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Abstract

While logistic regression models are easily accessible to researchers, when applied to

network data there are unrealistic assumptions made about the dependence struc-

ture of the data. For temporal networks measured in discrete time, recent work has

made good advances (Almquist & Butts, 2014), but there is still the assumption that

the dyads are conditionally independent given the edge histories. This assumption

can be quite strong and is sometimes difficult to justify. If time steps are rather

large, one would typically expect not only the existence of temporal dependencies

among the dyads across observed time points but also the existence of simultaneous

dependencies affecting how the dyads of the network co-evolve. We propose a gen-

eral observation driven model for dynamic networks which overcomes this problem

by modeling both the mean and the covariance structures as functions of the edge

histories using a flexible autoregressive approach. This approach can be shown to fit

into a generalized linear mixed model framework. We propose a visualization method

which provides evidence concerning the existence of simultaneous dependence. We

describe a simulation study to determine the method’s performance in the presence

and absence of simultaneous dependence, and we analyze both a proximity network

from conference attendees and a world trade network. We also use this last data

set to illustrate how simultaneous dependencies become more prominent as the time

intervals become coarser.

KEY WORDS: dependence structures; dynamic networks; generalized linear mixed

models; multivariate probit; observation driven model.



1 Introduction

Co-occurrence data involves observing a set of interactions, or edges, between a set

of actors. The observed edge set and actor set together form a network object. Such

networks arise in multitudinous contexts, and the analysis of network objects has been

of extreme importance to scientists in a wide range of fields. In particular, the analysis

of network dynamics is an extremely interesting and often difficult area to work

in, as temporal dependencies are added to an already complex network dependence

structure.

Several classes of models for temporally measured, or dynamic, networks have

been proposed, mostly over the last two decades. Each of these classes comes with

pros and cons, as one would expect. The network literature is vast even for dynamic

networks, and so we only touch on a few of the key classes of models before presenting

our proposed approach.

Modeling dynamic networks using continuous-time Markov processes has a long

history beginning with Holland & Leinhardt (1977) and continuing with several other

works (e.g., Wasserman, 1980; Leenders, 1995). A very impactful work continuing the

adoption of continuous-time Markov processes is the stochastic actor-oriented model

(Snijders, 1996), which has since seen much methodological and software development

(Ripley et al., 2013). In this framework, each actor forms a new edge or breaks an

existing edge in order to maximize that actor’s so-called objective function. This

function can represent homophily on attributes or structures of the network itself,

such as transitivity and reciprocity. This class of models has been very popular and

useful, and allows for wide flexibility in constructing the objective function.

Another popular class of models used for static networks is the exponential ran-

dom graph (ERG) models, proposed by Frank & Strauss (1986) and developed further

in countless works. The ERG family of models was extended to dynamic networks by

Robins & Pattison (2001), and later extended by Hanneke et al. (2010) and others.
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The temporal ERGM, or TERGM, in contrast to the stochastic actor-oriented model,

assumes the network data to be generated according to a discrete time Markov pro-

cess. The general idea in these ERG models is to put the probabilistic structure of

the observed networks in terms of functions of sufficient statistics. These statistics

often correspond to a count of some topological feature, such as triangles or k-stars.

The TERGM is quite flexible in the sufficient statistics that can be included in the

model, is parsimonious, and can handle complex dependencies in the network. Simi-

lar in spirit is the Separable TERGM (Krivitsky & Handcock, 2014), where both the

formation and dissolution process are modeled. Unfortunately, there are a variety

of problems that arise with these types of ERG models. There is the intractable

normalizing constant that must be approximated, as well as degeneracy issues, or

non-existence of the maximum likelihood estimators. See, e.g., Okabayashi (2011)

and Jin & Liang (2013) for more on this, as well as Hummel et al. (2012) for remedies

to some of these problems.

Stochastic blockmodels (Holland et al., 1983; Wang & Wong, 1987; Snijders &

Nowicki, 1997) have been one of the most widely used and studied class of models

for networks. The mixed membership blockmodel (Airoldi et al., 2008) was extended

for dynamic networks by Xing et al. (2010). While quite useful, blockmodels suffer

from an inability to capture network dependencies induced by complex features such

as transitivity or reciprocity.

A large number of models fall into the class of latent space models. These models

originated with Hoff et al. (2002) for static networks, and expanded in a variety of

ways (see, e.g., Handcock et al., 2007; Krivitsky et al., 2009). These models were

then extended to the dynamic context by Sarkar & Moore (2005), Durante & Dunson

(2014) and Sewell & Chen (2015). Scalability remains an issue with latent space

models, though some attemps have been made to alleviate this (Raftery et al., 2012;

Salter-Townshend & Murphy, 2013), and determining the dimensionality of the latent
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space has attracted relatively little serious work, the main exception being work done

by Durante & Dunson (2014).

Our proposed work builds off of the logistic network regression models proposed

by Almquist & Butts (2013, 2014). This model provides a simple yet flexible frame-

work for capturing the temporal dependency by modeling the mean as a function

of sufficient statistics constructed from previous observations of the network. Their

model has distinct advantages such as scalability, flexibility, and easy accessibility to

anyone familiar with generalized linear models. The authors derive this model from

the TERGM based on a clear set of assumptions. The most controversial of these

is that the network dyads are conditionally independent given the network history.

The problem is that the simultaneous dependence is ignored, i.e., the dependence

between the co-evolving dyads. These simultaneous dependencies play an important

role in the evolution of the network, especially as the intervals at which the network is

observed increase (Lerner et al., 2013). It is well known that ignoring extra variation

in the data can, in contexts similar to our own, lead to inconsistent estimation and

attenuated estimates of the parameters (Demidenko, 2013). Thus ignoring simulta-

neous dependence in the data will in many cases lead to poor estimation; we shall

demonstrate this analytically in Section 2.3 and empirically in Section 6.

Cox (1981) used the terms “parameter driven” and “observation driven” models

to describe two approaches for modeling binary time series data. In the context of

dynamic network analysis, we can think of the latent space approach as the analog

to parameter driven models, where the temporal dependencies of the network are

driven through some latent variables evolving through, say, a Markov process. Our

proposed model follows what may be considered an observation driven approach,

where both the simultaneous and temporal dependencies are driven by some functions

of the lagged observed networks. More specifically, our proposed approach captures

temporal dependence through modeling the mean as a function of lagged networks
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and similarly captures the simultaneous dependence through modeling the covariance

as a function of lagged networks.

An important motivation for this work was accessibility to appropriate network

methodology for those without extensive statistical background. We believe that

those familiar with generalized linear mixed models (see Section 4) should be able

to easily understand and utilize our proposed approach, and software will be made

available on the author’s website to further facilitate accessibility. While using a

familiar framework, we account for both temporal and simultaneous dependence, thus

avoiding the adverse inferential impacts that we otherwise would expect to occur by

ignoring these two sources of variation.

In Section 2 we present our proposed methodology, as well as some suggestions

for appropriately choosing the mean and covariance functions. In Section 3 we de-

scribe our approach to estimation, with the details and selected proofs given in the

appendix. Section 4 generalizes our approach by fitting our method into the familiar

generalized linear mixed model framework. In Section 5 we describe a visualization

approach to evaluating the evidence regarding the existence and impact of simulta-

neous dependence in the data. In Section 6 we present a simulation study which

examines the performance of our model in the presence and absence of simultaneous

dependencies. In Section 7 we analyze two real data sets, illustrating the utility of

our method and the importance of accounting for simultaneous dependence in real

data, as well as illustrating how simultaneous dependence becomes more prominent

as time intervals become coarser.

2 Methodology

2.1 Context and notation

We assume we have n objects, or actors, each of which may have some interac-

tions or relationships with the other actors. If such an interaction/relationship exists
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between actors i and j, we say there is an edge between them. We assume that the set

of actors are constant over time, though the edges themselves may exist during any

subset of all possible time points. Here we assume the data are collected at discrete

time points. Collectively the set of actors and the time-varying set of edges define the

dynamic network. The data obtained can then be represented by a 3-dimensional ten-

sor, or equivalently a sequence of adjacency matrices, where each adjacency matrix,

denoted as At, t = 0, 1, . . . , T , is an n×n matrix corresponding to the edges that exist

at time t. That is, the (i, j)th entry of At, Aijt, equals one if there is an edge from i to

j at time t and zero otherwise. The diagonal entries of each adjacency matrix hold no

meaning unless so-called self loops are allowed, that is, an actor may send an edge to

itself. For the purposes of clarity in our exposition, we will assume in Section 2 that

such self loops are allowed as this helps facilitate the mathematical description of the

model and its properties; it is trivial to translate the presented model to the context

of no self loops. However, because (1) self loops are relatively rare in practice, and

(2) the derivations of our estimation algorithm requires additional non-trivial steps

when self loops are not allowed, the derivations provided in our appendices assume

the diagonal elements of the At’s are meaningless. Additionally, the data in Sections

6 and 7 do not have self loops.

We also assume there exists some exogenous covariate information with which we

would like to explain or predict the edge probabilities. These covariates may by static

(e.g., race or gender) or time-varying (e.g., income or marital status). In the remainder

of the paper we will treat the covariates as though they are time-varying with the

understanding that static covariates may be treated as such simply by replicating

them from one time point to the next. We denote the dyadic covariate information

by the n × n matrices X`t, ` = 1, . . . , p1, t = 1, . . . , T . For notational convenience,

we will denote a linear combination of equal sized matrices as 〈β,Xt〉 :=
∑p1

`=1 β`X`t,

where β = (β1, . . . , βp1) and Xt is a 3-dimensional array whose `th slice is X`t.
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As will be seen shortly, we shall be focusing on covariance structures, and hence

it is natural to implement a probit type model for our binary dyadic data (although

we will generalize the work in Section 4). We thus assume that there are some

underlying matrices of normal random variables A∗t that directly correspond to At

via the surjective function Aijt = 1{A∗ijt>0}.

2.2 Observation-driven model

The proposed model is an observation-driven approach, rather than parameter-

driven. That is, we may write the conditional mean of A∗t as a function of A0, . . . , At−1

rather than as a function of some unobservable noise process. Observation-driven

approaches for temporal binary data have been well studied in simpler contexts.

While some complicated mean functions have been proposed (e.g., Shephard, 1995),

often it is the simple and intuitive

E(A∗ijt|Aij(t−1, Ait(t−2), . . .) =

p1∑
`=1

β`X`t[i, j] +

p2∑
`=1

θ`Aij(t−`),

(e.g., Cox, 1981; Zeger & Qaqish, 1988) where X[i, j] is the (i, j)th entry of the matrix

X. However, this simplistic mean function is insufficient for complex network objects.

With this in mind, we will allow the second term of the mean of A∗t to be 〈θ,Gt〉 :=

〈θ,G(At−1, At−2, . . .)〉, where θ = (θ1, . . . , θp2), and Gt maps the previous adjacency

matrices onto the space of n × n × p2 tensors, i.e., Gt uses the previous adjacency

matrices to construct p2 new n× n matrices.

Note that p2 does not refer to the number of lagged time points as in the simple

binary time series model, but rather can encompass the number of salient features

of the previous adjacency matrices, such as stability, reciprocity, or transitivity. As

a simple example, if we include stability and reciprocity for up to a lag of two time

points, then p2 = 4 and the slices of Gt are At−1, A′t−1, At−2, and A′t−2. These p2

covariates involving functions of the lagged network can thus be used in sophisticated

ways to explain the temporal dependencies, i.e., the dependence between Aijt and

Ak`s, t 6= s. For examples of other ways to construct Gt, see Table 1 or the appendices
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of Almquist & Butts (2014).

Networks are complex objects, however, and attempting to capture all depen-

dencies through the mean structure alone is insufficient, particularly as the intervals

between time points grow larger. One would typically expect not only the existence of

temporal dependencies through which the network at varying time points are depen-

dent, but also simultaneous dependencies which dictate how the dyads of the network

co-evolve. Thus we should be quite concerned with appropriately modeling the second

moments of the A∗ijt’s.

With this motivation in mind, we begin with the following multivariate probit

model. Let At be equal to vec(A∗t ). Then set

E(A∗t |At−1, At−2, . . .) = 〈β,Xt〉+ 〈θ,Gt〉 (1)

Cov(At) = ΣA∗,t. (2)

Note that ΣA∗,t determines the covariance structure among the n2 dyads, and hence

has O(n4) parameters. Clearly it would not be possible to estimate such an uncon-

strained ΣA∗,t outside of the context of small n large T , nor is this unconstrained

covariance structure what one would expect to see in reality. Going to the extreme

of constraining ΣA∗,t to be the identity matrix (and thus ignoring simultaneous de-

pendence entirely) leads to the model presented in Almquist & Butts (2014), and

hence what is presented here can be thought of as an alternative generalization of

their methods (the TERGM is the original motivation for and generalization of their

approach).

2.3 Ignoring simultaneous dependencies

Here we make a short note on estimation errors associated with ignoring existing

variablity in the data. Demidenko (2013) gives a short discussion on these types of

issues with regard to generalized linear mixed models (see chapter 7). For our context,

suppose we may write the normal random variables A∗ijt’s as

A∗ijt = 〈β,Xt〉[i, j] + 〈θ,Gt〉[i, j] + sit + rjt + Eijt,
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where sit, rit, and Eijt are zero mean normal random variables (possibly correlated

in complex ways, though letting sit, rit ⊥ Eijt∀i, j, t ). Then we have the following

proposition, the proof of which is given in Appendix B.1.

Proposition.

P(Aijt = 1|β,θ) = Φ

(
E(A∗ijt)√

V ar(Eijt) + V ar(sit + rjt)

)
, (3)

where Φ(·) is the CDF of a standard normal distribution, and E(A∗ijt) is given in (1).

Now consider the very simple example where we havesit
rit

 iid∼ N

0,

τs 0

0 τr




and constant variance for the Eijt’s. We can quickly see that should we ignore simul-

taneous dependence, any attempts to estimate (β,θ) would in fact unintentionally

lead to the attenuated estimation of (β,θ) scaled by V ar(Eijt) + τs + τr. For more

general cases when V ar(sit + rjt) is time dependent or dependent on the actors i and

j, it is unclear what, if anything, any naive estimates of (β,θ) are actually estimating.

2.4 Simultaneous and temporal autoregressive model

A middle ground between fully ignoring simultaneous dependence and using a

saturated covariance matrix ΣA∗,t would be to assume that there ought to be some

connection with the covariance between two dyads and the actors that are incident

on those two dyads. This simple and intuitive idea will eventually lead us to a model

resembling the social relations model (Warner et al., 1979), having the form

A∗ijt = mean structure + sender effects + receiver effects + residuals

(the final form is given in (10)). To get there, we begin by introducing the following

definition.
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Definition. An n× n matrix A∗ has a role-based additive covariance structure if

Cov(A∗ij, A
∗
k`)

= Σs[i, k] + Σr[j, `] + Σsr[i, `] + Σsr[k, j] + σ2
R1[{(i,j)=(k,`)}∪{(i,j)=(`,k)}] + σ2

ε1[(i,j)=(k,`)],

(4)

where Σs, Σr, and Σsr are n× n covariance matrices that represents respectively the

covariance among the senders of the dyads, the receivers of the dyads, and between

the senders and the receivers, and where σ2
R and σ2

ε correspond to pair and dyad

variance respectively.

A role-based additive covariance structure can be interpreted to mean that the

covariance between any two dyads (i, j) and (k, `) can be explained by how similar i

and k are as senders, how similar j and ` are as receivers, how i and ` relate to each

other as sender and receiver respectively and similarly for k and j, the variability due

to reciprocated dyads, and the inherent variability between the dyads.

The role-based additive covariance structure has a nice representation that lends

itself well to estimation. To demonstrate this, we provide the following theorem.

Theorem. The following are equivalent.

(I) The A∗ijt’s are jointly normal with a role-based additive covariance structure

and mean given by (1).

(II) At ∼ N
(

vec(〈β,Xt〉+ 〈θ,Gt〉),

Jn ⊗ Σst + Σrt ⊗ Jn + 1n ⊗ Σsrt ⊗ 1
′
n + 1

′
n ⊗ Σ′srt ⊗ 1n + σ2

RMR + (σ2
ε + σ2

R)In2

)
,

(5)

where 1k is the k× 1 vector of 1’s, Jk equals 1k1
′
k, and Ik is the k× k identity

matrix, and where MR is a matrix such that for 1 ≤ i 6= j ≤ n, MR[(j − 1)n+

i, (i− 1)n+ j] = 1 and Mr[`,m] = 0 everywhere else.
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(III) A∗t = 〈β,Xt〉+ 〈θ,Gt〉+ st1
′ + 1r′ + Et, where st

rt

 iid∼ N

0,

 Σst Σsrt

Σ′srt Σrt


 ,

(Et[i, j], Et[j, i])
′ iid∼ N

(
0, σ2

ε I2 + σ2
RJ2

)
. (6)

The proof is given in Appendix B.2.

Unconstrained, the covariance structure of (6) still has O(n2) parameters to be

estimated. The question then is how to appropriately, yet parsimoniously, represent

the covariance structure of (st, rt). In response, we pose the following question: if the

features found in (At−1, At−2, . . .) can appropriately capture the temporal dependence

through the mean structure, may we not also capitalize on the information stored

in (At−1, At−2, . . .) to estimate the simultaneous dependence through the covariance

structure? (This is similar in principle to ARCH models. See Engle, 1982). We

propose using an autoregressive model on the covariance structure of (st, rt) as well

as on the mean structure of A∗t , so that Cov(At|At−1,At−2, . . .) is some function of

(At−1,At−2, . . .).

Specifically, we consider Cov(st, rt) with the following structure:

Σst =
Ks∑
k=1

τskHskt Σrt =
Kr∑
k=1

τrkHrkt Σsrt =
Ksr∑
k=1

τsrkHsrkt (7)

where τsk, τrk, and τsrk are positive valued parameters, Hskt, Hrkt, and Hsrkt are

functions of (At−1, At−2, . . .), and Hskt, Hrkt ∈ Sn+ for all k. Here Sn+ denotes the

positive semi-definite (PSD) cone. Writing Cov(st, rt) in this manner, i.e., as a linear

combination of PSD matrices, is similar in principle to covariance structures studied

for many decades (e.g., Anderson, 1973). Constructing the covariance matrices in

this manner allows us to use the data to represent complex simultaneous dependence,

while reducing the number of parameters from O(n2) to Ks +Kr +Ksr.

Note that this does not automatically ensure that ΣA∗,t ∈ Sn2

+ , and so some care

is still needed. To ensure that we have a valid covariance matrix, we constrain Ksr ≤
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min{Ks, Kr}, and for 1 ≤ k ≤ Ksr impose the constraint that τskHskt τsrkHsrkt

τsrkH
′
srkt τrkHrkt

 ∈ S(2n)
+ . (8)

The structure found in (7) allows us to further decompose st and rt as

st =
Ks∑
k=1

skt, skt
ind∼ N(0, τskHskt)

rt =
Kr∑
k=1

rkt, rkt
ind∼ N(0, τrkHrkt)

Cov(skt, rk′t) =

 τsrkHsrkt if 1 ≤ k = k′ ≤ Ksr

0 otherwise.
(9)

This then results in having our multivariate probit model with role-based additive

covariance structure represented as

A∗t = 〈β,Xt〉+ 〈θ,Gt〉+

(
Ks∑
k=1

skt

)
1
′ + 1

(
Kr∑
k=1

rkt

)′
+ Et. (10)

2.5 Broader context of sender/receiver effects

By first assuming an intuitive form for the covariance of the dyads, we are able

to arrive at a multivariate mixed effects probit model for the dynamic network, using

individual sender and receiver effects. The use of individual sender and receiver effects

has a long history in network analysis, starting with Warner et al. (1979). In nearly

all cases, the additive sender and receiver effects can be put within the framework

described above by setting Ks = Kr = Ksr = 1 and Hs1t = Hr1t = Hsr1 = In. An

important work using this is the p2 model of Duijn et al. (2004). This work was

built off of the p1 model of Holland & Leinhardt (1981) which was not motivated by

modeling an appropriate covariance structure. Latent space models have incorporated

additive sender/receiver effects as well, such as Hoff (2005) (which also incorporated

multiplicative effects), and Krivitsky et al. (2009).

The above referenced works are all concerned with static networks. Westveld &

Hoff (2011) used the ideas of sender and receiver effects to model the covariance of the

data for dynamic networks. As with the others, they constrain Ks = Kr = Ksr = 1

and Hs1t = Hr1t = Hsr1 = In, while also assuming AR processes on the sender
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and receiver effects (and on the residuals). While there is merit in this approach,

we still prefer capturing the temporal dependency through the observation driven

model. This is primarily because one may utilize specific network features such as

stability, reciprocity, transitivity, etc. to help explain the temporal dependencies. In

this way, one may argue that there is more flexibility, and researchers can investigate

the specific effects of various network features.

The way in which we use sender and receiver effects here differs in two important

ways from previous uses. First, the constraints on the covariance matrix of the dyads

are relaxed to allow ΣA∗,t to be dense, thus generalizing the way that researchers have

in the past used sender and receiver effects in their models. Second, we incorporate

past data to make the parameter space parsimonious. That is, a dense covariance

matrix with O(n4) unknowns can, by leveraging past information, be estimated using

Ks + Kr + Ksr parameters. For an example of how we may do this in practice, see

Section 2.6.

2.6 An example of operationalization

One of the strengths of (1) and (7) is the flexibility in choosing the features of

the previous adjacency matrices to be used in constructing the mean and covariance

functions. In this subsection we provide an example, based on sociological principles

as well as previous research in statistical models for networks, with the intention

that researchers using the STAR model may use whatever network features are most

appropriate for their particular context.

Fortunately for the analyst looking at dynamic network data, there has been much

focus in the social science literature on the salient structures of networks. To quote

Wasserman & Faust (1994),

Many researchers have shown, using empirical studies, that social net-

work data possess strong deviations from randomness. . . . data often fail

to agree with predictions from [models with assumptions such as equal
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(out degree) G1t = At−1Jn G1t[i, j] =
∑n

k=1 Aik(t−1)

(in degree) G2t = JnAt−1 G2t[i, j] =
∑n

k=1 Akj(t−1)

(stability) G3t = At−1 G3t[i, j] = Aij(t−1)

(reciprocity) G4t = A′t−1 G4t[i, j] = Aji(t−1)

(transitivity 1) G5t = At−1At−1 G5t[i, j] =
∑n

k=1 Aik(t−1)Akj(t−1)

(transitivity 2) G6t = At−1A
′
t−1 G6t[i, j] =

∑n
k=1 Aik(t−1)Ajk(t−1)

(transitivity 3) G7t = A′t−1At−1 G7t[i, j] =
∑n

k=1 Aki(t−1)Akj(t−1)

(cycle) G8t = A′t−1A
′
t−1 G8t[i, j] =

∑n
k=1 Aki(t−1)Ajk(t−1)

Table 1: Example of how to construct Gt, incorporating first, second and third order
structures.

popularity, lack of transitivity, or no reciprocity].

Krackhardt & Handcock (2007) made note that it has long been argued that “the

triad, not the dyad, is the fundamental social unit that needs to be studied” (see

also Simmel & Wolff, 1950), which further emphasizes that transitivity is, to quote

Wasserman & Faust (1994) again, “indeed a compelling force in the organization of

social groups.”

These notions then motivate the construction of Gt, the 3-dimensional tensor

whose `th slice is denoted by G`t, as given in Table 1. We can categorize these 8

structures of the network in the following terms. G1t and G2t correspond to first order

structures, that is, features of the network that relate to individual actors only. G3t

and G4t correspond to second order structures, that is, features of the network that

relate to dyads. G5t to G8t correspond to third order structures, that is, features of the

network that relate to triads. In particular, G5t to G7t correspond to transitivity in the

network, i.e., the probability that a transitive relation exists, while G8t corresponds

to a cycle, i.e., the probability that a 3-cycle will be completed. These last four struc-

tures are depicted visually in Figure 1, where we are considering the probability of an

edge from i to j and visualizing the transitive and cyclic triadic relations involving

the third actor k. One note regarding G1t to G8t is that these same features could of

course be trivially extended to more than just a lag of 1 whenever appropriate.
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i j

k

(a) G5t[i, j]

i j

k

(b) G6t[i, j]

i j

k

(c) G7t[i, j]

i j

k

(d) G8t[i, j]

Figure 1: Network structures which are being summed over k to determine the mean
of A∗ijt

Intuitively, Σst and Σrt ought to reflect how similar actors behave as senders and

receivers respectively. We therefore suggest setting Ks = Kr = 2, Ksr = 1, and

Hs1t = Hr1t = Hsr1t = In

Hs2t = D
−1/2
out,(t−1)At−1A

′
t−1D

−1/2
out,(t−1), (11)

Hr2t = D
−1/2
in,(t−1)A

′
t−1At−1D

−1/2
in,(t−1),

where Dout,(t−1) and Din,(t−1) are diagonal matrices whose diagonal entries are the

out-degrees and in-degrees of At−1 respectively. The (i, j)th entry of Hs2t then is the

number of actors to whom both i and j sent edges scaled by the geometric mean of

the total number of actors to whom i and j each sent edges. In this manner we are

capturing the intended notion of similarity between senders while enforcing Hs2t to

be PSD. In fact, Hs2t is a valid correlation matrix. Similarly for Hr2t. A note on the

practical implementation of this is that to avoid the possibility of dividing by zero

anywhere, in our analyses we set the diagonal of At−1 to be 1 when computing Hs2t

and Hr2t. To ensure that the covariance of (st, rt) is PSD, and hence the covariance

of At is PSD, we constrain

Ω :=

 τs1 τsr1

τsr1 τr1

 ∈ S2
+. (12)
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2.7 Undirected Networks

The above proposed methodology has focused on directed dynamic networks. Sim-

plifying to an undirected dynamic network implies that (4) and (5) can be written

Cov(A∗ijt, A
∗
k`t) = Σst[i, k] + Σst[j, `] + Σst[i, `] + Σst[k, j] + σ21[(i,j)=(k,`)]

⇔ Cov(At) = Jn ⊗ Σst + Σst ⊗ Jn + 1⊗ Σst ⊗ 1
′ + 1

′ ⊗ Σst ⊗ 1 + σ2I. (13)

The estimation algorithm given in Section 3 can be adapted to the undirected case;

some of the details which are not obvious are given in Appendix A. In the analysis of

Section 7.1, we set

Σst = τsHst, where Hst = D
−1/2
(t−1)At−1At−1D

−1/2
(t−1) (14)

and Dt is the diagonal matrix whose diagonal entries are the degrees of the actors

corresponding to At, i.e., At1. For autoregressive mean terms, we used

(degree) G1t = At−1Jn + JnAt−1 G1t[i, j] =
∑n

k=1

(
Aik(t−1) + Ajk(t−1)

)
(stability) G2t = At−1 G2t[i, j] = Aij(t−1)

(triangle) G3t = At−1At−1 G3t[i, j] =
∑n

k=1Aik(t−1)Ajk(t−1).

3 Variational Bayes estimation

From a Bayesian perspective, we would like to make posterior inference regarding

the mean parameters β and θ as well as the variance components τsk’s, τrk’s, and

τsrk’s. In what follows, we will assume the particular formulation given in Section 2.6.

Thus of interest is deriving π(β,θ,Ω, τs2, τr2, σ
2
R|{At}Tt=0). Note that just as with any

probit model, σ2
ε is constrained to equal 1 for identifiability. We assign the following
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priors on the model parameters.

(β′,θ′)′ ∼ N(0, diag(σ2
β, . . . , σ

2
β, σ

2
θ , . . . , σ

2
θ)),

τs2 ∼ IG(as0, bs0),

τr2 ∼ IG(ar0, br0),

Ω ∼ IW (aΩ0, BΩ0),

σ2
R ∼ IG(aR0, bR0),

where diag(σ2
β, . . . , σ

2
β, σ

2
θ , . . . , σ

2
θ) is the (p1 + p2) × (p1 + p2) diagonal matrix whose

first p1 diagonal entries are σ2
β and whose last p2 diagonal entries are σ2

θ , IG(a, b) is

the inverse gamma distribution with shape parameter a and scale parameter b, and

IW (a,B) denotes the inverse Wishart distribution with degrees of freedom a and

scale matrix B.

Rather than implementing a computationally expensive MCMC algorithm, we im-

plement a mean field variational Bayes (VB) algorithm. This estimation technique

finds an approximation of the posterior distribution such that the Kullback-Leibler

divergence between this approximation and the true posterior distribution is mini-

mized. This minimization is done under the constraint that the approximated pos-

terior density is a product of densities corresponding to a partition of the unknown

model parameters. See, e.g., Gelman et al. (2004) (Chapter 13) for a brief overview

of variational methods.

While much faster than MCMC, one issue with the variational Bayes algorithm

is a negative bias of the variance components. In our analyses, we found that the

bias was so strong in σ2
R as to render the reciprocity effects negligible, which led to

poorer performance overall. To address this, first consider further data augmentation

via the n × n symmetric matrices of dyad-pair specific random effects Rt, such that

Rt[i, j] = Rt[j, i]
iid∼ N(0, σ2

R). That is, we now have the equivalent form of (10)

A∗t = 〈β,Xt〉+ 〈θ,Gt〉+

(
Ks∑
k=1

skt

)
1
′ + 1

(
Kr∑
k=1

rkt

)′
+Rt + Ẽt, (15)
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where Ẽt is a matrix of iid normal random variables with zero mean and variance σ2
ε .

To prohibit σ2
R from shrinking to zero, we treat it as a hyperparameter for the Rt’s.

While not ideal, this seemed to improve overall performance.

The specific form of the approximated posterior is

π(β,θ, τs2, τr2,Ω, σ
2
R, {A∗t}Tt=1, {s1t, r1t, s2t, r2t}Tt=1, {Rt}Tt=1|{At}Tt=0)

≈q1(β,θ)q2(τs2, τr2,Ω)q3({At}Tt=1)q4({s1t, r1t, s2t, r2t}Tt=1)q5({Rt}Tt=1)q6(σ2
R). (16)

This is an iterative scheme, in which we use the parameters from, say, q` to estimate

qm and vice versa. The closed-form solutions to the VB updates are given in Appendix

A. The derivations for the sender and receiver effects are also provided, as these are

not straightforward due to the fact that the derivations must be taken with respect

to the distribution of A∗t ◦ (Jn − In) rather than A∗t , as given in (10).

The variational Bayes approach is quite fast and yields good point estimates. This

comes at a cost, however. Variational Bayes algorithms may get stuck in local modes,

and which local mode one ends up in may be highly dependent on the starting values

(see, e.g., Bickel et al., 2013; Salter-Townshend & Murphy, 2013, for more detailed

studies using variational approaches). Additionally, by partitioning the parameters

and forcing them to be independent in the approximate posterior, the posterior prob-

ability regions are typically much too concentrated. In our context we found that a

Gibbs sampler obtained similar posterior means, though wider credible intervals. The

MCMC algorithm was simply too slow in practice for networks of medium to large

size, however.

4 Generalizing to weighted networks

In this section we demonstrate how to generalize our approach to weighted net-

works in which the dyads are not constrained to {0, 1}. We accomplish this by placing

our work within the framework of a generalized linear mixed model (GLMM). Most

researchers, statisticians or not, are familiar with GLMMs which are often the tool
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of choice for modeling dependent non-Gaussian data. The general framework as-

sumes that a function of the means of the random variables are themselves correlated

(typically Gaussian) random variables, thus allowing researchers to control for the

correlation among the data. Specifically, for some response vector y, covariate ma-

trix X, random variables γ, and design matrix Z we write

g
(
E(y)

)
= Xβ + Zγ. (17)

(Note that the notation in (17) is not linked to anything previously given, but is

rather a general form for a GLMM).

Up to this point we have assumed a probit model, as this was a natural approach

to dealing with complex dependencies in binary data. This is equivalent to a GLMM

using the normal inverse cumulative distribution function as the link function g.

Placing our proposed methods within the GLMM framework allows us to use other

link functions such as a logit() for logistic regression, as well as allowing us to model

other types of non-Gaussian data; e.g., should our network data be count, as is often

the case, we may use a log link corresponding to a Poisson or Negative Binomial

family of distributions. Countless texts describe these models, and in fact GLMMs

are so prevalent that many fields have books or articles demonstrating how to apply

GLMMs to their specific subject area (e.g., Bolker et al., 2009; Gbur, 2012; Krueger

& Montgomery, 2014; Bharadwaj, 2016).

We wish to maintain the covariance structures detailed in Section 2.4, and in

particular that implied by (15) but generalize it to other link functions and other
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data types. This can be done by setting

g
(
E(At|At−1,At−2, . . .)

)
= (vec−(X1t) , vec−(X2t) , . . . , vec−(G1t) , vec−(G2t) , . . .)

(
β

θ

)
+ Zγt,

Z =

(
1
′
Ks
⊗ Zs 1

′
Kr
⊗ Zr Zrec

)
,

γt =

(
s′1t · · · s′Kst r′1t · · · r′Krt R

′
t

)′
, (18)

whereRt contains the lower triangular elements ofRt (i.e.,Rt = (R21t, R31t, . . . , Rn(n−1)t)),

and where vec−(M) for some n × n square matrix M is the standard vec(M) while

omitting the diagonals; hence vec−(M) will be an n(n − 1) × 1 vector. To construct

Zs, we may stack In,(−1,·), In,(−2,·), · · · , and In,(−n,·) to form a n(n − 1) × n matrix,

where In,(−i,·) is the n × n identity matrix with the ith row removed. Zr is simply

In ⊗ 1n−1. Constructing the n(n − 1) × n(n − 1)/2 matrix Zrec is perhaps the most

involved, but can be accomplished by the following pseudocode:

Set all elements of Zrec to 0.

for i ∈ {1, 2, . . . , n} do

for j ∈ {1, 2, . . . , n} \ i do

r ← (n− 1)(j − 1) + i− 1[i>j]

if i > j then c = n(j − 1)− j(j+1)
2

+ i;

else c = n(i− 1)− i(i+1)
2

+ j;

Zrec[r, c]← 1

end

end

By placing our methods within the GLMM framework we provide an easy way to

handle a wide range of data types as well as overdispersion.
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5 Evidence of simultaneous dependence

We now begin to address determining whether or not simultaneous dependence

exists. Just as with mixed models, we could check the intraclass correlation between

the pairs of residuals Et[i, j] and Et[j, i] to evaluate the importance of simultaneous

reciprocity. That is, estimate

σ2
R

σ2
R + 1

. (19)

The issue is not so straighforward for the other types of simultaneous dependence.

Consider the case where the variance of A∗ijt does not depend on the actors i and j

nor the time t, the off diagonals of Hsrk are 0 for all k, and the Hsk’s and Hrk’s have

been scaled such that the diagonal entries are 1 (as is true in our example of Section

2.6). Then analogously to (19), one may consider the vector

v/(v′1) where v = (τs1, τs2, . . . , τsKs , τr1, . . . , τrKr , σ
2
R, 1). (20)

Though (20) appears similar to a vector of intraclass correlations, these two things

are in fact not comparable. (20) is only a ratio of variance components, while (19) is a

veritable correlation. In the context of a directed network, there are seven correlations

we could consider: Cor(A∗ijt, A
∗
k`t), Cor(A

∗
ijt, A

∗
kit), Cor(A

∗
ijt, A

∗
kjt), Cor(A

∗
ijt, A

∗
i`t),

Cor(A∗ijt, A
∗
ijt),Cor(A

∗
ijt, A

∗
j`t), and Cor(A∗ijt, A

∗
jit). Moreover, these seven correlations

very well may differ based on which actors we are considering! Instead, we present a

visualization method that may be used to assess the evidence regarding the existence

and impact of simultaneous dependence.

The main idea is that we would like to evaluate how much of our posterior dis-

tributions of
(
{skt}Ksk=1, {rkt}

Kr
k=1

)
, t = 1, . . . , T , are located within some small ball

around zero. If there is no simultaneous dependence, then we would expect the pos-

terior distributions to reflect this in having most of their mass near zero. Hence we
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are concerned with

Pε,t :=

∫
Bε
dF
(
{skt}Ksk=1, {rkt}

Kr
k=1 | {At}

T
t=1

)
= P

(∥∥(s′1t, . . . , s
′
Kst, r

′
1t, . . . , r

′
Krt)

∥∥ < ε | {At}Tt=1

)
, (21)

where Bε represents the ball around zero of radius ε. This probability is very easily

and accurately estimated using a Monte Carlo approximation using draws from q4.

We can then plot Pε,t vs. ε to obtain a visualization of the magnitude of our individual

effects at each time point.

Our estimate of this high dimensional posterior distribution, q4, has the surpris-

ing characteristic that most of the probability mass lies within a thin shell far from

the posterior mean (intuitively, this is because the volume of Bε grows exponentially

with n). Therefore we need some comparison for the Pε,t’s. It may be helpful to

compare the posterior for
∥∥(s′1t, . . . , s

′
Kst
, r′1t, . . . , r

′
Krt

)
∥∥ with the distribution of the

magnitude of a N(0,
p(σ2

R+1)

(1−p)(Ks+Kr)In(Ks+Kr)) random variable for some p ∈ (0, 1). The

distribution of this comparative random variable arises from letting the ratio of vari-

ances in (20) sum to a proportion p for these simultaneous dependence terms (and

letting each of the Ks+Kr terms contribute equally); that is, what does the distribu-

tion of
∥∥(s′1t, . . . , s

′
Kst
, r′1t, . . . , r

′
Krt

)
∥∥ look like if simultaneous dependence accounts

for p(100)% of the variance of the A∗ijt’s compared with the inherent noise? Though

there well may be better comparative distributions, what we have described provides

a reasonable frame of reference by which we may evaluate the strength of the evidence

of simultaneous dependence as given by the posterior distribution for the sender and

receiver effects. By looking at the visualization rather than just the ratio of variance

components, we do not throw away the effects of the off-diagonal elements of the

covariance matrices Σst and Σrt nor the entirety of Σsrt when evaluating the evidence

of the existence of simultaneous dependence.

The distribution of the magnitude of the comparative random variable can be

evaluated in the following way. Let x ∼ Nn(0, σ2In) (e.g., σ2 = p(σ2
R + 1)/((1 −
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Figure 2: Empirical example of the visualization of the existence of simultaneous
dependence. The horizontal axis corresponds to the ε radius of a ball Bε about
zero, and the vertical axis is Pε,·. Each solid line corresponds to a time point (T =
10), and the dotted lines correspond to the comparative random variable having
proportion of variance attributable to simultaneous dependence of, from left to right,
p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. The left panel corresponds to data generated with
simultaneous dependence and the right panel without.

p)(Ks +Kr))). Then let Y 2 := x′x/σ2 ∼ χ2(n). Then Y ∼ χ(n) and thus

P(‖x‖ ≤ ε) = P(Y ≤ ε

σ
) =

γ(n/2, (ε/σ)2/2)

Γ(n/2)
, (22)

where γ(·, ·) is the lower incomplete gamma function. Using this we can directly

compute Pε corresponding to this comparative random variable.

Figure 2 provides an empirical demonstration of the proposed visualization tech-

nique using the results from an arbitrarily chosen simulated data set as described

in Section 6; note that we used the variance of the estimated Rt’s as a proxy for

σ2
R. The left panel corresponds to data generated with simultaneous dependence and

the right panel without. The solid lines correspond to the individual effects at a

particular time point, and the dotted lines correspond to the comparative noise for

p ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
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6 Simulation study

We performed a simulation study in order to investigate two things. First, what

is the effect of ignoring simultaneous dependence when it exists? Second, what is the

effect of modeling simultaneous dependence when it does not exist? Specifically, we

wish to investigate the effects on the mean parameters, as these will typically be the

parameters of interest to the researcher. To this end, we simulated 100 network data

sets where there was simultaneous dependence and 100 without such dependencies.

For each of these 200 data sets we fit two models, one accounting for and the other

ignoring these dependencies.

Each simulated data set had n = 100 and T = 10. We incorporated two co-

variates as well as an intercept (i.e., p1 = 3). The first dyadic covariate was a

binary variable taking values 0 or 1 with equal probability; this covariate was treated

as constant over time. The second covariate was constructed by first simulating n

AR(1) processes with autoregressive coefficient equal to 0.9 and transition variance

equal to 0.05, and then at each time point taking the distance between the corre-

sponding cross-sectional views of the AR(1) time series. The coefficients were then

set to be β = (−2.5, 0.5,−2) for the intercept, first covariate, and second covariate

respectively. We set θ = (0.0075, 0.0075, 0.75, 0.75, 0.025, 0.025, 0.025,−0.05), corre-

sponding to G1t, . . . ,G8t respectively, where the G`t’s are as given in Section 2.6. Note

that θ3 and θ4 needed to be on different scales, as these were the only coefficients cor-

responding to network structures taking values in {0, 1} rather than {0, 1, . . . , n−1}.

For the simulations with simultaneous dependence we set τs2 = 0.2, τr2 = 0.1, the

diagonal of Ω to be (0.25, 0.5), the off-diagonals of Ω equal to 0.1, and σ2
R = 0.5.

The results are given graphically in Figure 3. Figure 3a shows the boxplots of

the estimates of the 3× 1 vector β. The columns correspond to the true model, and

the shade of the boxplots correspond to whether or not simultaneous dependence was

accounted for. From this we see that in the presence of simultaneous dependence,
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(a) (b)

Figure 3: Posterior means of (a) β and (b) θ from analyzing the simulated
datasets described in Section 6. Note that θ3 and θ4 have been scaled by
1/10 for visualization purposes. Horizontal dotted lines indicate true values
of the parameters; the true β equals (−2.5, 0.5,−2), and the true θ equals
(0.0075, 0.0075, 0.75, 0.75, 0.025, 0.025, 0.025,−0.05). Lightly shaded boxplots corre-
spond to accounting for simultaneous dependence in the model; dark shaded boxplots
correspond to ignoring the simultaneous dependence.

our proposed approach does a much better job at estimating the true values of β

than when the simultaneous dependence is ignored. In the absence of simultaneous

dependence, with the exception of the intercept (arguably of little importance in most

research settings) our proposed approach performs very comparably to the models

which ignore simultaneous dependence. We can reach the same conclusions looking

at Figure 3b, which gives the boxplots of the estimates of the 8× 1 vector θ.

In summary, accounting for simultaneous dependence in the model is extremely

important in obtaining more accurate estimates of the coefficients in the mean func-

tion, and doing so even in the absence of simultaneous dependence does not seem to

do much harm in the estimation. If concerns persist, one may perform the visualiza-

tion described previously, as seen in Figure 2, to determine whether or not to include

simultaneous dependence in the final model.
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7 Data analyses

We now look at two real data sets with the intent of illustrating how our approach

can be implemented in practice both for directed and undirected data. In the last

example we illustrate the change in impact from simultaneous dependence as the time

intervals vary from fine to coarse.

7.1 Conference proximity network

We first look at a proximity network taken from conference goers at The Last Hope

Conference, collected and made available by the OpenAMD Project (OpenAMD,

2008). The 2008 conference goers had the option to wear an RFID badge which

tracked their movements throughout the conference. Thus we are able to construct

a proximity network, connecting two actors if they spent time close to one another.

This type of network is quite important in, e.g., infectious disease (Vanhems et al.,

2013) and the study of human behavior and organization (Eagle & Pentland, 2006).

Our undirected network data consisted of 1,190 actors over 29 hours (i.e., T = 29).

We set Aijt(= Ajit) to be 1 if actors i and j visited the same location during the tth

hour.

Figure 4a shows the evidence of simultaneous dependence. From this plot we see

that there is very strong evidence of such dependencies even though the time intervals

are rather fine (1 hour). Figure 4b shows the posterior means for the autoregressive

terms when ignoring simultaneous dependence (dark gray) and when accounting for

it (light gray). Notice that the estimates are, with the exception of stability, quite dif-

ferent; indeed, ignoring simultaneous dependence leads to a negative estimate for the

effect of triangles, which seems very unlikely given previous work done on structural

balance theory.
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(a) Plot of Pε,t vs. ε. Each solid
curve corresponds to the individual ef-
fects from a particular time point. The
dotted lines correspond to the com-
parative random variable setting p =
0.05, 0.1, 0.15, 0.2, 0.25, 0.3. See Section 5
for details.

(b) Posterior means for the coefficients of
θ. Dark gray indicates ignoring simulta-
neous dependence, while light gray indi-
cates accounting for this dependence in
the model.

Figure 4: Results from the AMD proximity network data

7.2 World trade data

The second data set that we consider here is that of a world trade network. We

let Aijt be 1 if country i exports to country j at time t. This data were collected from

the Correlates of War Project (Barbieri & Keshk, 2012; Barbieri et al., 2009). Along

with the export/import data, we used as covariates religious makeup of a country

(Maoz & Henderson, 2013), defense pacts, neutrality pacts, non-aggression pacts,

and ententes (Gibler, 2009). We analyze this data in two ways. First, we focus on

a larger number of countries that exist over recent years. We then look at a smaller

subset of countries that all exist over a longer period of time and look at how the

evidence for simultaneous dependence changes as the time intervals get coarser.
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7.2.1 179 nations from 1993 to 2009

We consider all countries that exist and are involved in trade on an annual basis over

the period from 1993 to 2009. For each of these countries we have the measurements of

the proportion of their population that belongs to each of the main world religions and

the sub-branches of these religions (a total of 30 categories). These measurements

only occur once every 5 years which we interpolated to construct annual religious

data. We then constructed the dyadic covariates by taking the Hellinger distance of

two multinomial distributions whose probability vectors equal those nations’ vector of

proportions of religious adherents. Letting pit be the 30× 1 vector of the ith nation’s

proportion of religious adherents, this is equivalent to setting the dyadic covariate

between i and j equal to
√

1−
∑30

r=1

√
pitrpjtr. The four types of pacts each were

simply binary variables indicating whether or not countries i and j were engaged in

such a pact during year t.

Figure 5a depicts the evidence of simultaneous dependence. From this we see

that we there is evidence of non-negligible simultaneous dependence, though much

less so than in the AMD network data. Figure 5b shows the posterior means for

the covariates and Figure 5c shows the same for the autoregressive terms, where

again dark gray indicates ignoring simultaneous dependence and light gray indicates

accounting for it in the model. As is consistent with the simulation results, when

there is weaker simultaneous dependence in the data, these estimates are more in

agreement. There are still some differences, mostly manifested in the attenuation of

the estimates as well as more dramatic differences in the triadic effects.

7.2.2 Evaluating the effect of the time interval on simultaneous depen-

dence

As we have just seen, even at annual increments we see the presence of simultaneous

dependence. We now show how this presence increases as the time intervals become
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(a) Plot of Pε,t vs. ε. Each curve
corresponds to the random effects from
a particular time point. The dot-
ted lines correspond to the compar-
ative random variable setting p =
0.05, 0.1, 0.15, 0.2, 0.25, 0.3. See Section 5
for details.

(b) Posterior means of the covariates (β).
Dark gray indicates ignoring simultane-
ous dependence, while light gray indi-
cates accounting for this dependence in
the model.

(c) Posterior means of the autoregressive
terms (θ). Dark gray indicates ignor-
ing simultaneous dependence, while light
gray indicates accounting for this depen-
dence in the model.

Figure 5: Results from the world trade network data
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coarser. We now consider the time interval from 1900 to 2000. This naturally di-

minishes the number of nations that exist during the entirety of the specified time

interval, and we are left with 28 nations. We apply our model to these 28 nations

looking at every year, every 5 years, every 10 years, every 20 years, and every 25

years. Intuition (as well as previous work by Lerner et al., 2013) tells us that the

simultaneous dependence should grow as the time interval becomes larger, and in fact

this is what we see.

Figure 6 gives the evidence of the simultaneous dependence for the five data sets.

We can see that simultaneous dependence increases with the coarseness of the time

interval, as shown by the increasing trend for the location of the thin shell of posterior

probability mass for the individual effects. To corroborate this, we also implemented

the TERGM model on the five different data sets (collected every 1, 5, 10, 20, and

25 years). To capture the simultaneous dependencies, we included as ERGM terms

the counts of reciprocated ties, transitive triangles, and 3-cycles. Figure 7 shows

the trends of these parameter estimates for the five data sets, where the values for

each parameter have been normalized by the corresponding parameter value from the

25 year interval data. We see that the strength of the effect sizes increase as the

time between observations increases (we actually show the negative of the 3-cycle

coefficients for visual clarity), thus corroborating our finding that the simultaneous

dependence does in fact increase.

8 Discussion

In this paper we have adapted the dynamic logistic network regression model of

Almquist & Butts (2013) by introducing a framework for capturing not only tem-

poral dependencies through an autoregressive mean structure but also simultaneous

dependence through an autoregressive covariance structure. We demonstrated that

ignoring simultaneous dependence leads to negative inferential consequences. The

methods outlined here account for both complex temporal and simultaneous depen-
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(a) Annual (b) Every 5 years (c) Every 10 years

(d) Every 20 years (e) Every 25 years

Figure 6: World trade data: Plots of Pε,t vs. ε. Each curve corresponds to the random
effects from a particular time point. The dotted lines in each figure correspond to the
comparative random variable setting p = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. See Section 5 for
details. Coarser time intervals lead to stronger evidence of simultaneous dependence.

dencies in a parsimonious way, while keeping within a familiar framework.

Like many other statistical models for network data, scalability is an issue for

all but very simple simultaneous dependence structures. While the VB estimation

method proposed for the STAR model is quick for small to medium data sets, the

requirement to invert large covariance matrices prohibits this methodology in its

current state from being scaled up to extremely large networks.

We have also described how our work may be placed within the familiar GLMM

framework. While it is beyond the scope of this paper to thoroughly discuss model

selection problems involving, e.g., covariance structures or link functions, it is the

author’s hope that previous and ongoing GLM and GLMM research (e.g., Chen &

Tsurumi, 2010) can be used to build upon the proposed work in this area. Further,
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Figure 7: TERGM coefficient estimates for reciprocity (solid), transitive triples (dot-
ted), and cyclic triples (dash-dot) (negative coefficients given for the cyclic triples).
Horizontal axis corresponds to the spacing of observations for the data set used. The
increasing trend in the strength of the effect sizes corroborates our finding of increas-
ing simultaneous dependence.

while we have shown practical operationalizations of the proposed method for binary

data in Section 2.6, we leave it for future work to describe the specifics of sophisticated

covariance structures (i.e., H·,t’s that are more complicated than In) for other data

types.

Other future work that would be valuable to the network analysis community

would be to provide a thorough comparison of the available methods for discrete

temporal network data, such as the proposed approach, TERGM (Hanneke et al.,

2010) and STERGM (Krivitsky & Handcock, 2014), latent space models for dynamic

networks (Durante & Dunson, 2014; Sewell & Chen, 2015), and dynamic stochastic

blockmodels (Xing et al., 2010). It would be important to know which method ought

to be used in various contexts, and under what circumstances the conclusions from

these models might differ.
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A Closed form updates for VB

Before giving the closed form of the q’s, let us first provide a little notation that

will be used. Let I− = Jn−In, i.e., the matrix of ones with zeros on the diagonal. Let

tr(A) be the trace of some square matrix A. For a matrix Σ, let Σ(i,j) denote the 2×2

submatrix obtained from the ith and jth rows and columns. Let A−t denote vec−(A∗t ).

Let trN(µ,Σ) be the truncated normal; we will not add any notation specifying the

varying domain as this should be obvious in our context from the data which A∗ijt are

restricted to the positive reals and which to the negative reals. Finally, let ~Xt denote

the n(n− 1)× (p1 + p2) matrix such that

~Xt = (vec−(X1t) , . . . , vec−(Xp1t) , vec−(G1t) , . . . , vec−(Gp2t)).

Result 1. q1(β,θ)
D
= N(µm,Σm), where

Σ−1
m = diag(1/σ2

β, . . . , 1/σ
2
β, 1/σ

2
θ , . . . , 1/σ

2
θ) +

T∑
t=1

~X ′t
~X,

µm = Σm

(
T∑
t=1

~X ′t(MAt − vec−
(
(µs1t + µs2t)1

′)− vec−
(
1(µr1t + µr2t)

′)− vec−(MRt))

)
.

Result 2. q2(τs2, τr2,Ω)
D
= IG(as, bs)IG(ar, br)IW (aΩ, BΩ) where

as = as0 + nT/2 bs = bs0 + 1
2

∑T
t=1

[
tr(Σ̃srt(s)H

−1
st ) + µ′s2tH

−1
st µs2t

]
ar = ar0 + nT/2 br = br0 + 1

2

∑T
t=1

[
tr(Σ̃srt(r)H

−1
rt ) + µ′r2tH

−1
rt µr2t

]
aΩ = aΩ0 + nT BΩ = BΩ0 +

∑
t=1

∑n
i=1

[
Σ̃srt(sr)(i,n+i) + (µs1ti,µr1ti)

′(µs1ti,µr1ti)
]
,

Σ̃srt(s) is the first n rows and first n columns of Σ̃srt, Σ̃srt(r) is the second n rows and

second n columns of Σ̃srt, and Σ̃srt(sr) is the last (2n) rows and (2n) columns of Σ̃srt.

Result 3. q3({A−t }Tt=1)
D
=
∏T

t=1 trN(MAt , I) where

MAt = ~Xtµm + vec−
(
(µs1t + µs2t)1

′)+ vec−
(
1(µr1t + µr2t)

′)+ vec−(MRt) .
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Result 4. q4({s1t, r1t, s2t, r2t}Tt=1)
D
=
∏T

t=1 N
(

(µ′s1t,µ
′
r1t
,µ′s2tµ

′
r2t

)′, Σ̃srt

)
, where

Σ̃−1
srt =



1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


⊗ (n− 1)In +



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


⊗ I−

+


aΩB

−1
Ω ⊗ In 0

0
as
bs
H−1
s1t 0

0 ar
br
H−1
r1t




µs1t

µr1t

µs2t

µr2t


= Σ̃srt



(
rev-vec−

(
MAt − ~Xtµm

)
−MRt

)
1(

rev-vec−
(
MAt − ~Xtµm

)′
−MRt

)
1(

rev-vec−
(
MAt − ~Xtµm

)
−MRt

)
1(

rev-vec−
(
MAt − ~Xtµm

)′
−MRt

)
1


and rev-vec−(·) is the matrix (with zero diagonal elements) constructed by reversing

the vec−(·) operator.

Derivation:

We first provide some preliminary results:

1. For some n × 1 vectors a1 and a2, tr(Da1I
−I−Da2) = (n − 1)a′1a2, where Da

denotes a diagonal matrix whose entries are a.

2. For some n× n matrix A, tr(I−Da(A ◦ I−)) = a′(A ◦ I−)1.

3. tr(I−Da1I
−Da2) = a′1I

−a2.

Also note that since vec−(A)′ vec−(A) = vec(A◦I−)′vec(A◦I−) = tr((A◦I−)′(A◦I−)),

we may consider the conditional probability of At|s1t, r1t, s2tr2t, · as proportional

(with respect to the sender and receiver effects) to the matrix normal distribution

kernel of A∗t ◦ I−.
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Letting Ãt = (A∗t − 〈β,Xt〉+ 〈θ,Gt〉) ◦ I−, we have, dropping the subscript t,

log(π(A∗|s1, r1, s2, r2, ·))

= const− 1

2
tr
[
(Ã−Ds1I

− −Ds2I
− − I−Dr1 − I−Dr2)′(Ã−Ds1I

− −Ds2I
− − I−Dr1 − I−Dr2)

]
= const− 1

2
tr
[
I−Ds1Ds1I

− − 2I−Ds1Ã+ 2I−Ds1Ds2I
− + 2I−Ds1I

−Dr1 + 2I−Ds1I
−Dr2

− 2I−Ds2Ã+ I−Ds2Ds2I
− + 2I−Ds2I

−Dr1 + 2I−Ds2I
−Dr2 +Dr1I

−I−Dr1 + 2Dr1I
−I−Dr2

+Dr2I
−I−Dr2 − 2Dr1I

−Ã− 2Dr2I
−Ã
]

= const− 1

2

[
(n− 1)s′1s1 − 2s1Ã1 + 2(n− 1)s′1s2 + 2s′1I

−r1 + 2s′1I
−r2 − 2s′2Ã1 + (n− 1)s′2s2

+2s′2I
−r1 + 2s′2I

−r2 + (n− 1)r′1r1 + 2(n− 1)r′1r2 + (n− 1)r′2r2 − 2r′1Ã
′
1− 2r′2Ã

′
1

]
.

Combining the expected value of this under q with Eq (log(π(s1t, r1t, s2t, r2t|τs2, τr2,Ω, At−1)))

yields Result 4. �

Result 5. q5({Rt}Tt=1)
D
=
∏

t

∏
i<j N(MRt [i, j], σ̃

2
R) where

MRt [i, j] = σ̃2
R(Ãijt + Ãjit),

σ̃2
R =

bR/aR
1 + 2bR/aR

,

Ãijt = rev-vec−
(
MAt − ~Xtµm

)
[i, j]− µs1t[i]− µs2t[i]− µr1t[j]− µr2t[j].

For the purposes of computing the parameters for the other q’s, assume for i < j that

MRt [j, i] = MRt [i, j].

Result 6. q6(σ2
R)
D
= IG (aR, bR) where

aR = aR0 +
Tn(n− 1)

4

bR = bR0 +
1

2

∑
t

∑
i<j

(
σ̃2
R +MRt [i, j]

2
)

Result 7. For the undirected case, q4({st}Tt=1) =
∏T

t=1N(µ′st, Σ̃st), where

µst = Σ̃stE(A∗t ◦ I−)1

Σ̃−1
st = (n− 1)In + I− +

as
bs
H−1
st
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Derivation: Define I4 as the square matrix with ones on the upper triangle and zero

everywhere else (the diagonal is also zero). As before, it is helpful to provide some

preliminary results:

1. For some n× 1 vector a, tr(Da(I4I4′ + I4′I4)a) = (n− 1)a′a.

2. For some n× n matrix A,

tr(Da(Ã′I4 + ÃI4′)) = tr(DaI
−A) = a′(A ◦ I−)1.

3. 2 · tr(DaI
4′DaI

4) = a′I−a.

To show this last, note that the ith diagonal of DaI
4′DaI

4 =
∑i−1

j=1 aiaj, and hence

the trace equals
∑n

i=1

∑i−1
j=1 aiaj = a′I4′a = a′I4a. This then implies that 2 ·

tr(DaI
4′DaI

4) = a′I4′a + a′I4a = a′I−a.

Let Ãt = (A∗t − 〈β,Xt〉+ 〈θ,Gt〉) ◦ I4. Then we have, dropping the subscript t,

log(π(A∗t |s))

= const− 1

2
tr
[
(Ã−DsI

4 − I4Ds)
′(Ã−DsI

4 − I4Ds)
]

= const− 1

2
tr
[
Ds(I

4I4′ + I4′I4)Ds + 2DsI
4′DsI

4 − 2Ds(Ã
′I4 + ÃI4′)

]
const− 1

2

[
s′
(

(n− 1)I + I− +
1

τs
H−1
s

)
s− 2s′(A∗ ◦ I−)1

]
.

Combining the expected value of this under q with Eq(log(π(st|τs, At−1))) yields Re-

sult 7. �
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B Proofs

B.1 Proposition of Section 2.3

Proof. Letting mijt = 〈β,Xt〉[i, j] + 〈θ,Gt〉[i, j] and V := V ar(sit + rjt), we have

P(Aijt = 1|β,θ) = E
(
E
(
Aijt

∣∣sit + rjt,β,θ
)∣∣β,θ)

= E

(
Φ

(
sit + rjt +mijt√

V ar(Eijt)

)∣∣∣β,θ)

=

∫ ∞
−∞

∫ sit+rjt+mijt√
V ar(Eijt)

−∞

1√
2π
e−

Z2

2
1√

2πV
e−

(sit+rjt)
2

2V dZd(sit + rjt)

= P(Z
√
V ar(Eijt)− (sit + rjt) < mijt).

Since Z
√
V ar(Eijt)− (sit + rjt) ∼ N(0, V ar(Eijt) + V ), our result holds.

B.2 Theorem of Section 2.4

Proof. It is obvious that the mean of each A∗ijt are equivalent for (I), (II), and (III),

and that the covariance between any A∗ijt and A∗k`t as given by (III) satisfies (4).

It is straightforward to check that σ2
RMR + (σ2

ε + σ2
R)In2 satisfies the final two

terms in (4), and that this is the covariance matrix of vec(Et). Note that for any two

n-dimensional vectors a and b, we have that

(i) vec(ab′) = b⊗ a,

(ii) Cov(1⊗ a) = Jn ⊗ Cov(a),

(iii) Cov(a⊗ 1) = Cov(a)⊗ Jn, and

(iv) Cov(1⊗ a,b⊗ 1) = 1⊗ Cov(a,b)⊗ 1
′,

where Jn is the n × n matrix of 1’s. We may then write the covariance of the A∗ijt’s

as given in (III) as

Cov(At) = Cov(vec(st1
′) + vec(1r′t) + vec(Et))

= Cov(1⊗ st + rt ⊗ 1 + vec(Et))

= Jn ⊗ Σst + Σrt ⊗ Jn + 1⊗ Σsrt ⊗ 1
′ + 1

′ ⊗ Σ′srt ⊗ 1 + σ2
RMR + (σ2

ε + σ2
R)In2 .
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Hence (I), (II), and (III) have the same covariance structure.

Finally, we have from (III)

At = vec(〈β,Xt〉+ 〈θ,Gt〉) + 1⊗ st + rt ⊗ 1 + vec(Et)

= vec(〈β,Xt〉+ 〈θ,Gt〉) +
(
1⊗ In

)
st +

(
In ⊗ 1

)
rt + vec(Et)

D
= vec(〈β,Xt〉+ 〈θ,Gt〉) +

((
1⊗ In, In ⊗ 1

)
Σ

1
2
t ,
(
σ2
RMR + (σ2

ε + σ2
R)In2

) 1
2

)
z

where z is a (2n+ n2)× 1 vector of independent standard normal random variables,

and

Σt :=

 Σst Σsrt

Σ′srt Σrt

 ,

Since vec(At) is an affine transformation of z, we have that the A∗ijt’s are jointly

normal, indicating that (I), (II), and (III) are equivalent.
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