactly in every case, while the corresponding skewness index and average path length
are fairly close to the observed counterparts.

Parameters
τ 0.810

ϕ/γ 0.232

Dolphins (n=62) k̄ C S APL
Observed 5.129 0.309 0.292 3.357
Theoretical 5.129 0.309 0.461 3.282

Parameters
τ 0.763

ϕ/γ 2.115

Monks (n=18) k̄ C S APL
Observed 6.667 0.465 0.877 1.68
Theoretical 6.667 0.465 -0.05 1.724

Parameters
τ 0.302

ϕ/γ 2.460

Florentine (n=16) k̄ C S APL
Observed 2.5 0.191 0.424 2.486
Theoretical 2.5 0.191 0.503 2.827

Parameters
τ 0.776

ϕ/γ 0.180

Prison (n=67) k̄ C S APL
Observed 4.239 0.288 0.855 3.355
Theoretical 4.239 0.288 0.562 3.831

Parameters
τ 0.913

ϕ/γ 0.376

High-tech (n=36) k̄ C S APL
Observed 5.056 0.372 0.785 2.360
Theoretical 5.056 0.372 0.376 2.749

Parameters
τ 0.616

ϕ/γ 0.328

Math method (n=38) k̄ C S APL
Observed 3.211 0.246 0.654 2.644
Theoretical 3.211 0.246 0.612 3.480

Parameters
τ 0.550

ϕ/γ 0.436

Sawmill (n=36) k̄ C S APL
Observed 3.444 0.230 2.290 3.138
Theoretical 3.444 0.230 0.558 3.210

Parameters
τ 0.657

ϕ/γ 0.186

San Juan (n=75) k̄ C S APL
Observed 4.133 0.245 1.622 3.485
Theoretical 4.133 0.245 0.579 3.883

the mixing properties of the degrees, the clustering coefficient and the path lengths’

distribution. Although this work deals only with undirected graphs, the same results can

be extended in a similar fashion to directed ones.

Gaussian LPMs have been shown not to be appropriate for modelling scale-free net-

works, since the average degree frequencies exhibit a left-skewed and truncated shape.

However, modifying the basic LPM to include nodal random effects resulted in the abil-

ity of the model to represent power-law degree distributions of different slopes in both

simulated and real networks.

It has been also shown that Gaussian LPMs have an asymptotically strictly positive

clustering coefficient, in contrast to other well known models, such as Erdős-Rényi and

Exponential Random Graph models, whose clustering coefficient is asymptotically zero.
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Figure 6.1: Comparison between the observed degree distributions (blue bars) and the theoretical
ones (red lines) for several small-size real social networks. Datasets used (from top left by row):
Dolphins, Monks, Florentine, Prison, High-tech, Math method, Sawmill, San Juan.

This result suggests that LPMs can generate highly clustered networks and that they can

capture the persistent clustering behaviour of large social networks.

The average degree of the closest neighbours to a node has been characterised, showing

that positive degree correlations arise in LPM networks. This is in line with observed

social networks, where assortative mixing in the nodal degrees frequently occurs.

It has also been shown how the distribution of geodesic distances can be efficiently ap-

proximated, yielding an analysis of the asymptotic behaviour of the average path length.

It appears that dense LPM networks have the same behaviour of Erdős-Rényi random

graphs, while sparser LPM networks do not exhibit the small-world effect.

Through simulations, important advantages of using nodal random effects have been

outlined, suggesting that the Gaussian LPMRE has properties that makes it suitable for

modelling large social networks. An important extension of this work would be to develop

new strategies to study analytically the LPMRE and LPCM.
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A Appendix: proofs

A.1 Theorem 1

D1. This is straightforward since ∀zs ∈ R
d :

θ (zs) = Pr (ysj = 1|zs) =
∫

Z

p (zj) r (zs, zj) dzj . (A.1)

D2.

G (x) =
n−1
∑

k=0

xkpk =
n−1
∑

k=0

xkPr (Ds = k)

=
n−1
∑

k=0

xk

∫

Z

· · ·
∫

Z

p (z1) · · · p (zn)Pr (Ds = k|P ) dz1 · · · dzn

=

∫

Z

· · ·
∫

Z

[

n
∏

j=1

p (zj)

]

E
[

xDs
∣

∣P
]

dz1 · · · dzn

=

∫

Z

· · ·
∫

Z

[

n
∏

j=1

p (zj)

]{

n
∏

j=1

E
[

xYsj
∣

∣P
]

}

dz1 · · · dzn

=

∫

Z

· · ·
∫

Z

{

n
∏

j=1

p (zj) [xr (zs, zj) + 1− r (zs, zj)]

}

dz1 · · · dzn

=

∫

Z

p (zs)

{
∫

Z

p (zj) [xr (zs, zj) + 1− r (zs, zj)] dzj

}n−1

dzs

=

∫

Z

p (zs)

{

x

∫

Z

p (zj) r (zs, zj) dzj + 1−
∫

Z

p (zj) r (zs, zj) dzj

}n−1

dzs

=

∫

Z

p (zs) [xθ(zs) + 1− θ(zs)]
n−1 dzs.

(A.2)

D3. The r-th factorial moment of Ds corresponds to the r-th derivative of G evaluated

in 1:

∂rG

∂xr
(x) =

∫

Z

p (zs)
∂r

∂xr
[xθ(zs) + 1− θ(zs)]

n−1 dzs

=

∫

Z

p (zs) (n− 1) · · · (n− r) θ (zs)
r [xθ(zs) + 1− θ(zs)]

n−r−1 dzs

=
(n− 1)!

(n− r − 1)!

∫

Z

p (zs) θ (zs)
r [xθ(zs) + 1− θ(zs)]

n−r−1 dzs;

(A.3)

and the final formula evaluated in x = 1 gives (3.3).

D4. The average degree is the first factorial moment, thus:

k̄ = G′(1) =
(n− 1)!

(n− 2)!

∫

Z

p (zs) θ (zs) dzs = (n− 1)

∫

Z

p (zs) θ (zs) dzs. (A.4)
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D5. The distribution of the degree of a random node can be recovered by differentiating

G as well. Indeed, using (A.3), for every k:

pk =
1

k!

∂rG

∂xr
(0) =

(

n− 1

k

)
∫

Z

p (zs) θ (zs) [1− θ (zs)]
n−k−1 dzs. (A.5)

D6. Define the PGF for the degree of a random node once its latent information is fixed

to zs:

G̃ (x; zs) =

n−1
∑

k=0

xkPr (Ds = k|zs)

=

∫

Z

· · ·
∫

Z









n
∏

j=1
j 6=s

p (zj)









E
[

xDs
∣

∣P
]

dz−s

=

{
∫

Z

p (zj) [xr (zs, zj) + 1− r (zs, zj)] dzj

}n−1

= {xθ (zs) + 1− θ (zs)}n−1 ;

(A.6)

which is simply the PGF of a binomial random variable with parameters n−1 and θ (zs).

Hence its average degree is k̄ (zs) = (n− 1) θ (zs). Note that dz−s =
∏

j 6=s dzj.

D7. We now write down the PGF for the degree of a random neighbour of a node

located in zs.

H (x; zs) =
n−1
∑

k=0

xkPr (Dj = k|ysj = 1, zs)

=

∫

Z

p (zj |ysj = 1, zs)
n−1
∑

k=0

xkPr (Dj = k|ysj = 1, zs, zj) dzj

=

∫

Z

p (zj |ysj = 1, zs)E
[

xDj
∣

∣ysj = 1, zs, zj
]

dzj.

(A.7)

Note that E
[

xDj

∣

∣ysj = 1, zs, zj
]

corresponds to the PGF for the so called excess degree

(Newman et al. 2001), i.e. the degree of a node at one extreme of an edge picked at

random. Hence, such PGF is equal to
xG̃′(x;zj)

G̃(1;zj)
, where G̃ has been defined in (A.6). Then:

H (x; zs) =

∫

Z

p (zj|ysj = 1, zs)
xG̃′(x; zj)

G̃ (1; zj)
dzj

=

∫

Z

Pr (ysj = 1|zj , zs) p (zj)
Pr (ysj = 1|zs)

{

x [xθ (zj + 1− θ (zj))]
n−2} dzj

=
1

θ (zs)

∫

Z

p (zj) r (zj, zs)
{

x [xθ (zj + 1− θ (zj))]
n−2} dzj.

(A.8)
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Its average degree is then given by:

k̄nn (zs) = H ′ (1; zs) =
1

θ (zs)

∫

Z

p (zj) r (zj , zs) {1 + (n− 2) θ (zj)} dzj

= 1 +
(n− 2)

θ (zs)

∫

Z

p (zj) r (zj , zs) θ (zj) dzj.

(A.9)

D8. The PGF for the degree of a neighbour of a node with degree k is given by:

H̃ (x; k) =

n−1
∑

r=0

xrPr (Dj = r|Ds = k, ysj = 1)

=

n−1
∑

r=0

xr

∫

Z

p (zs|Ds = k)Pr (Dj = r|zs, ysj = 1) dzs

=
1

pk

∫

Z

p (zs)Pr (Ds = k|zs)H (x; zs) dzs

=
1

pk

∫

Z

p (zs)

[

∂k

∂xk
G̃ (0; zs)

]

H (x; zs) dzs

=
1

pk

∫

Z

p (zs)

(

n− 1

k

)

θ(zs)
k [1− θ(zs)]

n−k−1H (x; zs) dzs;

(A.10)

and its first derivative evaluated in x = 1 yields:

k̄nn(k) =
1

pk

∫

Z

p(zs)

(

n− 1

k

)

θ(zs)
k [1− θ(zs)]

n−k−1 k̄nn(zs)dzs. (A.11)

A.1.1 Proof for Corollary 1

Recall that a convolution of two Gaussian densities is still a Gaussian density:

∫

Rd

fd (zi;µ1, γ1) fd (zj − zi;µ2, γ2) dzi = fd (zj ;µ1 + µ2, γ1 + γ2) , (A.12)

for every zi, zj,µ1,µ2 in R
d and every positive real numbers γ1 and γ2.

That being said:

D1.

θ(zs) =

∫

Rd

fd (zj ; 0, γ) τ (2πϕ)
d
2 fd (zs − zj ; 0, ϕ) dzj

= τ (2πϕ)
d
2 fd (zs; 0, γ + ϕ)

= τ

(

ϕ

γ + ϕ

)
d
2

exp

{

− 1

2(γ + ϕ)
ztszs

}

.

(A.13)

32



D3.

∂rG

∂xr
(1) =

(n− 1)!

(n− r − 1)!

∫

Rd

fd (zs; 0, γ) θ(zs)
rdzs

=
(n− 1)!

(n− r − 1)!
τ r

(

ϕ

γ + ϕ

)
rd
2

∫

Rd

fd (zs; 0, γ) exp

{

− r

2 (γ + ϕ)
ztszs

}

dzs

=
(n− 1)!

(n− r − 1)!
τ r

(

ϕ

γ + ϕ

)
rd
2

{

2π
(γ + ϕ)

r

}
d
2

×

×
∫

Rd

fd (zs; 0, γ) fd

(

zs; 0,
γ + ϕ

r

)

dzs

=
(n− 1)!

(n− r − 1)!
τ r

(

ϕ

γ + ϕ

)
rd
2

{

2π
(γ + ϕ)

r

}
d
2

{

2π
[(r + 1) γ + ϕ]

r

}− d
2

=
(n− 1)!

(n− r − 1)!
τ r

{

ϕr

(γ + ϕ)r−1 [(r + 1)γ + ϕ]

}
d
2

(A.14)

D4.

k̄ = G′(1) = (n− 1)τ

{

ϕ

2γ + ϕ

}
d
2

(A.15)

D7.

k̄nn(zs) = 1 +
(n− 2)

θ (zs)

∫

Rd

p (zj) r (zs, zj) θ (zj) dzj

= 1 +
(n− 2)

θ (zs)
τ 2 (2πϕ)d×

×
∫

Rd

fd (zj ; 0, γ) fd (zj; 0, γ + ϕ) fd (zs − zj; 0, ϕ) dzj

= 1 +
(n− 2)

θ (zs)
τ 2 (2πϕ)d {2π (2γ + ϕ)}−

d
2 ×

×
∫

Rd

fd

(

zj; 0,
γ (γ + ϕ)

2γ + ϕ

)

fd (zs − zj ; 0, ϕ) dzj

= 1 + (n− 2)τ

(

ϕ

2γ + ϕ

)
d
2 fd

(

zs; 0, ϕ+ γ(γ+ϕ)
2γ+ϕ

)

fd (zs; 0, γ + ϕ)

= 1 + k̄

(

n− 2

n− 1

) fd

(

zs; 0,
γ2+3γϕ+ϕ2

2γ+ϕ

)

fd (zs; 0, γ + ϕ)
.

(A.16)
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A.1.2 Proof for Corollary 2

D1.

θ(zs) =

∫

Rd

G
∑

g=1

πgfd
(

zj ;µg, γg
)

τ (2πϕ)
d
2 fd (zs − zj ; 0, ϕ) dzj

= τ (2πϕ)
d
2

G
∑

g=1

πg

∫

Rd

fd
(

zj;µg, γg
)

fd (zs − zj; 0, ϕ) dzj

= τ (2πϕ)
d
2

G
∑

g=1

πgfd
(

zs;µg, γg + ϕ
)

.

(A.17)

D4.

k̄ = (n− 1)

∫

Rd

G
∑

g=1

πgfd
(

zs;µg, γg
)

τ (2πϕ)
d
2

G
∑

h=1

πhfd (zs;µh, γh + ϕ) dzs

= (n− 1)τ (2πϕ)
d
2

G
∑

g=1

G
∑

h=1

πgπh

∫

Rd

fd
(

zs;µg, γg
)

fd (zs;µh, γh + ϕ) dzs

= (n− 1)τ (2πϕ)
d
2

G
∑

g=1

G
∑

h=1

πgπhfd
(

µg − µh; 0, γg + γh + ϕ
)

.

(A.18)

While D7 is straightforward from (3.5).

A.2 Proof of Proposition 2

First, we recall a few properties of the Gaussian distribution through a Lemma:

Lemma 1. Let fd (·;µ, γ) denote the d-dimensional Gaussian density centred in µ, with

covariance matrix γId. Let also x,u, v ∈ R
d and a, b, α ∈ R

+. Then:

fd (x;u, a) fd (x; v, b) = fd (u − v;0, a + b) fd

(

x;
bu + av

a+ b
,

ab

a + b

)

; (A.19)

fd (αx;u, a) = α−dfd

(

x;
u

α
,
a

α2

)

. (A.20)

Here follows the proof of Proposition 2 by mathematical induction on k. If k = 1,

then:

I1(zi, zj) = h1fd (zj − α1zi; 0, ω1) = τ (2πϕ)
d
2 fd (zj − zi; 0, ϕ) = r (zi, zj) . (A.21)

Now assume that Ik(zi, zj) = hkfd (zj − αkzi; 0, ωk), then we need to prove that

Ik+1(zi, zj) = hk+1fd (zj − αk+1zi; 0, ωk+1) ,
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where hk+1, αk+1, ωk+1 are defined recursively by (3.21).

Ik+1(zi, zj) =

∫

Z

· · ·
∫

Z

p(z1) . . . p(zk)r (zi, z1) · · · r (zk, zj) dz1 · · · dzk

=

∫

Z

p (zk) r (zk, zj)

∫

Z

· · ·
∫

Z

p(z1) . . . p(zk−1)×

× r (zi, z1) · · · r (zk−1, zk) dz1 · · · dzk

=

∫

Z

p (zk) r (zk, zj) Ik (zi, zk) dzk

=

∫

Z

p (x) r (x, zj) Ik (zi,x) dx.

(A.22)

Now, we introduce the Gaussian LPM assumptions and use the results of the Lemma 1:

Ik+1(zi, zj) = τ (2πϕ)
d
2 hk

∫

Rd

fd (x; 0, γ) fd (x − zj; 0, ϕ) fd (x − αkzi; 0, ωk) dx

= τ (2πϕ)
d
2 hk×

×
∫

Rd

fd (x − zj; 0, ϕ) fd (−αkzi; 0, ωk + γ) fd

(

x;
γαkzi

ωk + γ
,

ωkγ

ωk + γ

)

dx

= τ (2πϕ)
d
2 hkα

−dfd

(

zi; 0,
ωk + γ

α2
k

)

×

×
∫

Rd

fd (x − zj; 0, ϕ) fd

(

x;
γαkzi

ωk + γ
,

ωkγ

ωk + γ

)

dx

= hk+1fd

(

zj ;
γαkzi

ωk + γ
,
ωkγ + ωkϕ+ ϕγ

ωk + γ

)

= hk+1fd (zj − αk+1zi; 0.ωk+1) .

(A.23)

A.3 Proof of Corollary 3

Let G be the PGF of the random variable D, denoting the degree of a node picked at

random. Then the r-th derivative of G evaluated in 1 is equal to the r-th factorial moment

of D, denoted here cr:

cr =
∂rG

∂xr
(1) = E [D (D − 1) · · · (D − r + 1)] . (A.24)

In particular:

c1 = E [D] = m1 (A.25)

c2 = E [D (D − 1)] = E
[

D2
]

− E [D] = m2 −m1 (A.26)

=⇒ m2 = c1 + c2, (A.27)
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where m1 and m2 denote the first two non-central moments of D. That being said, using

Corollary 1 the dispersion index can be evaluated exactly:

D =
E
[

(D −m1)
2]

m1

=
m2 −m2

1

m1

=
m2

m1

−m1 = 1 +
c2
c1

− c1

= 1 +
(n− 1) (n− 2) τ 2

{

ϕ2

(γ+ϕ)(3γ+ϕ)

}
d
2

(n− 1) τ
{

ϕ

2γ+ϕ

}
d
2

− (n− 1) τ

{

ϕ

2γ + ϕ

}
d
2

= 1 + (n− 2) τ

{

ϕ (2γ + ϕ)

(γ + ϕ) (3γ + ϕ)

}
d
2

− (n− 1) τ

{

ϕ

2γ + ϕ

}
d
2

,

(A.28)

which proves the corollary. Also, when d = 2, the threshold between underdispersion and

overdispersion is given by:

(n− 2) (2γ + ϕ)

(γ + ϕ) (3γ + ϕ)
− (n− 1)

(2γ + ϕ)
= 0. (A.29)

Now, recalling that ϕ > 0 and γ > 0, this is equivalent to:

(n− 2) (2γ + ϕ)2 − (n− 1) (γ + ϕ) (3γ + ϕ) = 0

⇒ϕ2 + 4γϕ+ 5γ2 − nγ2 = 0

⇒ϕ = γ
(

−2 ±
√
n− 1

)

.

(A.30)

One solution is negative thus not feasible, then the threshold is given by:

ϕ = γ
(√

n− 1− 2
)

.

A.4 Proof of Proposition 1

Formula in (3.18) is straightforward since it is obtained by conditioning on the latent

information. We now show how to obtain the exact formula (3.19) under the Gaussian

LPM. We solve the numerator CN and the denominator CD independently.

CD =

∫

Rd

∫

Rd

∫

Rd

p(zi)p(zk)p(zj)r (zi, zk) r (zk, zj) dzkdzidzj

=

∫

Rd

p(zk)

{
∫

Rd

p(zi)r (zi, zk) dzi

}{
∫

Rd

p(zj)r (zk, zj) dzj

}

dzk

=

∫

Rd

p(zk)θ (zk)
2 dzk

=
G′′(1)

(n− 1) (n− 2)

= τ 2
{

ϕ2

(γ + ϕ) (3γ + ϕ)

}
d
2

(A.31)
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Now we solve the numerator.

CN =

∫

Rd

∫

Rd

∫

Rd

p(zi)p(zk)p(zj)r (zi, zk) r (zk, zj) r (zj , zi) dzidzkdzj

=

∫

Rd

p(zi)

∫

Rd

p(zj)r (zj , zi)

{
∫

Rd

p(zk)r (zi, zk) r (zk, zj) dzk

}

dzjdzi

=

∫

Rd

p(zi)

∫

Rd

p(zj)r (zj , zi) I2 (zi, zj) dzjdzi

=

∫

Rd

p(zi)I3(zi, zi)dzi

(A.32)

where Ik(zi, zj) is defined in 3.20 for every k ∈ N
0, zi ∈ R

d and zj ∈ R
d.

For more clarity, we define the recurring quantity

λ = ϕ2 + 3γϕ+ γ2. (A.33)

We first discover the quantities needed to write I3(zi, zi) explicitly:











α1 = 1

ω1 = ϕ

h1 = τ (2πϕ)
d
2

;











α2 = γ

γ+ϕ

ω2 = ϕ(2γ+ϕ)
γ+ϕ

h2 = τ 2 (2πϕ)d fd (zi; 0, γ + ϕ)

; (A.34)

α3 =
α2γ

ω2 + γ
=

γ2

λ
; (A.35)

ω3 =
ω2ϕ+ ω2γ + γϕ

ω2 + γ
=

ϕ (γ + ϕ) (3γ + ϕ)

λ
; (A.36)

h3 = τ 3 (2πϕ)
3

2
d fd (zi; 0, γ + ϕ)

(

γ + ϕ

γ

)d

fd

(

zi; 0,
λ (γ + ϕ)

γ2

)

. (A.37)

Now, for h3, we use Lemma 1 and join the two Gaussian densities:

h3 = τ 3 (2πϕ)
3

2
d

(

γ + ϕ

γ

)d
{

2π
(γ + ϕ)2 (2γ + ϕ)

γ2

}− d
2

fd

(

zi; 0,
λ

2γ + ϕ

)

= τ 3 (2πϕ)d
{

ϕ

2γ + ϕ

}
d
2

fd

(

zi; 0,
λ

2γ + ϕ

)

.

(A.38)

Also:

(1− α3) =
ϕ (3γ + ϕ)

λ
(A.39)

ω3

(1− α3)
2 =

λ (γ + ϕ)

ϕ (3γ + ϕ)
(A.40)

(A.41)
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Then, it follows:

I3(zi, zi) = h3 (1− α3)
−d fd

(

zi; 0,
ω3

(1− α3)
2

)

= τ 3 (2πϕ)d
{

ϕ

2γ + ϕ

}
d
2

fd

(

zi; 0,
λ

2γ + ϕ

)

×

×
{

λ

ϕ (3γ + ϕ)

}d

fd

(

zi; 0,
λ (γ + ϕ)

ϕ (3γ + ϕ)

)

.

(A.42)

Collapsing again the Gaussian densities:

I3(zi, zi) = τ 3
{

2πϕ2

2 (3γ + ϕ)

}
d
2

fd

(

zi; 0,
γ + ϕ

2

)

(A.43)

We can now obtain the final result for the numerator:

CN =

∫

Rd

p(zi)I3(zi, zi)dzi

= τ 3
{

2πϕ2

2 (3γ + ϕ)

}
d
2
∫

Rd

fd (zi; 0, γ) fd

(

zi; 0,
γ + ϕ

2

)

dzi

= τ 3
{

ϕ2

(3γ + ϕ)2

}
d
2

(A.44)

The final formula for the clustering coefficient follows:

C =
CN
CD

=
τ 3

{

ϕ2

(3γ+ϕ)2

}
d
2

τ 2
{

ϕ2

(γ+ϕ)(3γ+ϕ)

}
d
2

= τ

(

γ + ϕ

3γ + ϕ

)
d
2

. (A.45)

References

Airoldi, E. M., D. M. Blei, S. E. Fienberg, and E. P. Xing. 2008. Mixed membership
stochastic blockmodels. In Journal of machine learning research, 1981–2014. Vol. 9.

Albert, R., H. Jeong, and A. L. Barabási. 2000. Error and attack tolerance of complex
networks. Nature 406 (6794): 378–382.

Albert, R., H. Jeong, and A. L. Barabási. 1999. Internet: diameter of the world-wide web.
Nature 401 (6749): 130–131.

Amaral, L. A. N., A. Scala, M. Barthelemy, and H. E. Stanley. 2000. Classes of small-
world networks. Proceedings of the national academy of sciences 97 (21): 11149–11152.

Ambroise, C., and C. Matias. 2012. New consistent and asymptotically normal parameter
estimates for random-graph mixture models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 74 (1): 3–35.

Barabási, A. L., and R. Albert. 1999. Emergence of scaling in random networks. Science
286 (5439): 509–512.

38



Boguná, M., and R. Pastor-Satorras. 2003. Class of correlated random networks with
hidden variables. Physical Review E 68 (3): 036112.

Caimo, A., and N. Friel. 2011. Bayesian inference for exponential random graph models.
Social Networks 33 (1): 41–55.

Caldarelli, G., A. Capocci, P. De Los Rios, and M. A. Muñoz. 2002. Scale-free networks
from varying vertex intrinsic fitness. Physical review letters 89 (25): 258702.

Cao, X., and M. D. Ward. 2014. Do democracies attract portfolio investment? transna-
tional portfolio investments modeled as dynamic network. International Interactions
40:216–245.

Carlson, R. O. 1965. Adoption of educational innovations. ERIC.

Channarond, A., J. J. Daudin, and S. Robin. 2012. Classification and estimation in the
stochastic blockmodel based on the empirical degrees. Electronic Journal of Statistics
6:2574–2601.

Chatterjee, S., and P. Diaconis. 2013. Estimating and understanding exponential random
graph models. The Annals of Statistics 41 (5): 2428–2461.

Chiu, G. S., and A. H. Westveld. 2014. A statistical social network model for consumption
data in trophic food webs. Statistical Methodology 17:139–160.

Chiu, G. S., and A. H. Westveld. 2011. A unifying approach for food webs, phylogeny, so-
cial networks, and statistics. Proceedings of the National Academy of Sciences 108:15881–
15886.

Daudin, J. J., F. Picard, and S. Robin. 2008. A mixture model for random graphs. Statis-
tics and computing 18 (2): 173–183.

De Nooy, W., A. Mrvar, and V. Batagelj. 2011. Exploratory social network analysis with
pajek. Vol. 27. Cambridge University Press.

Deprez, P., and M. V. Wüthrich. 2013. Poisson heterogeneous random-connection model.
arXiv:1312.1948.

Dunbar, R. I. M. 1992. Neocortex size as a constraint on group size in primates. Journal
of Human Evolution 22 (6): 469–493.

Frank, O., and D. Strauss. 1986. Markov graphs. Journal of the american Statistical
association 81 (395): 832–842.

Fronczak, A., P. Fronczak, and J. A. Hołyst. 2004. Average path length in random net-
works. Physical Review E 70 (5): 056110.

Gollini, I., and T. B. Murphy. 2014. Joint modelling of multiple network views. Journal
of Computational and Graphical Statistics.

Handcock, M. S., A. E. Raftery, and J. M. Tantrum. 2007. Model-based clustering for so-
cial networks. Journal of the Royal Statistical Society: Series A (Statistics in Society)
170 (2): 301–354.

Hoff, P. D., A. E. Raftery, and M. S. Handcock. 2002. Latent space approaches to social
network analysis. Journal of the american Statistical association 97 (460): 1090–1098.

Jones, B. 2002. Computational geometry database.

39

http://arxiv.org/abs/1312.1948


Kiss, I. Z., and D. M. Green. 2008. Comment on "properties of highly clustered networks".
Physical Review E 78 (4): 048101.

Krackhardt, D. 1999. The ties that torture: simmelian tie analysis in organizations. Re-
search in the Sociology of Organizations 16 (1): 183–210.

Krivitsky, P. N., and M. S. Handcock. 2014. A separable model for dynamic networks.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 (1): 29–
46.

Krivitsky, P. N., M. S. Handcock, A. E. Raftery, and P. D. Hoff. 2009. Representing
degree distributions, clustering, and homophily in social networks with latent cluster
random effects models. Social networks 31 (3): 204–213.

Latouche, P., E. Birmelé, and C. Ambroise. 2011. Overlapping stochastic block models
with application to the french political blogosphere. The Annals of Applied Statistics
5:309–336.

Lusseau, D., K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson. 2003.
The bottlenose dolphin community of doubtful sound features a large proportion of
long-lasting associations. Behavioral Ecology and Sociobiology 54 (4): 396–405.

MacRae, D. 1960. Direct factor analysis of sociometric data. Sociometry :360–371.

Mariadassou, M., and C. Matias. 2015. Convergence of the groups posterior distribution
in latent or stochastic block models. Bernoulli 21 (1): 537–573.

Meester, R. 1996. Continuum percolation. 119. Cambridge University Press.

Michael, J. H., and J. G. Massey. 1997. Modeling the communication network in a sawmill.
Forest Products Journal 47 (9): 25–30.

Milgram, S. 1967. The small world problem. Psychology today 2 (1): 60–67.

Newman, M. E. J. 2002a. Assortative mixing in networks. Physical review letters 89 (20):
208701.

Newman, M. E. J. 2006. Finding community structure in networks using the eigenvectors
of matrices. Physical review E 74 (3): 036104.

Newman, M. E. J. 2003a. Properties of highly clustered networks. Physical Review E 68
(2): 026121.

Newman, M. E. J. 2002b. Random graphs as models of networks. arXiv:cond-mat/0202208.

Newman, M. E. J. 2009. Random graphs with clustering. Physical review letters 103 (5):
058701.

Newman, M. E. J. 2003b. The structure and function of complex networks. SIAM review
45 (2): 167–256.

Newman, M. E. J. 2001. The structure of scientific collaboration networks. Proceedings
of the National Academy of Sciences 98 (2): 404–409.

Newman, M. E. J., and J. Park. 2003. Why social networks are different from other types
of networks. Physical Review E 68 (3): 036122.

Newman, M. E. J., S. H. Strogatz, and D. J. Watts. 2001. Random graphs with arbitrary
degree distributions and their applications. Physical Review E 64 (2): 026118.

40

http://arxiv.org/abs/cond-mat/0202208


Nowicki, K., and T. A. B. Snijders. 2001. Estimation and prediction for stochastic block-
structures. Journal of the American Statistical Association 96 (455): 1077–1087.

Olhede, S. C., and P. J. Wolfe. 2012. Degree-based network models. arXiv:1211.6537.

Padgett, J. F. 1994. Marriage and elite structure in reinassance florence; 1282-1500. Redes:
revista hispana para el análisis de redes sociales 21:71–97.

Penrose, M. D. 1991. On a continuum percolation model. Advances in applied probability
23:536–556.

Perry, P. O., and P. J. Wolfe. 2013. Point process modelling for directed interaction
networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
75 (5): 821–849.

Raftery, A. E., X. Niu, P. D. Hoff, and K. Y. Yeung. 2012. Fast inference for the latent
space network model using a case-control approximate likelihood. Journal of Compu-
tational and Graphical Statistics 21 (4): 901–919.

Sampson, S. F. 1968. A novitiate in a period of change: an experimental and case study
of social relationships. PhD thesis, Cornell University, September.

Schweinberger, M., and M. S. Handcock. 2015. Local dependence in random graph models:
characterization, properties and statistical inference. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 77 (3): 647–676.

Shalizi, C. R., and A. Rinaldo. 2013. Consistency under sampling of exponential random
graph models. The Annals of Statistics 41 (2): 508–535.

Söderberg, B. 2002. General formalism for inhomogeneous random graphs. Physical review
E 66 (6): 066121.

Sweet, T. M., A. C. Thomas, and B. W. Junker. 2013. Hierarchical network models
for education research: hierarchical latent space models. Journal of Educational and
Behavioral Statistics 38:295–318.

Wang, H., M. Tang, Y. Park, and C. E. Priebe. 2014. IEEE Transactions on Signal
Processing 62:703–717.

Watts, D. J., and S. H. Strogatz. 1998. Collective dynamics of small-world networks.
Nature 393 (6684): 440–442.

Williams, R. J., and N. D. Martinez. 2000. Simple rules yield complex food webs. Nature
404 (6774): 180–183.

41

http://arxiv.org/abs/1211.6537

	1 Introduction
	2 Latent Variable Network Models
	2.1 Notation and model assumptions
	2.1.1 Extensions of Latent Position Models

	2.2 Motivation for the Gaussian likelihood assumption

	3 Theoretical results
	3.1 Properties of the degrees
	3.2 Clustering coefficient
	3.3 Connectivity properties

	4 Properties of realised networks
	4.1 Characterisation of the degree distribution for LPMs
	4.2 Degree correlations
	4.3 Asymptotics for the clustering coefficient
	4.4 Path lengths

	5 Advantages of random effects models
	6 Real data examples
	7 Conclusions
	A Appendix: proofs
	A.1 Theorem ??
	A.1.1 Proof for Corollary ??
	A.1.2 Proof for Corollary ??

	A.2 Proof of Proposition ??
	A.3 Proof of Corollary ??
	A.4 Proof of Proposition ??


