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Abstract
This paper introduces a framework for understanding complex temporal interaction patterns in large-scale
scientific collaboration networks. In particular, we investigate how two key concepts in science studies,
scientific collaboration and scientific mobility, are related and possibly differ between fields. We do so by
analyzing multilayer temporal motifs: small recurring configurations of nodes and edges.
Driven by the problem that many papers share the same publication year, we first provide a methodolog-
ical contribution: an efficient counting algorithm for multilayer temporal motifs with concurrent edges.
Next, we introduce a systematic categorization of the multilayer temporal motifs, such that each cate-
gory reflects a pattern of behavior relevant to scientific collaboration and mobility. Here, a key question
concerns the causal direction: does mobility lead to collaboration or vice versa? Applying this framework
to scientific collaboration networks extracted from Web of Science (WoS) consisting of up to 7.7 million
nodes (authors) and 94million edges (collaborations), we find that international collaboration and interna-
tional mobility reciprocally influence one another. Additionally, we find that Social sciences & Humanities
(SSH) scholars co-author to a greater extent with authors at a distance, while Mathematics & Computer
science (M&C) scholars tend to continue to collaborate within the established knowledge network and
organization.

Keywords: co-authorship networks; scientific mobility; scientific collaboration; motif counting; multilayer temporal motifs;
network motifs; concurrent edges

1. Introduction
Through technological advances and increasing digital communication, the world is becoming
more and more connected. Small physical distances are no longer a necessity for interactions to
occur. By modeling interactions between entities in complex systems as networks, the field of net-
work science aims to understand these systems, their entities and interactions (Barabási, 2016).
Network science approaches have provided new insights into a wide variety of complex systems.
From social networks, identifying key persons within them (Das et al., 2018), to protein networks,
contributing to the understanding of protein structure, folding, stability, function, and dynam-
ics (Chakrabarty & Parekh, 2016), to corporate networks, studying corporate governance practices
through links of corporate ownership and shared directors (Takes et al., 2018), and many more.
In this paper, we focus on scientific collaboration networks, specifically co-authorship networks
which capture interactions between authors who collaborated on scientific papers.

The study of co-authorship networks, and the study of networks more generally, often focuses
on explaining macro-level properties of the network as a whole, using microlevel properties of
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Figure 1. Examplemotifs implyingmobility. Edge labels imply temporal order, and indicate
either O(rganizational), N(ational), or I(nternational) collaborations. Collaboration type
indicates the closest proximity between the known organizations of co-authors. For each
motif, mobility can be inferred from the change of collaboration type on the parallel edges.

the nodes, such as node degrees (Bordons et al., 2015; Molontay & Nagy, 2019). Some studies
identified noteworthy patterns at the meso-level of co-authorship networks (Krumov et al., 2011;
Choobdar et al., 2012), often conceptualized as so-called network motifs. Amotif is a configuration
of nodes and edges, usually only a few, that occurs at a high rate throughout the network (Milo
et al., 2002; Benson et al., 2016). These studies focused on static motifs only, i.e., motifs that consist
of edges on which no order is implied and which all model the same interaction type. However,
co-authorship networks are inherently dynamic (Mali et al., 2012), with new collaborations often
resulting from their existing knowledge network, i.e., their past collaborations, either directly or
indirectly. Our goal is to capture these dynamics with network motifs in an attempt to gain a
better understanding of scientific mobility: scholars moving between organizations, a frequently
studied concept in scientometrics (Mingers & Leydesdorff, 2015). Scientometrics, also known as
quantitative science studies, is the field concerned with the study of quantitative features and char-
acteristics of science and scientific research. We capture the dynamic evolution of collaborations
based on the associated papers’ publication years. Additionally, we represent physical distance
between co-authors by distinguishing between collaborations at the organizational, local, national,
and international level.

In recent years, methods have been proposed to deal with increasingly more complex motifs.
Some recently introduced methods incorporated the evolution of networks over time in temporal
motifs, to gain a greater understanding of the dynamic nature of temporal networks, also known
as dynamic networks (Paranjape et al., 2017; Holme & Saramäki, 2019). Other methods incor-
porated different types of interactions within motifs, i.e., multilayer motifs (Takes et al., 2018).
Recently, we proposed a method to efficiently countmultilayer temporal motifs in large-scale net-
works (Boekhout et al., 2019). Here, we build on that work and use multilayer temporal motifs to
study the direct and indirect formation of scientific collaborations based on past collaborations.
We believe this will contribute to a more fine-grained understanding of the evolution of such
collaborations.

By making a distinction into different network layers based on collaborations at the orga-
nizational, local, national, and international level, we can infer scientific mobility from the
configuration of some multilayer temporal motifs. For example, the motifs depicted in Figure 1
imply mobility events through a change in collaboration distance between two authors. In the
motif on the left, two authors (top left and bottom nodes) that first collaborated at an organiza-
tional level (O) later collaborated on a national level (N), implying the two are no longer at the
same organization. Similarly, in the the motif on the right, two authors that first collaborated at
an organizational level (O) later collaborated on an international level (I), implying at least one
of the two changed countries. This new perspective to study scientific mobility has several advan-
tages: the methodology scales to large networks, considers the temporal order of co-authorships
and directly places mobility events within the context of the relevant knowledge networks.

We extracted five large co-authorship networks, covering different fields. Each dataset con-
sists of between 4 and 94 million collaborations on papers published in the period 2007–2016.
Multilayer temporal networks are created by forming, for each pair of authors, one collaboration
edge per paper based on their closest affiliations (organizational, local, national, or international
layer), with the paper’s publication year serving as timestamp. Our goal is to use these timestamps
to impose a sequential order. However, using publication years as timestamps leads to many con-
current edges on which we do not want to infer an order. Existing algorithms (Boekhout et al.,
2019) cannot properly handle concurrent edges, which are prevalent in this dataset, as well as
many other real-world systems. Furthermore, we wish to avoid counting motifs that are mostly

https://doi.org/10.1017/nws.2021.12 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.12


356 H. D. Boekhout et al.

the result of a collaboration on a single paper. For example, if a paper involved three authors,
all three pairs of authors would be involved in a collaboration. Motifs that include multiple such
collaborations tell us nothing about the evolution of collaborations over time. Therefore, they are
uninteresting in the context of our study and we want to exclude them from the analysis. This too
is not possible with existing algorithms. To overcome these two shortcomings, we extend existing
motif counting algorithms to handle concurrent edges, i.e., allow for multiple edges to occur within
a motif with the same timestamp, and to enforce a type of edge attribute exclusivity, so that in each
counted motif every edge is formed from a different paper.

Existing multilayer temporal motif counting algorithms (Boekhout et al., 2019) have a time
complexity of O(mλ2), with λ the number of layers and m the number of edges. We show that
our extensions to handle concurrent edges and enforce edge attribute exclusivity can be accom-
plished through smart traversal of the edges, adding only a small constant factor to the complexity.
Furthermore, the attribute exclusivity is applicable not only to co-authorship networks, but to any
one-mode network projected from a two-mode network, where the one-mode edge attributes are
based on node attributes of the projected mode.

The interpretation of motifs depends on the real-world complex system modeled by the
network. Furthermore, the multitude of different multilayer temporal motifs, makes their inter-
pretation exceedingly difficult. Therefore, we systematically assign each motif to categories that
represent some real-world meaning that is relevant to the domain of scientific collaboration and
mobility. By studying the prominence of motif categories in certain fields and countries and study-
ing the interplay between the various categories, we are able to draw conclusions about typical
behavior with respect to scientific collaboration and mobility, globally, as well as per country (see
Supplementary Material B), for each scientific field.

One aspect of scientific mobility that we are especially interested in, is how collaborations
lead to scientific mobility, and how scientific mobility fosters collaboration. Studies investigat-
ing causes of international mobility (Guth & Gill, 2008; Baruffaldi & Landoni, 2010) found that
insertion in international knowledge networks play an important role in the motivations for inter-
national mobility. On the contrary, Kato & Ando (2017) concluded that the relationship between
international mobility and collaboration goes in one direction only: mobility resulting in collab-
oration. The authors state that networks created through international collaboration are not a
factor in international migration. Although we are not able to identify specific causes of individual
mobility events, the results from our analysis suggest that the relationship between international
mobility and collaboration exists in both directions.

To sum up, the contributions of this paper are as follows:

1. we extend existing motif counting algorithms to be able to handle concurrent edges;
2. we extend existing motif counting algorithms to enforce edge attribute exclusivity, such

that no two edges in a counted motif can have the same attribute value;
3. we introduce a systematic categorization of the meaning of multilayer temporal motifs in

the context of scientific collaboration and mobility;
4. we infer typical behavior with respect to scientific co-authorship and mobility in general

and for specific scientific fields (and countries); and
5. we show that the relationship between international mobility and collaboration exists in

both directions, shedding new light on the debate by Kato & Ando (2017).

The remainder of this paper is structured as follows. First, relevant related and previous work
is presented in Section 2. Then, necessary background and definitions for motif counting
are provided in Section 3. The motif counting algorithms from previous work and our new
methodological extensions are discussed in Section 4. Next, Section 5 describes the network
datasets and their extraction from Web of Science. Then in Section 6, we add meaning to each
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motif configuration through systematic categorization. Subsequently in Section 7, we perform
experiments and interpret results with the use of these categories. Finally, we summarize our
results and contributions and discuss future work in Section 8.

2. Related work
In this section we first discuss literature related to the motif counting problem, followed by litera-
ture investigating co-authorship networks and studies into scientific collaboration from a network
context. Finally, we consider literature on scientific mobility.

2.1 Motif counting
Recently a comprehensive survey on subgraph counting methods, i.e., motif counting, was
performed by Ribeiro et al. (2021). The authors provided a comprehensive review on exact,
approximate, and parallel methods. However, this work focussed only on methods for simple
static motifs and only briefly referenced methods for more complex motifs, such as motifs in
multilayer networks. A different survey by Jazayeri & Yang (2020) also looked at methods dealing
with temporal networks. One such method was introduced by Paranjape et al. (2017) to count a
set of temporal motifs. The authors proposed algorithms that were able to efficiently count these
motifs (in O(m) time, with m the number of edges). Boekhout et al. (2019) extended these algo-
rithms to count multilayer temporal motifs and handle partial timing. However, this methodology
still implied an order on the “untimed” edges based on their order in the dataset. Here, we expand
on this previous work by proposing a methodology that can adequately handle and efficiently
produce counts for all temporal motifs, including those with concurrent edges.

2.2 Co-authorship networks and collaboration
Kumar (2015) provides an extensive review of the literature, up to 2015, on co-authorship net-
works. Research into co-authorship networks mostly follows three themes. First, there are papers
that focus on specific fields or countries, which aim to understand them by using, for example,
centrality measures to find the most prolific or influential scholars (Molontay & Nagy, 2019).
These studies tend to analyze small static networks and focus on micro- and macro-level network
properties. Second, there are papers that try to link node-specific social network measures to aca-
demic performance (Bordons et al., 2015; Hu et al., 2019). Our research falls in the third research
theme, studies of collaboration itself, which we review in detail below.

As we study collaboration, we must realize that co-authorship and collaboration are not the
same thing. Melin & Persson (1996) discussed to what extent co-authorship data reflects actual
collaboration. The authors stated that there is hardly a tendency for collaboration to be under-
represented when studying co-authorships. However, we should acknowledge that this is field
dependent as, for example, in social sciences much collaboration is not expressed through co-
authorships, but through acknowledgements (Paul-Hus et al., 2017). When it comes to the overall
structure of collaboration networks, Barabási et al. (2002) found co-authorship networks to be
scale-free and their evolution to be governed by preferential attachment, i.e., new collabora-
tions were more likely to connect to scholars with a high degree of collaborations. Wagner
& Leydesdorff (2005) found that the growth of international co-authorships overall could be
attributed to preferential attachment (individual scientists collaborating in search of recognition
and reward). Glänzel & Schubert (2005) found that co-authorship domesticity, the likelihood of
collaborations to remain inside a country, was clearly influenced by country size and country
“remoteness” (geographically, linguistically, politically, etc.). These studies tend to view collab-
oration edges as independent, whereas we attempt to find (meaningful) collaboration patterns
through the analysis of motifs that incorporate more than one edge.
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In literature on co-authorship networks, the term “collaboration pattern” generally refers to a
set of node and path measures that are characteristic for collaboration (Newman, 2004). However,
we use it to refer to network patterns of collaboration edges in co-authorship networks, such as
motifs. Krumov et al. (2011) analyzed the correlation of a small set of single-layered static motifs
with citation frequencies. The authors showed that the impact of individual authors or publi-
cations depends unexpectedly strongly on the meso-level structure of co-authorship networks.
Choobdar et al. (2012) used motif fingerprints of a set of single-layered static motifs to assess sim-
ilarity across scientific fields. They found that some motifs were overrepresented in some fields,
identifying characteristic collaboration behavior. Our approach differs from the previous work
in this direction as follows: (1) we consider dynamic, not static, motifs; (2) we consider multiple
types of collaboration (organizational, local, national, and international), i.e., multilayered motifs;
and (3) we consider all motifs of a certain size, rather than a preselected set of motifs.

2.3 Scientific mobility
Early research into scientific mobility consisted of, often small-scale, qualitative research into
“Brain drain”, “Brain gain”, and “Brain circulation” (Gaillard & Gaillard, 1997; Stark et al., 1997).
Laudel (2003) was the first to propose the use of bibliometric methods to investigate mobility, i.e.,
using the address field of publications to identify mobility patterns. The advent of author disam-
biguation methods for large bibliometric databases such as Scopus and Web of Science (Caron
& van Eck, 2014), allowed researchers to track authors and their affiliations, as listed on their
published papers, over time.

Moed et al. (2013) concluded that a bibliometric study of scientific migration using Scopus
was feasible and provided significant outcomes. This sparked various lines of research. Appelt et
al. (2015) concluded that collaboration appeared to be a major factor associated with the mobility
of scientists. Their analysis showed that the mobility of scientists particularly relied on flows of
tertiary-level students in the opposite direction, from destination to origin country. Aman (2018)
explored the relation between CV data and Scopus data in regard to tracking international mobil-
ity of scientists. Aman concluded that Scopus bibliometric data are suitable to identify a scientist’s
international mobility. Czaika & Orazbayev (2018) provided an empirical assessment of global
scientific mobility over the past four decades. The authors found an increasing diversity of ori-
gin and destination countries, a shift of the center of gravity of scientific knowledge production
eastwards, an increase in average migration distances and found that visa restrictions form a
significant barrier to international mobility.

Similar as for Scopus, research using Web of Science was sparked. Notably, Chinchilla-
Rodríguez et al. (2017) compared the networks of international collaboration and mobility. The
authors showed that researchers collaborate internationally to a much higher degree than they
become internationally mobile. Chinchilla-Rodríguez et al. (2018) compared the flow of mobile
researchers and the number of publications in international collaboration. The authors found
that there was a significant relationship between the flow of mobile researchers and the capacity
for publishing with foreign partners in the more prolific countries, but found that mobility was
always lower than collaboration. Furthermore, they found that the more resources available in a
country (both scientific and economic) the greater the likelihood of attracting foreign partners
and mobilizing human capital.

Unlike these related works, we do not directly obtainmobility information from affiliation data,
but we use affiliation data to determine collaboration distances and imply mobility from chang-
ing collaboration distances over time. Every mobility event we capture is directly associated with
collaborations, which tells us more about the structure of the mobile author’s scientific knowledge
network.

Other relevant work, related to scientific mobility, focusses on the motivations for mobility.
Guth & Gill (2008) found that the actual moves themselves were often due to “chance” encounters
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or opportunities, but found contacts to also play an important role. Leyman (2009) demonstrated
that researchers that are encouraged by their supervisor to go abroad show more interest in inter-
national mobility. Notably, Baruffaldi & Landoni (2010) found that insertion in international
knowledge networks and the presence of links with the source country increased the probabil-
ity of future mobility. On the contrary, Kato & Ando (2017) found that networks created through
international collaboration are not a factor in international migration. The authors concluded
that the relationship between international mobility and collaboration goes in one direction: from
mobility to collaboration. Based on the collaboration motifs we find we try to shed new light on
this debate.

3. Background, notation, and definitions
In this section, we provide definitions and introduce notation used to describe the algorithms dis-
cussed in this paper. We follow the notation and definitions introduced in Paranjape et al. (2017)
and build upon the definitions in Boekhout et al. (2019).

3.1 Network notation and definitions
The two basic building blocks of any network are nodes and edges. An edge is a directed link
between an ordered pair of nodes (u, v), which denotes u as the source node and v as the target
node. Given a node set V of size n= |V|, a multilayer temporal graph H = (V , E) is defined by
a set E containing edges ei = (ui, vi, ti, li), for i= 1, 2, . . . ,m, with ui, vi ∈V , timestamp ti ∈R

+
and layer li ∈ {1, 2, . . . ,�}, with � the number of layers. If � > 1, this is a multilayer network, if
� = 1, this is a single-layer network.Concurrent edges, edges with the same timestamp, are allowed
and parallel edges with the same direction and layer are also possible. The underlying static graph
G of a multilayer temporal graph H is the graph formed by ignoring all timestamps and layers
and removing any resulting duplicate edges. Although co-authorship networks are undirected, we
assume edges to always be directed for the definitions and algorithms in this paper. This enables
us to design algorithms that handle both directed and undirected networks, since the counts for
undirected networks can be obtained through a simple post-processing step of the equivalent
directed network, which we describe in Section 6.1.

3.2 Multilayer temporal motifs
In our previous work (Boekhout et al., 2019), we gave the following definition for multilayer
temporal motifs.

Definition 1. A r-node, s-edge, δ-temporal, λ-layer motif is a sequence of s edges, M =
((u1, v1, t1, l1), (u2, v2, t2, l2), . . . , (us, vs, ts, ls)) that are time-ordered within a δ duration, i.e., t1 <

t2 < . . . < ts and ts − t1 ≤ δ, and range over at most λ different layers, such that the underlying static
graph, induced by M, is connected and has r nodes.

The definition requires all edges in a motif to occur within δ time. This requirement gives
us control over the period of time between interactions (edges) that we consider short enough
to imply a relation between the interactions. For example, in a co-authorship network, co-
authorships that are a year apart are very relevant to each other, while in a social network,
such as Twitter, the relation between interactions that are a year apart is likely less meaningful.
Furthermore, λ defines an upper limit on the number of layers involved. The definition allows for
λ different layers in a motif M, but also allows fewer layers. This means that, for example, every
3-node, 3-edge, δ-temporal, 2-layer motif is also a 3-node, 3-edge, δ-temporal, 3-layer motif.
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Definition 1 induces a strict total order on the edges based on the timestamps. Because this
ordering is strict, it does not allow for concurrent edges to occur within a motif. We redefine
multilayer temporal motifs below, such that it encapsulates concurrent edges.

3.2.1 Concurrent edges
To facilitate concurrent edges, we would only have to change the strict total order (<) to a total
order (≤) in Definition 1. However, this change would introduce ambiguity as different orderings
of concurrent edges could be considered different motifs. Instead, we first define a rank order as

Definition 2. The rank order of element xi in a set (x1, x2, ..., xm) is an integer oi ∈N
+ (so oi ≥ 1)

such that oi < oj if and only if xi < xj, oi = oj if and only if xi = xj andminj (oj)− oi = 1 for oi < oj,
withmini (oi)= 1.

Next we redefine a multilayer temporal motif allowing for concurrent edges as follows.

Definition 3. A r-node, s-edge, δ-temporal, λ-layer motif is a sequence of s edges,
M = ((u1, v1, t1, l1), (u2, v2, t2, l2), . . . , (us, vs, ts, ls)) with rank ordering o = (o1, o2, . . . , os), where
oi is the rank order of timestamp ti and o1 ≤ o2 ≤ . . . ≤ os, such that ts − t1 ≤ δ, (l1, l2, . . . , ls) range
over at most λ different layers, and the underlying static graph, induced by M, is connected and has
r nodes.

This definition covers the full set of multilayer temporal motifs given some values for r, s
and λ. To be able to count these motifs, we must distinguish between different configurations
of the edges, their direction, temporal order, and layers. We define a multilayer temporal motif
configuration as follows.

Definition 4. Amultilayer temporal motif configuration, Ma,b,c,d, of a r-node, s-edge, δ-temporal,
λ-layer motif, is a combination of:

a. a structural configuration, i.e., an assignment of the s edges over the r nodes forming, for
example, an (e) edge motif, (s) star motif, or (t) triangle motif;

b. a temporal configuration, i.e., an assignment of a rank order to each of the s edges defining a
rank ordering o = (o1, o2, . . . , os);

c. a directional configuration, i.e., an assignment of a direction to each of the s edges, with 2s
possible configurations; and

d. a layer configuration, i.e., an assignment of a layer, from {1, . . . , λ}, to each of the s edges, with
λs possible layer configurations.

The static motif configuration of a multilayer temporal motif configuration Ma,b,c,d is given
by Ma,c, i.e., the structural and directional configurations. The full set of 2-node and 3-node,
3-edge, δ-temporal motif configurations is depicted in Figure 2. Here, we only show single-
layer motifs, because every δ-temporal λ-layer motif can be associated with a single δ-temporal
motif (Boekhout et al., 2019). For each of the 88 configurations shown in Figure 2, there exist
λs layer configurations. Note that, for some motif configurations Ma,b,c, such as Me,2,1, not every
layer configuration is unique. After all, interchanging the layers of the concurrent edges ofMe,2,1
results in an identical motif. Furthermore, note that the same rank ordering with the rank orders
assigned to different edges in the same static motif configuration can constitute different temporal
configurations, for example,Me,2,2 andMe,5,2.

Each occurrence of a motif configuration in a multilayer temporal graphH is called an instance
and is defined as follows.
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(a) (b)

(c)

Figure 2. All 2-node and 3-node, 3-edge δ-temporal single-layer motif configurations allowing for concurrent edges. Edge
numbers indicate their rank order. Rows have consistent temporal configurations and columns have consistent directional
configurations.

Definition 5. An instance of a multilayer temporal motif configuration Ma,b,c,d in a multilayer
temporal graph H, is a sequence S= ((w1, x1, t′1, l′1), . . . , (ws, xs, t′s, l′s)) of s unique edges in H with
rank ordering o′ = (o′

1, o
′
2, . . . , o′

s), where o′
i is the rank order of timestamp t′i and o′

1 ≤ o′
2 ≤ . . . ≤ o′

s,
such that

1. there exists a bijection f such that f (wj)= ui, f (xj)= vi, li = l′j and oi = o′
j; and

2. the edges all occur within δ time, i.e., t′s − t′1 ≤ δ.

Note that this definition requires the sequence S to have the same rank ordering as the motif
configuration, but not the exact same edge ordering for concurrent edges. Therefore, we must be
vigilant of equivalent concurrent edge orderings in our counting algorithms.

Because Paranjape et al. (2017) showed that a general algorithm quickly becomes inefficient as
the motif size (r and s) increases, we focus on specific size (2-node and 3-node, 3-edge) motifs
and define a separate algorithm for each structural configuration. The main problem, for which
algorithms are proposed in Section 4, is as follows:
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Problem statement. Given values for δ and λ and a multilayer temporal graph H, compute the
number of instances of every 2-node and 3-node, 3-edge, δ-temporal, λ-layer motif.

3.2.2 Edge attribute exclusivity
In addition to allowing concurrent edges, the secondmethodological contribution wemake is edge
attribute exclusivity within motifs. That is, we only count motifs that have no common attribute
values on their edges. We define an additional edge attribute pi for each edge (i= 1, 2, . . . ,m).
Enforcing edge attribute exclusivity yields the following definition of a multilayer temporal edge-
attribute-exclusive motif.

Definition 6. A r-node, s-edge, δ-temporal, λ-layer edge-attribute-exclusive motif is a sequence
of s edges, M = ((u1, v1, t1, l1, p1), (u2, v2, t2, l2, p2), . . . , (us, vs, ts, ls, ps)) with rank ordering o =
(o1, o2, . . . , os), where oi is the rank order of timestamp ti, such that ts − t1 ≤ δ, (l1, l2, . . . , ls) range
over at most λ different layers, the underlying static graph, induced by M, is connected and has r
nodes and such that for all i �= j with 1≤ i, j≤ s we have pi �= pj.

Our definition of a motif configuration remains unchanged for edge attribute exclusivity, but
we do require a motif instance to adhere to the additional requirement that no two edges in the
sequence Smay have the same edge attribute value.

The algorithms we provide in Section 4 are able to enforce edge attribute exclusivity for a par-
ticular type of edge attributes. These attributes must be directly linked to the edge timestamp, i.e.,
if the attribute values are equal then the timestamps must be equal as well, but equal timestamps
do not need to imply equal attribute values. This will always hold for one-mode networks that are
projected from a two-mode network when the one-mode edge attribute uniquely identifies a node
in the two-mode network. After all, the timestamp, and all other edge attributes, in the one-mode
network originate from the same node in the two-mode network.

4. Motif counting algorithms
In this section, we present methodological extensions to existing motif counting algo-
rithms (Paranjape et al., 2017; Boekhout et al., 2019) that allow for concurrent edges and enforce
edge attribute exclusivity, the two requirements for successfully applying motif counting to evolv-
ing scientific collaboration networks. We discuss the basic concepts and functionality of the
existing algorithms, which we consider vital knowledge for understanding our extensions, their
efficiency, and correctness, in Section 4.1. In Section 4.2, 4.3 and 4.4, we describe our reformula-
tion and extensions of the existing algorithms for counting, respectively, edge, star, and triangle
motifs (see Figure 2). A detailed discussion is provided for all nontrivial changes required to
achieve the extensions, and for why these changes add only small constant factors to the time
complexities of the algorithms. Algorithmic details, such as counter definitions and pseudocode,
are available in Supplementary Material A.

4.1 Existing algorithms
Paranjape et al. (2017) introduced three algorithms to count temporal motifs with a strict tem-
poral order, a general algorithm and two specialized algorithms for two specific 3-node, 3-edge
structural configurations. These algorithms were extended to count multilayer temporal motifs by
Boekhout et al. (2019). The approach for each of the algorithms is to count all motif instances in an
input sequence (S) in a single pass, thereby achieving a minimal number of considerations of each
edge. The formation of the input sequences and functionality of the counting algorithm differs
between the three algorithms. Below, we first concisely compare the format of the input sequences
for the three algorithms in Section 4.1.1 and then focus on their functionality in Section 4.1.2.
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Figure 3. δ-timeframe

4.1.1 Input sequences
The general algorithm, which focuses on a single undirected static motif configuration, i.e., struc-
tural configuration (Ma), at a time, determines a separate input sequence for every instance of
Ma. This is efficient for edge motifs, motifs that consist only of edges between two nodes, because
each edge will only belong to one instance of Ma and will therefore be added to only one input
sequence. On the contrary, Paranjape et al. (2017) showed that an edge may appear in a great
number of instances of Ma for motifs that cover more than two nodes (r > 2). The authors con-
cluded that their general algorithm is only efficient (O(m) time) for edge motifs. The extension of
the general algorithm to multilayer temporal motifs by Boekhout et al. (2019), increased the time
complexity to O(mλ2). However, for a small number of layers, λ2 is negligible with respect to the
time complexity.

The two specialized algorithms reduce the number of input sequences an edge can appear in.
For star motifs, motifs that consist of a center node u and edges to r − 1 neighbors, this is achieved
by grouping together all star motifs with the same center node. Only one input sequence is gath-
ered for each center node u ∈V by gathering all edges connected to u. Thus, every edge (u, v)
is only added to the two input sequences with, respectively, u and v as center nodes and a time
complexity of O(mλ2) is achieved.

For triangle motifs, motifs whose edges form a triangle, the number of input sequences an
edge appears in is reduced by assigning each static triangle to a pair of its nodes, i.e., one of its
edges. Specifically, each static triangle is assigned to the node pair u, v that is connected by the
greatest number of multilayer temporal edges. An input sequence is gathered for each node pair
u, v ∈V , to which at least one static triangle is assigned, by collecting the edges connecting u and
v and the edges connecting them to their common neighbors as determined by the assigned static
triangles. Paranjape et al. (2017) proved that this reduces the time complexity of counting triangle
motifs from O(mτ ) for the general algorithm to O(m

√
τ ), with τ the number of static triangles.

Therefore, the extended algorithm to multilayer temporal motifs in Boekhout et al. (2019) has a
time complexity of O(m

√
τλ2).

4.1.2 The delta-timeframe
As mentioned above, all three algorithms count motif instances in a single pass over the input
sequence S. To accomplish this, the sequence is first preprocessed to produce sequence S′ such
that S′ is time-ordered and all layers that are not of interest to a specific study are filtered out. For
now, the sequence S′ can still be considered strictly time-ordered because the existing algorithms
do not yet consider concurrent edges. As such, when we iterate over the edges in S′, we also move
sequentially through time. As we iterate over the edges in the sequence S′, at time tj we consider
ej the current edge and we know that all motifs that include ej consist of edges in the time window
[tj − δ, tj + δ], which we call the δ-timeframe, depicted in Figure 3. Because all motif instances that
include ej occur in its δ-timeframe, each edge in the sequence S′ has to be processed at most three
times: (1) when it enters the δ-timeframe; (2) when the edge is the current edge; and (3) when it
leaves the δ-timeframe.

The general algorithm only uses the “pre” segment of the δ-timeframe. Because the algo-
rithm considers a single instance of a structural configuration (Ma) at a time, we have knowl-
edge of all nodes in the input sequence and we can generate all possible combinations of
edges up to length s, the number of edges in the target motifs. The algorithm maintains a
counter for all such combinations that form subsequences of motif configurations (Ma,b,c,d)
under investigation. For example, given motif configuration Ms,4,2 on nodes a, b and c, as
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Figure 4. Example configuration instance

pre mid post

1,2 3 1,3 2 2,3 1Figure 5. All temporal configurations of starmotifs provided no concurrent
edges

depicted in Figure 4, the set of edge combinations for which a counter is maintained is
{((a, b)), ((a, c)), ((c, a)), ((a, b), (a, c)), ((c, a), (a, c)), ((a, b), (a, c), (c, a))}. The counters are main-
tained such that at time tj they indicate how often each of the edge combinations occur within
time window [tj − δ, tj], i.e., how often they occur in the “pre” segment. Thus, an edge ex is con-
sidered the last edge in the temporal configuration at time tx = tj, after which it fulfills the role of
earlier edges until tx < tj − δ and it is removed from the counters. So, the general algorithm has to
consider each edge in the input sequence S′ only twice.

Because the number of edge combinations, and thus the number of counters, explodes as the
number of nodes under consideration increases, the specialized 3-node, 3-edge star, and triangle
algorithms are not able to use this same counting method. Instead they use the full δ-timeframe
and consider not the last edge in the temporal configuration at time tj, but consider a specific,
strategically chosen, edge in the structural configuration as the pivotal edge. Counters are then
maintained for all edge combinations of the remaining two edges in the configuration within the
full δ-timeframe, such that at time tj all motif instances with the current edge ej as the pivotal
edge in the configuration can be counted. However, unlike the general algorithm, which defines
a counter for every specific edge combination, knowledge of the exact edges is discarded for
the two edge combinations. The counters simply specify specific temporal, directional and layer
configurations of the edges. We discuss why this is possible below.

For star motifs, the single edge, e.g., edge (a, b) in Figure 4, is chosen as the pivotal edge.
Assuming a strict temporal order, Figure 5 shows the various temporal configurations. Excluding
the pivotal edge, the remainder of the structural configuration consists of two parallel edges con-
necting the center node to the same neighbor. Now, if we discard knowledge of the neighbor to
which the parallel edges connect, every combination of the parallel edges with a third edge from
the center node forms either an edge motif or a star motif. Because we can count edge motifs
in O(mλ2) time using the general algorithm, we can compensate for the edge motifs that we
incorrectly counted as star motif by deducting the edge motif counts for center node u to all
its neighbors. This is preferable as it reduces the number of counters required, as well as the time
complexity, by a factor n.

For triangle motifs, where the input sequence is based on a node pair, the edge connecting this
node pair is chosen as the pivotal edge. Now, the two remaining edges connect the node pair to a
common neighbor and the pivotal edge connecting the node pair requires no knowledge of this
neighbor at all. Thus, knowledge of the exact common neighbor can be discarded without issue
for counters representing two edge combinations.

4.2 Edgemotifs
The general algorithm introduced by Paranjape et al. (2017) was shown to be efficient only for edge
motifs. Recall that edge motifs are motifs that consist of edges connecting only two nodes. Here,
we reformulate the general algorithm to focus on counting edgemotifs specifically and extend it to
handle concurrent edges and enforce edge attribute exclusivity. With three (concurrent) edges we
get four temporal configurations, which we label as shown in Figure 6. Adding edge directionality
leads to the set depicted in Figure 2a.
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Figure 6. Edge motif temporal configurations

As discussed in Section 4.1.1 an input sequence (S) is gathered for every instance of a static
edge, i.e., an input sequence is gathered for every connected node pair u, v ∈V . Where exist-
ing algorithms only time-ordered the input sequence, we now preprocess it into a time-ordered
sequence of sets of concurrent edges S′, such that the rank order of every edge in a concurrent set
of edges is equal. The sequence is further preprocessed to account for edge attribute exclusivity.
Note that, for our purposes in this paper, these attributes are directly linked to the paper from
which a co-authorship edge originates. This means that every edge that has the same attribute
value (in our case, shares the same origin paper) also shares the same timestamp. It is exactly this
observation that allows us to achieve edge attribute exclusivity within the current approach by
grouping the edges with the same attribute value, within the sets of concurrent edges, together.
This results in a sequence S′′ of sets of sets of concurrent equal attribute value edges.

Like the general algorithm, only the “pre” segment of the δ-timeframe is used by our reformu-
lation of the algorithm. However, we shift from counters for exact edge combinations to counters
capturing the various temporal, directional and layer configurations, as used by the specialized
algorithms. The definitions of these counters and the reformulated and extended edge motif
counting algorithm pseudocode are provided in Supplementary Material A.1.

The approach of the extended algorithm remains unchanged from that described in
Section 4.1.2. Where the existing general algorithm iterates over the input sequence one edge at a
time, we now iterate over one set of concurrent edges, in input sequence S′′, at a time. In fact, this
is exactly the same behavior except that now more than one edge can share the same timestamp.
Furthermore, as we iterate over the input sequence the counters are updated at the same points
in time as well. The counters are updated when a concurrent set of edges becomes the current set
(collj) and when a concurrent set of edges leaves the δ-timeframe. Thus, the main change to the
algorithm comes from how and which counters are updated at those times.

Because every counter represents a specific combination of a structural and temporal configu-
ration and because no two separate concurrent sets can have edges between them with the same
edge attribute value, the extensions to accommodate concurrent edges and enforce edge attribute
exclusivity are achieved through the simple addition of the appropriate counters and their update
logic. As such, the counters and update logic used for the temporal configuration with no concur-
rent edges (“serial”) remains unchanged from existing algorithms other than requiring to iterate
over the edges in the concurrent set. We discuss how the extended algorithm handles concurrent
edges in Section 4.2.1 and how edge attribute exclusivity is enforced in Section 4.2.2.

4.2.1 Concurrent edges
Because concurrent edges occur at the same time, we process all edges in a concurrent set at
the same time. We use a single forward pass through the set of concurrent edges to form each
combination of concurrent edges exactly once. By constructing all combinations of concurrent
edges in a single forward pass, we prevent counting the same edge as two concurrent edges.

Because we use a single forward pass, the ordering of the edges within a concurrent set
now determines the ordering of the directional and layer configurations counted. However, the
ordering of the directional and layer configurations among concurrent edges has no meaning
for edge motifs. After all, all concurrent edges connect the same two nodes and therefore
their ordering is interchangeable, i.e., concurrent edge combinations ((u, v,A), (v, u, B)) and
((v, u, B), (u, v,A)), with layers A and B, are no different. Note that we are talking about changing
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Figure 7. Star motif temporal configurations

the order of both the direction and layer at the same time. Because the ordering of the directional
and layer configurations is interchangeable, we would want to count an occurrence of either as
an occurrence of both. This is achieved in a post-processing step by adding the counted total of
all equivalent directional and layer configuration permutations together and giving their sum as
the result for each of them.

Note that for concurrent edges in an undirected network, the equivalence of layer con-
figurations is no longer dependent on the directionality. For example, ((u, v,A), (v, u, B)) and
((u, v, B), (v, u,A)) are not equivalent in a directed network, but are equivalent in an undirected
network. The resolution of these equivalences as an additional post-processing step, allow us to
go from directed to undirected motif count results.

4.2.2 Edge attribute exclusivity
Earlier we stated that to realize edge attribute exclusivity with co-authorship networks, where the
attribute uniquely identifies the source paper, we only need consider equal edge attribute edges
when dealing with concurrent edges. We achieve this with the addition of various temporary
counters. We update the temporary counters during passes over equal attribute value edge sets
as stand-ins for the real counters and subsequently use them to update the real counters at the
end of such a pass, thereby updating these counters for the entire set of equal attribute value edges
at a time. As a result, larger combinations of concurrent edges formed using these real counters,
never include two edges from the same set of equal attribute value edges, i.e., we never count
combinations of concurrent edges with the same edge attribute value.

Thus, we are able to enforce edge attribute exclusivity without having to store information
regarding the attribute as part of any counter nor the input sequence.We only require the addition
of a small set of temporary counters and a minimal set of operations.

In short, we are able to deal with concurrent edges and realize edge attribute exclusivity through
the simple addition of a few counters and a more systematic loop over the edges in the input
sequence S′′. Thus adding only a small constant number of operations per edge, based on the
number of additional counters, and maintaining time complexity O(mλ2).

4.3 Star motifs
Star motifs are motifs that consist of a center node u and edges to r − 1 neighbors (Paranjape
et al., 2017; Boekhout et al., 2019). Given three nodes and three edges and allowing for concurrent
edges, there are eight temporal configurations, which we label as shown in Figure 7. The full set of
directed star motif configurations is depicted in Figure 2b.

As discussed in Section 4.1.1 an input sequence (S) is gathered for every (center) node u ∈V .
These input sequences are preprocessed into sequences S′′ consisting of sets of sets of concurrent
equal attribute value edges, in the same manner as for edge motifs. As discussed in Section 4.1.2
the single, nonparallel, edge in the star motif configuration is chosen as the pivotal edge and
counters are formed for all edge combinations for the remaining two parallel edges over the full
δ-timeframe. The definitions of these counters and the extended star motif counting algorithm
pseudocode are provided in Supplementary Material A.3.
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The approach of the extended algorithm remains unchanged from that described in
Section 4.1.2. We process sets of concurrent edges when they enter the δ-timeframe, when they
become the current set and when they leave the δ-timeframe. Similar to the edge motif algorithm,
we simply move from processing one edge to processing a set of concurrent edges at a time.

Again, the extensions to accommodate concurrent edges and enforce edge attribute exclusivity
are achieved through the addition of the appropriate counters and their update logic. Note that
edge attribute exclusivity is achieved in exactly the same way as was the case for the edge motifs,
through the addition of temporary counters. Therefore, we will not discuss this further for star
motifs (see Supplementary Material A.3 for the exact counter definitions and update logic). We
explore new complications that arise for concurrent edges in starmotifs and explain the extensions
made to solve these below.

4.3.1 Concurrent edges
For edge motifs we had the convenience that every edge in the motif connected the same
pair of nodes. This meant that a pair of concurrent edges and its reverse order, for exam-
ple ((u, v,A), (v, u, B)) and ((v, u, B), (u, v,A)), could be counted using the same counters and
update logic. Therefore, all possible orderings of concurrent edges could be counted in a sin-
gle forward pass and their true total counts could be obtained by resolving for equivalences in
post-processing.

Unfortunately, three of the temporal configurations of star motifs (“conc”, “post_partial”, and
“pre_partial”) have concurrent edges connecting the center node (u) to different neighbors (v,w),
where we consider the parallel edges to connect to neighbor v. To be able to count these temporal
configurations in a single forward pass, we cannot assign a specific edge in the configuration as
the pivotal edge, as we have done for star motifs up to this point, because this might not be the last
edge considered in a traversal of a set of concurrent edges. For example, the concurrent edge com-
bination ((u, v,A), (u,w, B)) remains equivalent to its reverse order ((u,w, B), (u, v,A)). However,
counting star motifs given the latter order in a single forward pass, means that edge (u,w, B) must
be processed before the parallel edge (u, v,A). This requires us to consider one of the parallel edges
to v as the pivotal edge instead of the single edge tow. This presents a significant algorithmic prob-
lem. After all, if one of the parallel edges (u, v) is the pivotal edge, then we require a counter that
represents a combination of the two remaining edges in the configuration, which connect to v and
w, respectively, i.e., a counter that represents a connection of two edges to two different neighbors.
As we previously discussed in Boekhout et al. (2019), this would inevitably lead to neighbor loops,
which would, with a worst case of n− 1 neighbors, increase both the time (and space) complexity
by a factor n. Therefore, the simpler and more efficient solution is to traverse each set of concur-
rent edges both forward and backward, such that each of the loops covers one of the two possible
orders of two concurrent edges. This is far more efficient, because the backward loop adds just a
small number of additional operations per edge and requires no additional counters. As such, it
only adds a small constant factor to the time complexity, instead of factor n, in worst case.

After introducing the backward loop, there remains one problematic case involving the “conc”
configuration. This temporal configuration consists of three concurrent edges. If a set of concur-
rent edges is ordered such that we have ((u, v), (u,w), (u, v)), neither the forward nor the backward
loop on its own can prevent one of the parallel edges from being considered the pivotal edge. To
allow the middle edge of three concurrent edges to be considered the pivotal edge, we approach
the problem in a similar way as the existing algorithms did for the “mid” configuration. First, dur-
ing the forward loop, we count all one edge directional and layer configurations and store this in
a new counter “conc_pre_nodes”. During the following backwards loop, this counter keeps track
of the number of one edge directional and layer configurations that may be considered the last
edge in the order ((u, v), (u,w), (u, v)). A second additional counter called “conc_mid_sum” is
added, which keeps track of the number of pairs of parallel edges ((u, v), (u, v)) of which one edge
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Figure 8. Triangle motif temporal configurations

occurs before and the other after the current edge under consideration in the backward traversal.
As we traverse the edges in the backward loop, for each set of equal attribute edges we perform
the following three actions:

1. as the edges in this set become the current edges, they can no longer be considered possible
last edges in the order ((u, v), (u,w), (u, v)) and we reduce counters “conc_pre_nodes” and
“conc_mid_sum” accordingly;

2. we consider the edges in this set the current edges, i.e., pivotal edges, and update the
counter for the “conc” configuration accordingly; and

3. as the edges have been fully processed as current edges, they now become preceding
edges, i.e., the first edges in the order ((u, v), (u,w), (u, v)), and we update the counter
“conc_mid_sum” accordingly.

Like for edgemotifs, counting star motifs also requires a post-processing step to account for equiv-
alent directional and layer configurations. Because we directly count every possible ordering of
concurrent edges that connect to different neighbors, these equivalences only occur for the three
temporal configuration that have concurrent parallel edges (“conc”, ‘post_conc”, and “pre_conc”).

Similar to the existing star motif counting algorithms (Paranjape et al., 2017; Boekhout et al.,
2019), we drastically reduce the number of counters by discarding the knowledge of the neighbor
to which the two parallel edges are connected for counters that represent two edge combinations.
As such the algorithm cannot ensure, for the pivotal edge, that neighbor v �=w. The number of
additional star motifs counted when v=w are exactly the sum of the number of 3-edge edge
motifs for u and each of its neighbors. Therefore, as a second post-processing step, we subtract the
matching edge motif counts, based on matching temporal, directional and layer configurations,
for every neighbor of u from the star motif counts. Note that all directional and layer configura-
tion equivalences should be resolved for both the edge and star motifs before the subtraction is
performed.

Although the extensions to accommodate concurrent edges and enforce edge attribute exclu-
sivity have made the star motif counting algorithm more complex compared to existing algo-
rithms, its time and space complexity have remained virtually unchanged. Both complexities
increase by only a small constant factor and thus the time complexity remains O(mλ2).

4.4 Triangle motifs
The last structural configuration for which we extend the motif counting algorithm is that of
triangle motifs. Triangle motifs are motifs whose edges form a triangle (Paranjape et al., 2017;
Boekhout et al., 2019). Given three nodes and three edges and allowing for concurrent edges,
there are four temporal configurations, which we label as shown in Figure 8. The full set of directed
triangle motif configurations is depicted in Figure 2c.

As discussed in Section 4.1.1 an input sequence (S) is gathered for every node pair u, v ∈V to
which a static triangle has been assigned. These input sequences are preprocessed into sequences
S′′ consisting of sets of sets of concurrent equal attribute value edges, in the same manner as
for edge and star motifs. As discussed in Section 4.1.2 the edge connecting node pair u, v in the
triangle motif configuration is chosen as the pivotal edge and counters are formed for all edge
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combinations for the remaining two edges connecting to the common neighbor over the full δ-
timeframe. The definitions of the counters and the extended triangle motif counting algorithm
pseudocode are provided in Supplementary Material A.4.

Similar extensions were made to the triangle motif counting algorithm as discussed for
edge and star motifs, including directional and layer configuration equivalence post-processing.
Note that in Figure 2c only motif configuration Mt,1,2, a concurrent circle, lends itself to layer
configuration equivalence within the same directional configuration.

As the same extensions are made to the triangle motif counting algorithm as was done for the
star motif counting algorithm, here too we have only a small constant increase of our time and
space complexity. Thus, the time complexity remains O(m

√
τλ2).

5. Data
In this section we discuss the co-authorship datasets used in this work. We discuss how the
datasets were obtained fromWeb of Science (WoS) and define the various network layers.

We extracted our five global datasets from the in-house version of WoS at the Centre for
Science and Technology Studies (CWTS). The CWTS version of WoS has been enriched with
in-house author identifiers based on an improved author disambiguation algorithm (Caron &
van Eck, 2014). We use these in-house author identifiers to associate authors to their respective
oeuvres. Furthermore, this version has enriched organization information and more consistent
and accurate assignment of papers to universities and organizations (Waltman et al., 2012). Each
extracted co-authorship network covers one main field and includes papers published in the
period 2007–2016. A 10-year period was chosen so that there is an increased likelihood of mobil-
ity events to have occurred for each active author. Papers, and by extension co-authorships, are
assigned to the fields on the journal level and can be associated with multiple fields. Papers with
more than 25 authors are excluded to prevent papers with large author lists from skewing our
results. For example, in the field of High Energy Physics publications with hundreds or thou-
sands of authors are not uncommon. Given a mostly similar group of authors, just three such
publications would generate such a large number of motifs that the balance of motifs found in
the overarching field would be skewed toward motifs representing co-authorship in High Energy
Physics. Additionally, for such publications the meaning of authorship with respect to individual
contributions and collaboration is different compared to other fields (Birnholtz, 2006).

Co-authorship links are formed for every pair of authors on a paper, provided organization
affiliation information for that paper was present in WoS for both authors. For each scientific
field under study between 15% and 26% of organization affiliations is missing (see Table 1).
Organization affiliations can be missing when, for (some) authors, it is not properly indicated
on the published paper which authors were affiliated with which of the listed organizations. Each
co-authorship link is assigned to a specific layer based on the proximity of the organizations to
which the respective authors were affiliated. We define the following layers.

O. Organizational co-authorship, both authors were associated with the same organization.
L. Local co-authorship, the authors were associated with organizations based in the same city.
N. National co-authorship, the authors were associated with organizations based in the same

country.
I. International co-authorship, the authors were associated with organizations based in

different countries.

Because authors can be affiliated with multiple organizations at a time, multiple co-authorship
links in different layers between two authors for the same paper are possible. When this occurs,
only the link with the closest proximity (O< L<N < I) is included.
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Table 1. Descriptive global network dataset statistics

Field SSH B&H P&E L&E M&C

Nodes (in millions) 1.0 7.7 4.6 3.1 1.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Edges (in millions) 4.6 94.0 35.2 22.6 4.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Static edges (in millions) 3.2 53.4 21.4 15.3 3.2

O(rganizational) edges (%) 55.8 67.6 65.6 61.8 63.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L(ocal) edges (%) 3.3 3.8 2.6 2.8 2.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N(ational) edges (%) 23.9 15.9 13.3 16.8 13.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I(nternational) edges (%) 17.0 12.7 18.5 18.6 20.1

Papers (in thousands) 826 5,612 3,412 2,092 950
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interdisciplinary papers (%) 33.4 16.1 19.2 36.1 34.8

Missing org-affiliation information (%) 22.2 26.0 15.5 20.2 17.3

The publication year of a paper is used as the timestamp of co-authorship links associated with
that paper. We use the publication year because the listed publication months in WoS are not
always accurate, possibly leading to inaccurate timing of co-authorship links.

The five extracted global datasets cover, respectively: Social sciences & Humanities (SSH);
Biomedical & Health sciences (B&H); Physical sciences & Engineering (P&E); Life & Earth sci-
ences (L&E); and Mathematics & Computer science (M&C). Descriptive statistics are provided
in Table 1, listing the number of nodes and edges, the number of static edges in the underlying
static network, the percentage of edges in each of the layers, the number of papers from which
the co-authorship edges are formed, the percentage of those papers that are interdisciplinary, i.e.,
that are associated with at least one other field as well, and the percentage of missing organization
affiliations.

From the global datasets, country-specific datasets can be extracted and analyzed as well. This
process is documented in Supplementary Material B.1.

6. Systematic interpretation of motifs in co-authorship networks
Although we have now defined our approach (Section 4) and datasets (Section 5), there is one
final step to take: systematically assigningmeaning to the variousmotif configurations bymapping
them to categories relevant to the domain of co-authorship and scientificmobility. First we discuss
how we retrieve undirected motif counts from directed results in Section 6.1. Then, we introduce
three relevant categorization schemes:

• collaboration categories that capture the structural configuration (Section 6.2);
• international categories that deal with international collaboration and international mobility
(Section 6.3); and

• mobility categories that describe different types of scientific mobility (Section 6.4).

A summary of the various categories is then given in Table 2. How the categories are mapped onto
the full set of motifs is shown in Figure 10.

6.1 Directed to undirected results
Recall that the algorithms discussed in Section 4 count directedmotifs. Co-authorships links, how-
ever, are an undirected relation between two authors. The set of undirected motifs is depicted in
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Table 2. An overview of all collaboration andmobility motif categories. In the examples, edge labels indicate the
rank order and layer of the edges

(a) Collaboration categories

Category Example Description

CC
(1,O),(2,O),(3,L)

continued collaboration between two authors
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MC

1,O

1,O 1,L central author with multiple co-authors
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MEC

1,O

2,O 1,O central author with multiple equidistant co-authors
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPEC

1,L

2,O 1,O central author with multiple possibly equidistant co-authors
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TC
1,O

2,L

3,O

team collaboration
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ETC
1,O

2,O

3,O

equidistant team collaboration
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EP
1,L

1,N

1,N

equidistant partner
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EPC
1,L

2,N

2,N

equidistant partner likely caused by collaboration
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EPE
2,L

1,N

1,N

equidistant partner likely cause of collaboration
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OEP
1,O

1,L

1,L

organizational equidistant partner
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OEPC
1,O

2,L

2,L

org. equidistant partner likely caused by collaboration
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OEPE
2,O

1,L

1,L

org. equidistant partner likely cause of collaboration

(b) International categories

Category Example Description

I
(1,I),(2,I),(3,I)

international co-authorship
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IM
(1,I),(1,O),(1,I)

international mobility, unknown direction
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMI
(1,I),(2,O),(3,O)

incoming international mobility
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMO
(1,O),(2,I),(3,I)

outgoing international mobility

(c) Mobility categories

Category Example Description

M
(1,L),(1,O),(1,O)

mobility event implied
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CM

1,O

1,L 1,N certain mobility event implied by an edge or star motif
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MP

1,O

2,L 1,N mobility event implied accompanied by a preceding edge
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MS

1,O

2,L 2,N mobility event implied accompanied by a succeeding edge
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PM
1,L

1,O

1,O

possible mobility event implied by a triangle motif
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MTC
1,L

1,O

2,O

possible (incoming) mobility event leading to collaboration
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MSC
1,O

1,O

2,L

collaboration despite possible (outgoing) mobility event
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2
(1,I),(2,L),(3,O)

two mobility events implied
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RFM
(1,O),(2,I),(3,O)

return or followmobility
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VM
(1,I),(2,O),(3,I)

visit mobility
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M1 M2 M3 M4

M5 M6 M7 M8

M9 M10 M11 M12

M13 M14 M15 M16

1,1,1 1,1,2 1,2,2 1,2,3

1,1 1 1,2 1 2,2 1 2,3 1

1,1 2 1,2 2 1,3 2 1,2 3

1 1
1

1 2
1

1 2
2

1 3
2

Figure 9. The set of undirected motifs, w.r.t. the set of directed motifs in Figure 2.

Figure 9. The numbering of the undirected motif configurations used throughout the remainder
of the paper follows the one shown in this figure: edgemotifsM1–M4, star motifsM5–M12, and tri-
angle motifsM13–M16. Themotif counts of the undirectedmotifs are directly retrieved from those
of the directed motifs in Figure 2. This is done by first resolving layer configuration equivalence
for motifs with concurrent edges where equivalence was previously prevented by directionality,
such as Mt,1,1. After that, counts for equivalent temporal configurations are summed. For star
and triangle motifs this translates to adding together the rows as depicted in Figure 2b and 2c.
Not accounting for equivalent layer configurations, this effectively reduces the number of motif
configurations to categorize from 5,632 (88× 43) to 1,024 (16× 43).

6.2 Collaboration categories
The first set of motif categories that we define, consists of categories that capture the structural
configuration (see Section 3.2.1). The most obvious distinction to be made is between edge, star,
and triangle motifs. Each of these structural configurations has a distinct meaning in the context
of co-authorship networks. As such we define three main categories:

CC. Continued Collaboration between two authors (edge motifs);
MC. Multiple Collaborators, i.e., an author that has multiple co-authors (star motifs); and
TC. Team Collaboration, i.e., three authors with each pair having co-authored a paper together

(triangle motifs).

Recall that we enforce edge attribute exclusivity (see Section 3.2.2), which means that all motifs
must consist of co-authorships on three different papers.

For the three node motifs (star and triangle), we define additional subcategories based on
specific meaning derived from the layer configurations. Specifically, for star motifs we distin-
guish between layer configurations that indicate that the co-authors are equidistant, i.e., the
organizations of the authors are equally far apart (same layer), possibly equidistant or not at
all equidistant with respect to the central author (center node). This leads us to define two
subcategories:

MEC. Multiple Equidistant Collaborators, i.e., an author that has multiple co-authors with the
same proximity at the same time; and

MPEC. Multiple Possibly Equidistant Collaborators, i.e., an author that has multiple co-authors
whose equal proximity may be prevented by a change in proximity for one of the co-
authors.

For triangle motifs we define subcategories of category TC based on the same concept of
equidistant co-authorships:

ETC. Equidistant team collaboration, i.e., three authors with each pair having co-authored a paper
together with the same proximity;
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EP. Equidistant Partner, i.e., two authors, that have co-authored a paper at a local, national or
international proximity, have both co-authored a paper with the same partner at the same
proximity, which is equal or larger than their own proximity; and

OEP. Organizational Equidistant Partner, i.e., two authors, that have co-authored a paper at an
organizational proximity, have both co-authored a paper with the same partner at the same
proximity.

Note that ETC is entirely covered by EP and OEP, but that EP and OEP cover more motif config-
urations than ETC. For both the EP and OEP subcategories, we define two more subcategories:
“cause” (EPC, OEPC), where the link between the two authors comes before the formation of
the equidistant partnership in the temporal configuration and is likely the cause of the equidis-
tant partner, and “effect” (EPE, OEPE), where the link between the two authors comes after the
formation of the equidistant partnership and therefore likely follows from having the equidistant
partner. An overview of all of these categories, with an example and short description, is given in
Table 2a. Their mapping onto the full set of configurations is shown in Figure 10a.

6.3 International categories
Because we are interested in the relation between international collaboration and international
mobility, the second categorization scheme we define deals with these concepts.

We define two main categories:

I. International collaboration, i.e., motifs with at least one edge indicating an international co-
authorship; and

IM. International mobility, i.e., motifs where a mobility event is implied by the transition of an
international collaboration to an organizational, local, or national collaboration, or vice versa.

From the perspective of individual countries, it is especially interesting whether the international
mobility is incoming or outgoing. Therefore, we define the subcategories international mobility
incoming (IMI) and international mobility outgoing (IMO). Indicating, respectively, whether we
move from an international collaboration to a closer collaboration or move from a closer collab-
oration to an international one. Note that the direction of a mobility event cannot be determined
when it is implied only by concurrent edges. Furthermore, for triangle motifs a mobility event can
only be implied by a contradiction that occurs between all three edges and it can be associated
with any of the authors. For example, if we have edges (a,c,t1,O),(b,c,t2,O),(a,b,t3,I) for authors
a, b, c and assume a single affiliated organization per author at a time, then the first two edges
indicate that all authors are associated with the same organization while the third edge indicates
that authors a and b are associated with organizations in different countries. This contradiction
indicates that an international mobility event has occurred. However, this mobility event can be
associated with every author, including author c where author c first has the same affiliation as a
and then moves to the same organization as b. In this case, the organization associated with either
author a or b must be located in a different country, yet we can never be sure which. Therefore,
we can never determine a direction for the mobility events implied by triangle motifs. Moreover,
authors can havemultiple affiliations, further complicating the inference of mobility, as we discuss
in Section 6.4

An overview of the international categories, with an example and short description, is given in
Table 2b. Their mapping onto the full set of motifs and layer configurations is shown in Figure 10b.
Here, the “non-international” category indicates motif configurations that do not involve any
international co-authorship links.
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Figure 10. Mappings of the motif categories listed in Table 2 onto the full set of motifs. The “duplicate” categories indi-
cate layer configurations that are equivalent to layer configurations listed above them. For configurations where categories
overlap, subcategories take precedence. The full hierarchy of the categories is shown in Figure 11.

6.4 Mobility categories
The third and final set of motif categories we define are mobility categories. The mobility cate-
gories either describe a certain type of mobility or describe the context of the edges surrounding
the mobility event. We define two main categories:

M. Mobility, i.e., a mobility event is implied by a contradiction in organizational proximity
between co-authorship edges; and
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M2. Duo-mobility, i.e., two mobility events are implied.

In Section 6.3, we reasoned that we can never determine the direction of mobility events implied
by trianglemotifs. Moreover, for trianglemotifs we cannot be sure a contradiction of collaboration
distances even implies a mobility event or if it is an indicator that an author is affiliated withmulti-
ple organizations. For example, given the same set of edges as before, (a,c,t1,O),(b,c,t2,O),(a,b,t3,I),
we required the assumption of a single affiliation at a time to imply a mobility event. If we assume
multiple affiliation are possible for an author, then the author organization affiliations a→ {A},
b→ {B}, and c→ {A, B} would fit this motif configuration without implying any mobility event.
As we cannot be sure that any mobility event implied by triangle motifs is not caused by an author
being affiliated with multiple organizations, we divide category M into two subcategories:

CM. Certain mobility, i.e., a mobility event implied by an edge or star motif; and
PM. Possible mobility, i.e., a mobility event implied by a triangle motif.

Note that we are assuming that authors always list all their current affiliations for each paper.
After all, for edge and star motifs, mobility is implied from a change in proximity between two
co-authorship edges between the same two authors. Since this proximity is set to the minimum of
all listed affiliations, for the proximity to change their list of affiliations must change. So, when the
proximity changes, a mobility event must have occurred.

For certain mobility (CM), we know that the mobility event is implied by only two out of the
three edges. This means we have either an additional preceding, succeeding, or concurrent edge
and define two subcategories accordingly:

MP. Mobility Preceding, i.e., a mobility event is implied by a change in proximity between two
co-authorship edges which are preceded by a third edge; and

MS. Mobility Succeeding, i.e., a mobility event is implied by a change in proximity between two
co-authorship edges which are succeeded by a third edge.

Note that the additional edge can still be either a preceding or succeeding edge when it is concur-
rent with only one of the edges involved in the mobility event, because the mobility event itself
will have occurred somewhere in the time between those two edges.

Even though we can never be certain about the direction of mobility for triangle motifs, we
can infer some meaning on the possible mobility. We define two such subcategories for the PM
category as follows:

MTC. Mobility To Collaboration, these motifs may imply collaboration as both a possible
cause and effect of an incoming mobility event. For example, motif configuration
(a,b,t1,L),(a,c,t1,O),(b,c,t2,O) may imply that collaborations between authors a,b and a,c
may have inspired author b or c to move to the same organization and start collaborating.

MSC. Mobility Sustained Collaboration, these motifs may imply that even after an author has
moved further away, the ties to their previous organization may allow them to establish
new collaborations through their former colleagues. For example, this may be implied by
motif configuration (a,b,t1,O),(a,c,t1,O),(b,c,t2,L).

To finish, we define two subcategories of duo-mobility:

RFM. Return or Follow Mobility, an author moving away from the same organization as their
collaborating partner after which they either return to their old organization or the
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Figure 11. Category hierarchy. Note that motif counts for the subcategories do not have to add up to 100% of their parent
category. Dotted lines indicate that categories overlap within their general classification but that no hierarchy is established
between them. In Figure 10, the target category of a dotted line takes precedence over the source category.

collaborating partner follows them to the new organization, i.e., the proximity returns to
organizational; and

VM. Visit Mobility, an author first moving to the same organization as the collaborating partner
after which the author either moves back or moves to yet another organization at the same
proximity as before, i.e., the proximity first changes to organizational and then returns to
its old state.

An overview of the mobility categories, with an example and short description, is given in
Table 2b. Their mapping onto the full set of motifs and layer configurations is shown in Figure 10c.
Here, the “no mobility” category indicates motif configurations that do not appear to imply any
mobility event.

7. Experiments and results
In this section we discuss our experiments and results. First, we discuss our experimental setup
in Section 7.1. Then, we compare the five scientific fields by using the categories defined in the
previous section to create a profile for each field in Section 7.2. Finally, in Section 7.3 we discuss the
limitations of our data, methods and results. In Supplementary Material B, we compare for each
field the 50 largest countries, where country size is based on its scientific output. In Supplementary
Material C we analyze the performance of our new algorithms.

7.1 Experimental setup
For our experiments, we aim to use the categories defined in Section 6 to identify typical
co-authorship behavior in the various scientific fields. Due to the difficulty of developing an
underlying null hypothesis that correctly and exhaustively captures the basic mechanics of co-
authorship networks (Artzy-Randrup et al., 2004), we do not compare our motif count results
with a null model but instead compare them with one another. Similar to the graphlet repre-
sentativity measure by Charbey & Prieur (2019), we compute the difference between the relative
frequency in one network and the relative “global”, i.e., average, frequency. We do this not for
individual motif configurations but for the motif categories.

The total motif count of a category is computed by summing the motif counts of all motif
configurations assigned to that category. The relative importance (ri) of a category i in a given
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field j with respect to all fields is determined as:

rii,j =
ci,j
cp(i),j − avgi

avgi
, (1)

with ci,j the total motif count of category i in field j, p(i) denoting the parent category of category
i, as depicted in Figure 11, and

avgi = 1
|J|

∑

j∈J

ci,j
cp(i),j

, (2)

with J the set of scientific fields, in our case the five fields described in Section 5.
This means that a positive rii,j indicates that in field j a relatively large proportion of the motifs

of the parent category (p(i)) belong to category i and a negative rii,j indicates a relatively small
proportion of the motifs of the parent category belong to category i. Note that, due to the divi-
sion by the average proportion (avgi), we look at the difference in proportion relative to the size
of the proportion. This means that we find only very small positive or negative ri for a category
like MC, which encapsulates approximately 90% of all motifs (see first row of Tables S1–S5 in the
Supplementary Material). Furthermore, note that the number of motif configurations assigned
to a category does not play a role here and that only the summed motif counts of the motif
configurations matters.

For each field, we analyze in detail the relative importance of all categories and their interplay to
give insight into typical co-authorship and scientific mobility behavior. As such, we aim to identify
what sets each field apart. Within each field, we examine outlier countries that represent unique
co-authorship and mobility behavior and investigate commonalities between countries showing
the same behavior in Supplementary Material B.2.

We analyze the ri computed for δ = 10 years, i.e., the full timespan of the datasets. A shorter
timespan, such as δ = 3 or 5 years, excludes motifs where the causal link between the co-
authorships may be weaker due to the passing of time. Because a shorter timespan can impact
the ri of a category, we investigate the robustness of ri and our conclusions in Supplementary
Material D. We find that ri is robust for the larger datasets and categories and that conclusions
drawn for δ = 10 are representative for shorter timespans.

The multilayer temporal motif counting algorithms introduced in Section 4 were implemented
as a component of the Stanford Network Analysis Project (SNAP, see (Leskovec & Sosič, 2016) for
details). Our implementation can be found at (Boekhout, 2020). In Supplementary Materials C we
investigate the empirical performance of our implementation with respect to the number of edges
and the density and compare that to the theoretical complexities of the algorithms. We find that
there is a linear relationship between the size of a dataset and the runtime of our implementation.
Furthermore, we find that between 30 and 50,000 edges are processed per second, converging to
around 40,000 edges per second as the number of edges increases. Thus, network datasets with
millions of edges can be processed in a matter of minutes.

7.2 Results—Field comparison
Based on the motif counting results from our experiments, for δ = 10 years, we determined the
relative importance of each category defined in Section 6 with the help of Equations 1 and 2. The
results are shown in Table 3. By combining the relative importances of all categories, we create
profiles for each field that can identify typical co-authorship and mobility behavior. Below we take
a closer look at the profile of each of the five fields.
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Table 3. Field comparison of the relative importance of each category defined in Section 6

Collaboration categories

field CC MC MEC MPEC TC ETC EP EPC EPE OEP OEPC OEPE

Social sciences & Humanities 0.11 -0.01 -0.07 -0.09 0.13 -0.13 0.99 -0.15 -0.25 -0.22 0.37 0.51


Biomedical & Health sciences -0.42 -0.00 0.15 -0.37 0.12 0.31 -0.48 0.03 -0.07 0.17 -0.60 -0.60


Physical sciences & Engineering -0.05 0.01 -0.03 0.19 -0.09 -0.12 0.03 -0.10 0.16 -0.05 0.22 0.15


Life & Earth sciences -0.06 0.01 -0.07 0.33 -0.08 -0.05 -0.32 0.05 -0.02 0.02 0.02 -0.04


Mathematics & Computer science 0.43 0.00 0.02 -0.06 -0.08 -0.01 -0.22 0.18 0.18 0.08 -0.01 -0.02

International categories
field I IM IMI IMO

Social sciences & Humanities -0.17 -0.25 -0.04 0.04


Biomedical & Health sciences -0.41 -0.48 -0.02 0.01


Physical sciences & Engineering 0.21 0.29 0.01 -0.03


Life & Earth sciences 0.18 0.42 0.03 0.01
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mathematics & Computer science 0.19 0.03 0.01 -0.03

Mobility categories

field Mall IMm M CM MP MS PM MTC MSC M2 RFM VM

Social sciences & Humanities -0.04 -0.20 -0.00 -0.01 -0.05 0.01 0.15 -0.06 -0.04 0.36 -0.21 0.02


Biomedical & Health sciences -0.35 -0.19 0.00 -0.01 -0.01 -0.02 0.17 -0.03 0.07 -0.40 0.12 -0.07


Physical sciences & Engineering 0.15 0.15 0.00 0.00 0.03 -0.01 -0.05 0.14 -0.04 -0.11 0.12 0.07


Life & Earth sciences 0.28 0.13 0.00 0.01 -0.01 0.01 -0.12 0.07 -0.00 -0.08 0.14 0.07


Mathematics & Computer science -0.05 0.11 -0.00 0.01 0.04 0.01 -0.15 -0.12 0.01 0.23 -0.16 -0.09
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Social sciences & Humanities
For the field of Social sciences & Humanities (SSH) the equidistant partner categories EP, OEP
and their subcategories clearly stand out (Table 3). In this field, a far greater proportion of teams,
i.e., triangles of co-authorships, represents the formation of an equidistant partner with someone
outside their own organization (EP +0.99). Note that EP +0.99 means that the proportion of EP
motifs among all TC motifs (see Figure 11) is almost twice as high as the average proportion over
all fields. Conversely, a much smaller proportion of teams represents the formation of equidistant
partners with someone at their own organization (OEP -0.22). Furthermore, the negative ri for
international categories I and IM, suggest that, although we noticed more equidistant partners
outside the own organization, these partners are more likely to work within the same country.
Results from Larivière et al. (2006) support this, showing a smaller proportion of international
collaboration papers among inter-institutional collaboration papers for social sciences compared
to natural sciences. We note that these observations can be explained, to some extent, by the lower
proportion of organizational edges and higher proportion of national edges for this field, as shown
in Table 1. The higher level of national collaboration can be considered an identifying trait for this
field. The reason for this increased national collaboration remains an open question.

In Table 1, we see that the proportion of international edges for SSH is only slightly below
that of fields with a positive ri for category I, while for SSH, we observed a negative ri for the
international categories I and IM. This means that on average fewer motifs are formed per inter-
national edge. There are multiple possible explanations for the lower rate of motif formation. First,
authors that collaborate internationally may have larger knowledge networks, i.e., collaborate
with a greater number of different co-authors, thereby forming relatively fewer co-authorships
per co-author. Second, authors linked to international co-authorships may publish papers that
involve relatively fewer (non-international) co-authors per paper than on average. Third and least
likely, authors linked to international co-authorships may be less productive than the average
author in the field. For internationally active authors, each of these would result in relatively fewer
international motifs per international co-authorship edge.

The third observation for SSH is that among mobility motifs a relatively large proportion of
motifs consist of duo-mobility (M2 +0.36). In part, this can be attributed to an increased propor-
tion of edge motifs (CC +0.11), the only motifs that can imply duo-mobility. However, for the
most part, the relatively large proportion of M2 motifs implies that authors who continue to co-
author through the years experience more changes of their proximity. In fact, because we see a
neutral ri for VM, we can surmise that the additional duo-mobility also leads to a similar increase
in visit mobility but does not result in additional return or follow mobility (RFM -0.21). As such,
a relatively larger proportion of the additional M2 motifs have no apparent connection to the
continued collaboration of the scholars.

The final observation we make for SSH is that among mobility motifs international mobility
is underrepresented (IMm -0.20), reenforcing our observation of a reduced proportion of motifs
including international co-authorships.

Biomedical & Health sciences
The field of Biomedical & Health sciences (B&H) has, as can be seen in Table 3, the largest pro-
portion of equidistant team collaborations (ETC +0.31). Additionally we see a relatively high
proportion of team collaboration representing organizational equidistant partners, but with a very
low proportion of the cause and effect subcategories OEPC and OEPE. Together these categories
imply that a large proportion of ETC motifs are in fact three authors connected by only orga-
nizational links, because, when this occurs, neither a cause nor effect can be determined for the
equidistant partnership and therefore relatively few OEPC and OEPE motifs are formed.

The tendency for team formation within organizations forms an identifying trait for this field
where the nature (of parts) of the research often requires larger groups of scientists, i.e., potential
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authors, to collaborate locally in, for example, a lab setting. Because larger groups of co-authors
also create larger cliques of co-authorships, the phenomenon of large groups of locally collabo-
rating scientists is reflected in the relative importance of many other categories for this field. For
example, the strong negative ri for the EP category as well as the low proportion of international
motifs (I -0.41) reflects the smaller proportion of inter-organization collaboration. Furthermore,
the relatively low proportion of CC motifs and the high proportion of ETC motifs reflect the ten-
dency for larger groups of authors, since larger groups form a greater proportion of triangle motifs
than edge motifs over the course of several publications compared to smaller groups of authors.
Note that the negative ri for the M2 category is directly linked to the negative ri of CC and does
not provide a “new” observation.

As more and larger teams are formed within organizations, relatively fewer motifs are formed
that imply a mobility event. B&H has by far the lowest ri of any field for theMall category. In part
this is yet another result of the larger and more teams at the organization level, but it might also
suggest that scientists are less prone to move between organizations in this field. Additionally,
we observe that among the mobility motifs a relatively small proportion of motifs represent
international mobility (IMm -0.20).

Physical sciences & Engineering
With respect to the collaboration categories, Table 3 shows that the field of Physical sciences &
Engineering (P&E) appears to be associated with mostly intermediate ri values. Where other fields
have strong positive or negative relative importances for a category, P&E is neutral. For example,
where SSH has a very large proportion of EP motifs and the other three fields have very small pro-
portions of EP motifs, P&E is around average (EP +0.03). However, unlike SSH, the percentage of
organizational edges is roughly the same for P&E and the remaining three fields, B&H, L&E, and
M&C. If we compare P&E only with these fields, we see a similar pattern emerge for the ETC, EP,
and OEP categories as observed for SSH. This tells us that P&E forms comparably more equidis-
tant partners with co-authors outside their own organization and less with co-authors within
their organization. Notably, P&E is the only field where we can clearly observe a difference in
the ri of the cause and effect subcategories of EP (EPC -0.10, EPE +0.16). This indicates that an
inter-organizational co-authorship between two authors more often follows from them already
having an equidistant partner than that their co-authorship predates, i.e., causes, the equidistant
partnership.

For P&E we observe a positive ri for international motifs. Herein, it does not differ from
the fields L&E and M&C, but shows an equal ri at around the same percentage of international
links. At most we can state that P&E forms a greater number of motifs including international
co-authorships than SSH per international edge.

Finally, we see that P&E has a relatively large proportion of mobility motifs (Mall +0.15). Only
L&E shows a higher ri for mobility motifs. The proportion of international mobility (IMm) follows
a similar trend between the fields as observed for category I. We note a relatively high propor-
tion of MTC mobility motifs in this field, possibly indicating an increased likelihood of incoming
mobility having a direct cause or effect in the knowledge network of the authors. However, as we
cannot be sure that triangle motifs even imply mobility, we cannot definitively conclude this.

Life & Earth sciences
Life & Earth sciences (L&H) shows, like B&H, a reduced proportion of equidistant partner motifs
(EP -0.32) in Table 3. Unlike B&H, this is not associated with a greater proportion of ETC and
OEP motifs. In other words, there is a relatively larger proportion of triangles of co-authorship
that include edges with three different proximities. The occurrence of suchmotifs requires authors
involved in them to either be mobile or be associated with multiple organizations, otherwise an
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equidistant partnership would be formed. For L&H we observe a positive ri for mobility motifs
(Mall +0.28), indicating that mobility is likely the cause of the increased number of triangles with
three different proximities.

Like for P&E, we see a positive ri for international motifs for L&H. More importantly, we
see that the increased mobility and internationalism also translates to a larger proportion of
international mobility motifs (IM +0.42, IMm +0.13).

Mathematics & Computer science
It can be observed from Table 3 that the field of Mathematics & Computer science (M&C) has by
far the greatest proportion of continued collaboration motifs (CC +0.43), i.e., edge motifs, which
comes at the cost of team collaborations (TC -0.08). Furthermore, among the team collaborations
we see more organizational equidistant partnerships than outside the organization (EP -0.22, OEP
+0.08) and observe a greater likelihood for a clear cause or effect of EP motifs (EPC +0.18, EPE
+0.18). Together this indicates that, in M&C, there is a greater trend to continue to co-author
within the established knowledge network and organization and to expand the knowledge net-
work through the sharing of contacts with scholars at the same organization rather than outside
the organization. A possible cause, or symptom, of this behavior is the lower proportion of mobil-
ity motifs (Mall -0.05). Less mobility may cause authors to continue to collaborate with the same
co-authors or as authors remain more set within their known knowledge network they may see
less cause to become mobile. Note that the large proportion of duo-mobility motifs (M2) can be
directly explained by the large proportion of CC motifs.

Despite the tendency to continue to co-author within the known knowledge network, we
observe the same positive ri for international motifs as observed for P&E and L&E. Additionally,
among the mobility motifs we also observe a positive ri for international mobility (IMm +0.11).

The relationship between (international) mobility and collaboration
In Table 3 we have seen the same trend for all fields. A larger proportion of international motifs
translating to a larger proportion of international mobility motifs among all mobility motifs
(P&E, L&E, and M&C). At the same time, a smaller proportion of international motifs leads to
a smaller proportion of international mobility motifs (SSH and B&H). This trend forms a good
indicator of the existence of a relationship between international co-authorship, i.e., international
collaboration, and international mobility, but it does not imply a direction for this relationship.

Between categories IMI–IMO, MP–MS, and MTC–MSC, the categories that may imply some
causation between collaboration and mobility, we see only minor variations in the relative impor-
tance. Table 4 shows that neither MP nor MS is more dominant, indicating that collaboration
occurs before and after mobility to an equal degree. Additionally, Table 4 shows that a greater
proportion of motifs that imply international mobility suggest outgoing international mobility
(IMO). It also shows a greater proportion of MSC, mobility sustained collaboration, motifs com-
pared toMTC. This means that moremotifs are formed by authors sustaining their old knowledge
network after moving abroad than motifs are formed by authors moving closer to scholars they
have previously co-authored with.

Although one might interpret this as evidence of a relationship between international mobil-
ity and collaboration in one direction, namely that international mobility leads to international
collaboration, as suggested by Kato & Ando (2017), it actually shows that the relationship is
bidirectional. After all, a single international co-authorship preceding an incoming international
mobility event may be sufficient to establish a causation between the collaboration and the mobil-
ity, whereas proof of maintaining the old knowledge network after an international mobility event
requires international co-authorships with multiple co-authors from before the international
mobility event. In other words, one international mobility event is likely to form international
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Table 4. The proportion of a subset of categories w.r.t. their parent category, for each
field

Field IMI IMO MP MS MTC MSC

Social sciences & Humanities 0.32 0.48 0.36 0.41 0.24 0.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biomedical & Health sciences 0.32 0.46 0.38 0.40 0.25 0.63
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physical sciences & Engineering 0.33 0.44 0.39 0.40 0.29 0.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Life & Earth sciences 0.34 0.46 0.37 0.41 0.27 0.58
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mathematics & Computer science 0.33 0.45 0.39 0.41 0.23 0.59

collaborations with more previously organizational co-authors (O→I), than it is to form orga-
nizational collaborations with previously international co-authors (I→O). Therefore, a greater
proportion of IMO motifs over IMI motifs is to be expected. Thus, we conclude that the rela-
tionship between international mobility and collaboration appears to exist in both directions.

7.3 Limitations
Here we discuss limitations of the datasets and methodology that may affect the interpretation of
our results.

First and foremost, we must acknowledge missing data. As previously mentioned in Section 5,
authorships for which no affiliation information was present in WoS were excluded. In Table 1,
we showed that this makes up around 20% of all authorships, which means our co-authorship
networks are formed from only 80% of all authorships in WoS. Furthermore, WoS itself is not
complete. For example, we know that conference papers play a big role in information diffusion
in Computer science, but that conference papers are not included in the CWTS in-house ver-
sion of WoS (which in particular does not include the conference proceedings citation index).
Additionally, we know that some countries, such as Brazil, have their own internal publication
system that is not included inWoS. The inclusion of this missing data could significantly alter the
relative importances observed for the affected fields (and countries). However, our datasets still
cover a significant number of papers and co-authorships in every field and we do not expect the
missing data to substantially alter our main conclusions.

Second, because we infer mobility events from a change in co-authorship proximity, we may
not be able to detect mobility which has no cause in previous co-authorships. As such, we may
be underestimating the level of mobility in some fields (or countries). Because we have no way to
speculate about the amount of undetected mobility for specific fields (or countries), we draw our
conclusions based only on the mobility we are able to detect.

Third, a single mobility event of an author with a much larger than average knowledge net-
work creates a greater potential number of pairwise mobility events. Therefore, observations of
motifs demonstrating certain types of scientific mobility may be dominated by the mobility of
these authors. We note that papers with many authors may facilitate these larger than average
knowledge networks and thus may play a bigger role in the creation of observed tendencies in
fields toward specific types of scientific mobility. However, since we excluded publications with
more than 25 authors, we expect this effect to be marginal at the scope of global fields.

Fourth, categories that describe some causation, i.e., EPC, EPE, OEPC, OEPE, MTC, andMSC,
ascribe a connection between the co-authorships within the motifs that may not exist. For exam-
ple, an EPC motif may imply that two scholars that co-authored locally formed an equidistant
partner nationally because of their earlier co-authorship, i.e., one of the scholars introduced the
other to the equidistant partner, but they may very well both have been introduced to this equidis-
tant partner directly or through a third party. In fact, the greater the proximity between the
scholars, the less certain we can be of the causation the category defines for individual motifs.
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However, over an entire co-authorship network an increased proportion of motifs of one of these
categories over their counterpart, i.e., EPC over EPE, does imply a greater likelihood of more of
such causations occurring. Furthermore, we do not draw conclusions based on just one of these
categories, but only based on their relation to other categories.

Fifth and last, in our conclusions we connect categories and interpret co-authorship ormobility
behavior based purely on their relative importance, i.e., based on their motif counts. Because we
do not study the individual motifs at the level of their nodes and edges, we cannot guarantee that
categories that we connect utilize overlapping sets of nodes and edges. As such, the connections
we have made throughout Section 7.2 and Supplementary Material B.2 may, although logically
sound, not represent a real-world connection.

8. Conclusion and Future Work
In this paper we attempted to better understand scientific collaboration, scientific mobility, and
how those relate. To this end, we first extended multilayer temporal motif counting algorithms
from previous work to be able to count motifs that include concurrent edges. Second, we mod-
ified these algorithms to enforce edge attribute exclusivity, so that in each counted motif every
edge has a unique attribute value. Theoretically, the extensions to the algorithms added only a
small constant factor to the time complexity of the original algorithms, which had time com-
plexities of, respectively, O(mλ2) and O(m

√
τλ2), where m is the number of links, λ the number

of layers and τ the number of static triangles. Using experiments on large-scale co-authorship
datasets extracted fromWeb of Science (WoS), we showed that the extended algorithms have exe-
cution runtimes linear with respect to the size of the datasets, processing between thirty and fifty
thousand edges per second, meaning we can process network datasets with millions of edges in a
matter of minutes.

For our experiments, we extracted five large global co-authorship datasets from WoS, each
covering one scientific field in the period 2007–2016. Using our algorithms, motif counts were
computed for each of those datasets. Next, we introduced a new systematic categorization that
assigns meaning to the motifs in the domain of co-authorship and scientific mobility. By deter-
mining the relative importance of each of the categories in specific fields (or countries) based
on the computed motif counts, we were able to infer characteristic co-authorship and mobility
behavior. The inferred characteristic co-authorship and mobility behavior for the various fields
include:

• For Social sciences & Humanities (SSH), we found that authors co-author to a greater level
with scholars outside their own organization than in other fields. Additionally, they establish
more equidistant partners with scholars outside their own organization and continue to col-
laborate throughout multiple mobility events to a greater degree. Fewer motifs are formed
per international co-authorship, indicating that internationally active authors in SSH display
different co-authorship behavior than in other fields.

• For Biomedical & Health sciences (B&H), we found that our results reflected the nature
of the type of research conducted in this field, which often lends itself more to large team
collaborations within an organization resulting in fewer inter-organizational collaborations.

• For Physical sciences & Engineering (P&E), we found that authors in this field form compa-
rably more equidistant partners with co-authors outside their own organization and less with
co-authors within their organization. Notably, we found that in P&E, an inter-organizational
co-authorship between two authors more often follows from them already having an equidis-
tant partner than that their co-authorship predates, i.e., causes, the equidistant partnership.

• For Life & Earth sciences (L&E), we found that relatively more mobility has lead to entirely
inter-organizational team formations (triangle co-authorships). Additionally, we found that
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increased mobility and internationalism also translates to relatively more international
mobility in L&E.

• For Mathematics & Computer science (M&C), we found that there is a greater trend to con-
tinue to co-author within the established knowledge network and organization and to expand
the knowledge network through the sharing of contacts with people at the same organization
rather than outside the organization. Although this is associated with relatively less overall
mobility, we still observe a relatively high proportion of international mobility for M&C.

The inferred characteristic co-authorship and mobility behavior found for specific countries in
specific fields are summarized in Supplementary Material B.3. In short, throughout all fields,
we found that countries with increased team formation within organizations display relatively
less international collaboration and (international) mobility. Conversely, countries that display
an increased amount of inter-organizational team formation show relatively more international
collaboration and (international) mobility.

Finally, we weighed in on the discussion in literature on the relationship between international
collaboration and international mobility. We found evidence that supports the existence of this
relationship in both directions, from collaboration to mobility and frommobility to collaboration.

In future work we would like to consider motifs larger than three nodes and three edges. While
these larger motifs can not be counted as efficiently (Boekhout et al., 2019), we could study them
on smaller networks where they may give us further insight into more complex co-authorship and
mobility behavior. Additionally, larger motifs could provide a greater insight into the evolution
of knowledge networks. We also want to apply these algorithms to different types of networks to
show the versatility of a multilayer temporal motif counting approach to gain insight into complex
networks, as we have shown for co-authorship networks in this work. We hope that the proposed
approach and framework will pave the way for a new line of research for understanding higher-
order patterns in the dynamics of scientific collaboration networks.

Availability of data andmaterials
The code implementing the algorithms introduced and used in this work, the datasets of the five
extracted global co-authorship networks used in this work, as well as the script used to preprocess
these networks for use with the motif counting code are openly available online at https://
bitbucket.org/Fractals-/count_mult_temp_motifs (Boekhout, 2020).
Acknowledgments.We are grateful for the feedback and suggestions made by the anonymous reviewers.

Funding. This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.

Conflicts of interest. None.

Supplementary. For supplementary material for this article, please visit http://dx.doi.org/10.1017/nws.2021.12.

References
Aman, V. (2018). Does the Scopus author ID suffice to track scientific international mobility? A case study based on Leibniz

laureates. Scientometrics, 117(2), 705–720.
Appelt, S., van Beuzekom, B., Galindo-Rueda, F., & de Pinho, R. (2015). Which factors influence the international mobility

of research scientists? In Global mobility of research scientists (pp. 177–213). Elsevier.
Artzy-Randrup, Y., Fleishman, S. J., Ben-Tal, N., & Stone, L. (2004). Comment on “Network motifs: Simple building blocks

of complex networks” and “Superfamilies of evolved and designed networks”. Science, 305(5687), 1107c.
Barabási, A.-L. (2016). Network science. Cambridge University Press.
Barabási, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific

collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614.
Baruffaldi, S. H., & Landoni, P. (2010). Effects and determinants of the scientific international mobility: the cases of foreign

researchers in Italy and Portugal. In Paper for the Triple Helix VIII conference.

https://doi.org/10.1017/nws.2021.12 Published online by Cambridge University Press

https://bitbucket.org/Fractals-/count_mult_temp_motifs
https://bitbucket.org/Fractals-/count_mult_temp_motifs
http://dx.doi.org/10.1017/nws.2021.12
https://doi.org/10.1017/nws.2021.12


Network Science 385

Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353(6295), 163–
166.

Birnholtz, J. P. (2006). What does it mean to be an author? The intersection of credit, contribution, and collaboration in
science. Journal of the American Society for Information Science and Technology, 57(13), 1758–1770.

Boekhout, H. D. (2020). Counting multilayer temporal motifs. Retrieved from https://bitbucket.org/Fractals-/
count_mult_temp_motifs, June 4, 2020.

Boekhout, H. D., Kosters,W. A., & Takes, F.W. (2019). Efficiently counting complexmultilayer temporal motifs in large-scale
networks. Computational Social Networks, 6(1), 1–34.

Bordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance
of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135–144.

Caron, E., & van Eck, N. Jan. (2014). Large scale author name disambiguation using rule-based scoring and clustering. In
Proceedings of the 19th international conference on science and technology indicators (pp. 79–86). CWTS-Leiden University.

Chakrabarty, B., & Parekh, N. (2016). NAPS: Network analysis of protein structures. Nucleic Acids Research, 44(W1), W375–
W382.

Charbey, R., & Prieur, C. (2019). Stars, holes, or paths across your facebook friends: A graphlet-based characterization of
many networks. Network Science, 7(4), 476–497.

Chinchilla-Rodríguez, Z., Miao, L., Murray, D., Robinson-García, N., Costas, R., & Sugimoto, C. R. (2017). Networks of
international collaboration and mobility: A comparative study. In Proceedings of the 16th international conference on
scientometrics & infometrics. ISSI.

Chinchilla-Rodríguez, Z., Miao, L., Murray, D., Robinson-García, N., Costas, R., & Sugimoto, C. R. (2018). A global compar-
ison of scientific mobility and collaboration according to national scientific capacities. Frontiers in Research Metrics and
Analytics, 3, 17.

Choobdar, S., Ribeiro, P., Bugla, S., & Silva, F. (2012). Comparison of co-authorship networks across scientific fields using
motifs. In Proceedings of the international conference on advances in social networks analysis and mining (ASONAM) (pp.
147–152). IEEE Computer Society.

Czaika, M., & Orazbayev, S. (2018). The globalisation of scientific mobility, 1970–2014. Applied Geography, 96, 1–10.
Das, K., Samanta, S., & Pal, M. (2018). Study on centrality measures in social networks: a survey. Social Network Analysis and

Mining, 8(1), 13.
Gaillard, J., & Gaillard, A. M. (1997). Introduction: the international mobility of brains: exodus or circulation? Science,

Technology and Society, 2(2), 195–228.
Glänzel, W., & Schubert, A. (2005). Domesticity and internationality in co-authorship, references and citations.

Scientometrics, 65(3), 323–342.
Guth, J., & Gill, B. (2008). Motivations in East–West doctoral mobility: Revisiting the question of brain drain. Journal of

Ethnic and Migration Studies, 34(5), 825–841.
Holme, P., & Saramäki, J. (2019). Temporal network theory. Springer.
Hu, X., Li, O. Z., & Pei, S. (2019). Of stars and galaxies – Co-authorship network and research. China Journal of Accounting

Research.
Jazayeri, A., & Yang, C. C. (2020). Motif discovery algorithms in static and temporal networks: A survey. Journal of Complex

Networks, 8(4), cnaa031.
Kato, M., & Ando, A. (2017). National ties of international scientific collaboration and researcher mobility found in Nature

and Science. Scientometrics, 110(2), 673–694.
Krumov, L., Fretter, C., Müller-Hannemann, M., Weihe, K., & Hütt, M-T. (2011). Motifs in co-authorship networks and their

relation to the impact of scientific publications. The European Physical Journal B, 84(4), 535–540.
Kumar, S. (2015). Co-authorship networks: a review of the literature. Aslib Journal of Information Management, 67(1), 55–73.
Larivière, V., Gingras, Y., & Archambault, É. (2006). Canadian collaboration networks: A comparative analysis of the natural

sciences, social sciences and the humanities. Scientometrics, 68(3), 519–533.
Laudel, G. (2003). Studying the brain drain: Can bibliometric methods help? Scientometrics, 57(2), 215–237.
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