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ABSTRACT

We study the detection and the reconstruction of a large very dense

subgraph in a social graph with n nodes and m edges given as

a stream of edges, when the graph follows a power law degree

distribution, in the regimewhenm = O(n. logn). A subgraph is very

dense if its edge density is comparable to a clique. We uniformly

sample the edges with a Reservoir of size k = O(
√
n. logn). The

detection algorithm of a large very dense subgraph checks whether

the Reservoir has a giant component. We show that if the graph

contains a very dense subgraph of size Ω(
√
n), then the detection

algorithm is almost surely correct. On the other hand, a random

graph that follows a power law degree distribution almost surely has

no large very dense subgraph, and the detection algorithm is almost

surely correct. We define a new model of random graphs which

follow a power law degree distribution and have large very dense

subgraphs. We then show that on this class of random graphs we

can reconstruct a good approximation of the very dense subgraph

with high probability.We generalize these results to dynamic graphs

defined by sliding windows in a stream of edges.

CCS CONCEPTS

• Theory of computation → Theory and algorithms for ap-

plication domains.
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1 INTRODUCTION

We study the efficient detection of large dense subgraphs in social

graphs, given as a stream of edges, by looking at only a small

fraction of the stream. Our viewpoint comes from two constraints.

First, given the massive size of social networks, our algorithms

cannot store the graph in memory: the space used must be sublinear.

Second, the dynamic feature corresponds to the evolution of the

social network and our algorithms have to take a single pass over
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the stream. Given those two constraints, what kind of structure can

be detected algorithmically?

Large dense subgraphs. Social networks such as Twitter evolve

dynamically, and dense subgraphs appear and disappear over time

as interest in particular events grows and wanes. How can we detect

large dense subgraphs efficiently? The classical density is the ratio

ρ = |E[S]|/|S |. In the case of a stream of edges, the approximation

of dense subgraphs is well studied in [8, 16, 19, 25] and an Ω(n)
space lower bound is known [5]. Social graphs define a specific

regime for which we propose a streaming algorithm which uses

O(
√
n. logn) space. Our density objective is however different.

Definition 1.1. The (γ , δ )-large very dense subgraph problem,

where γ ≤ 1, takes as input a graphG = (V , E) and decides whether
there exists an induced subgraph S ⊆ V such that |S | > δ

√
n and

|E[S]| > γ |S |(|S | − 1)/2.

A very dense subgraph is also called aγ -clique: if you consider two
random nodes of S , they are connected by an edge with probability

γ . Observe that γ -cliques have the following nice structure, which

does not hold for the usual measure |E(S)|/|S |: if S is a γ -clique
then for any 2 ≤ i ≤ |S |, there exists a set of size i that is a γ -clique.
In fact, a random subset of S has this property on average. The

(γ , δ )-large very dense subgraph problem is NP-hard and hard to

approximate [20], as it contains the maximum clique problem as

the special case when γ = 1. This leads us to use a new notion of

approximation, adapted to a specific distribution of the inputs.

Degree distribution and the Configuration model. A scale-

free network is a network whose degree distribution asymptoti-

cally follows a power law: the fraction of nodes with degree d is

proportional to d−O (1)
for d tending to infinity. Many real-world

networks are thought to be scale-free. In this paper, we focus on

social network models with a fixed degree sequence following a

power law d−2
, which is such that the total number of edges is

m = O(n. logn). The configuration model takes a feasible degree

sequence and generates a multigraph with that degree sequence.

Let µ denote the distribution of simple graphs obtained with the

configuration model applied to the power law degree distribution

d−2
. (We defer the discussion of how to get a simple graph from the

multigraph to section 3.1). The configuration model is a standard

model used already in sociology in 1938 in a directed version [27],

and also for modeling the World Wide Web [15], public opinion

formation [31], etc. There are other generative models such as the

Preferential Attachment model [7], the Copy model [22], and many

others, see [2, 3, 23, 28] for example.

One-sided-stochastic approximation. We relax the defini-

tion of a randomized algorithm A, with a one-sided approximation,

where for Yes instances we consider the worst case, but for No

instances we only consider random inputs for µ. Indeed, a standard
way to relax a decision problem would be to design an ϵ-tester
that decides whether the input is a Yes instance or is ϵ-far from Yes
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instances, i.e. within edit distance at least ϵm from any Yes instance;

but for our problem, no graph is ϵ-far from Yes instances, so the

notion of ϵ-tester is not the right one here.
A one-sided stochastic randomized Reservoir algorithm A for a

language L satisfies the following two conditions:

• For all x ∈ L, ProbΩ[A(x) accepts] ≥ 1 − ε
• If x < L is drawn from µ, Probµ×Ω[A(x) rejects] ≥ 1 − ε

where Ω is the set of possible Reservoirs (subsets of edges with

prescribed cardinality), with a uniform distribution. We design a

one-sided randomized streaming algorithm for the (γ , δ )-large very
dense subgraph problem and believe that this approximation for a

distribution of inputs can also be useful in some other contexts.

Static results. We study how to decide the presence of large

very dense subgraphs with a Reservoir sampling [30] and how to re-

construct such a very dense subgraph from the samples
1
. We study

the existence of giant components in the Reservoir using random

graph techniques, adapted to graphs with this degree distribution.

Indeed, the Reservoir is a random uniform sample of a power law

graph, whereas the Erdös-Renyi model is a random uniform sam-

ple of the complete graph. If the graph has a very dense subgraph

S of size Ω(
√
n), then a Reservoir of size Ω(

√
n. logn) has a giant

component (Theorem 4.1). In order to detect the existence of a very

dense subgraph, our first algorithm (Algorithm Detect(γ , δ ) ) sim-

ply checks whether there is a large enough connected component

in the Reservoir. The analysis relies on a Theorem by Molloy and

Reed on asymptotic sequences, but there are additional difficulties

here due to the fact that our sequences are not deterministic but

random.

We then analyze the situation when the graph does not have

a large very dense subgraph: we take the configuration model of

random graphs which follow a power law degree distribution ([28],

see also next section). We observe that in this case there is no

giant component in the Reservoir (Lemma 3.4) and that Algorithm

Detect(γ , δ ) is correct (Theorem 4.2). In Corollary 5.4 we show an

Ω(
√
n) space lower bound.

Given a graph that has a very dense subgraph, how can we

not only detect its existence but also reconstruct it? We propose a

simple algorithm (Algorithm 2) that uses the 2-core of the largest

connected component of the Reservoir. We define a variant of the

configuration model, giving a preference to edges inside a certain

subset of the vertices, so that the graph contains a very dense

subgraph, and show that in this case Algorithm 2 reconstructs an

approximation of the very dense subgraph (Theorem 6.1.)

Social networks dynamics and dynamic results. We con-

sider "bursty" windows when the number of edges in each window

varies. Uniform sampling in a window is the Reservoir sampling

[30] and it has been generalized to overlapping windows in [4, 9].

We turn to the dynamic case with sliding windows. We show in

Corollary A.1 that we can detect the existence of a large very dense

subgraph by generalizing Algorithm Detect(γ , δ ) (Algorithm 3).

The configuration model can be generalized to dynamic random

graphs (Section 7.1), and then none of the successive Reservoirs

have a giant component, Corollary A.2. In the concentrated case

1
In this paper, whenever we speak of a ”dense subgraph”, we mean a large very dense

subgraph, where the minimum size to qualify as large is specified in the theorem

statements.

for some time interval ∆, the random graphs during that interval

have a very dense subgraph S and Algorithm 4 approximates S ,
Corollary A.3.

Plan of the paper. In section 2, we review the large dense

subgraphs, Reservoir sampling for dynamic graphs and random

graphs. In section 3 we describe random graphs which follow a

power law degree distribution with or without large very dense

subgraph. In section 4 we present the Algorithm Detect(γ , δ ) and
its analysis on positive and random instances. In section 5, we study

the space lower bounds. In section 6, we show how to reconstruct a

good approximation of large very dense subgraph from the samples.

In section 7, we generalize the approach to dynamic graphs defined

by sliding windows.

2 PRELIMINARIES

Throughout the paper, we ignore the rounding of our parameters

to the nearest integer, when it only has an impact on second-order

terms. For example, we look for a very dense subgraph with at least

δ
√
n nodes. We approximate the existence of a very dense subgraph

in the regime wherem = O(n.loдn), observed in social graphs.

2.1 Large dense subgraphs

There are several definitions of a cluster in a graph [1] and our

definition 1.1 assumes a large γ -clique, as setting the value of the
parameter γ to 1 corresponds to a clique for S . Studies of the Web

graph have previously used large bipartite cliques as a defining

marker of Web communities [22]. This differs from a common

definition of dense subgraph according to which the average degree

within the subgraph, ρ(S) = E(S)/|S |, must be greater than some

fixed threshold λ. A classical NP-hard [21] optimization problem

is to approximate ρ∗ = MaxS {ρ(S)} and to find possible witnesses

S∗ for ρ∗, in particular when the graph is given as a stream of

edges [8, 19, 25, 25]. If the entire graph is known, there are several

classical techniques to find largeγ -clique subgraphs. In this context,

it is hard to approximately detect subgraphs S with large value of

|E(S)|/|S |: an Ω(n) space lower bound is known [5] based on the

multiparty Disjointness problem [6, 10]. As we are interested in

large dense subgraphs, i.e. |S | ≥ Ω(
√
n), we observe in Corollary 5.3

that in this case the space lower bound is reduced to Ω(
√
n).

For a large very dense subgraph, we show in Corollary 5.4 that

the same space lower bound Ω(
√
n) applies. For a comparison, our

algorithm uses space O(
√
n. logn).

2.2 Sampling social graphs and dynamic graphs

Social graphs have a specific structure: a specific degree distribution

(a power law), and some very dense subgraphs. In our framework,

we do not store the entire graph as we sample the edges and will

only approximate these very dense subgraphs. For example, imagine

that the entire graph is a complete graph S . Each edge is selected

in the Reservoir with probability
k
m , so the Reservoir follows the

Erdös-Renyi model G(n,p) (see next section) where n = |S | and

p = k
m . It is well-known that there is a phase transition at p = 1/n,

for the emergence of a giant component. We first show that for a

γ -clique subgraph, a giant component emerges at p = 1/γ .n. We

then study sufficient conditions to observe a giant component in

the Reservoir.
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Dynamic graphs and models of densification in social graphs

have been studied in [24]. Dynamic algorithms approaches are

presented in [13]. We consider sliding windows defined by two

parameters: the time length τ , and the time step λ < τ such that

λ divides τ . In a stream of edges e1, e2, ....ei ..., each edge has a

timestamp. Let t1 = τ and ti = τ + λ.(i − 1) for i > 1. LetGi denote

the graph defined by the edges whose timestamps are in the time

interval [ti − τ , ti ]. We write G(t) for this sequence. The graphs
Gi+1 and Gi share many edges: old edges of Gi are removed and

new edges are added to Gi+1.

A static Reservoir sampling [30] takes a uniform sampling of the

edges in a fixed window. If the Reservoir R contains k edges, each

edge is chosen with probability
k
m . In a dynamic window wi , we

assume we can maintain k uniform samples in each Reservoir Ri ,
using techniques presented in [4, 9].

2.3 Random graphs

2.3.1 The Erdös-Renyi model. The classical Erdös-Renyi model

G(n,p) [17], generates random graphs with n nodes and edges are

taken independently with probability p where 0 < p < 1. The

degree distribution is close to a Gaussian centered on n.p. A giant

component is a connected component withΘ(n) vertices. A classical

study is to find sufficient conditions so that the random graph has a

giant component. In the Erdös-Renyi model G(n,p), it requires that
p > 1/n. If p = c/n with c > 1, we can be more precise on the size

of the giant component C and the size of the 2-core(C).

Definition 2.1. The 2-core(C) is obtained from C by removing

nodes of degree 1, iteratively.

Theorem 2.2 (6 from [29]). Let c > 1 be fixed. Consider the

Erdös-Renyi model G(n,p) with p = c/n. Let C denote the largest

connected component and 2-core(C) its 2-core. There exists b, t such
that t .e−t = c .e−c and b = 1 − t/c such that:

limn→∞IE |C |/n = b

limn→∞IE |2-core(C)|/n = b · (1 − t)

In addition, variables |C | and |2-core(C)| are both Gaussian in the

limit.

We will use this result in section 6. A similar result (Theorem

5.1) is given in [14]. When c is a large constant (tending slowly

to infinity), t is close to 0, Θ(ce−c ), and so b = 1 − Θ(e−c ) tends
to 1, therefore both C and 2-core(C) have size tending to n with

high probability. We use the following result which generalizes the

Erdös-Renyi condition to observe a giant component in a graphG.
Let du be the degree of a node u.

When we write that a property holds almost surely, we mean

that the probability is at least 1 − o(1) as n goes to infinity.
2

Theorem 2.3 ( [11]). Let
¯d =

∑
u d2

u∑
u du

. Let ϵ > 0 be fixed. Let Ĝ

denote the random subgraph of G obtained by choosing each edge

with probability p. If p > (1 + ε)/ ¯d then Ĝ almost surely has a giant

component.

A direct consequence which we will use in section 4.1 is the

following lemma:

2
In some other contexts, it is sometimes called asymptotically almost surely.

Lemma 2.4. Let ϵ > 0 be fixed. If S is a γ -clique and p > 1+ϵ
γ . |S |

then the random subgraph Ŝ obtained in G(|S |,p), almost surely has

a giant component.

Proof. Notice that
¯d =

∑
u d2

u∑
u du

≥

∑
u γ 2 . |S |2∑

u du
≥

γ 2 . |S |3

γ . |S |2 = γ .|S |.

In the first inequality

∑
u d

2

u is minimized when the degrees are

uniform. The second inequality uses the definition of a γ -clique :∑
u du ≥ γ .|S |2. Hence

1

¯d
≤

1

γ .|S |

We conclude that if p > 1+ε
γ . |S | ≥

1+ε
¯d

and by the Theorem 2.3, Ŝ

almost surely has a giant component.

�

2.3.2 Graphs with a power-law degree distribution. Most of the

social graphs have a degree distribution close to a power law (such

as a Zipfian distribution distribution where Prob[d = j] = c/j2).
The preferential attachment or the configurationmodel [28] provide

models where the degree distribution follows such a power law. In

the configuration model, the degree distribution can be an arbitrary

distribution D: given n nodes, we fix the number d1,d2, ...dmax of

nodes of degree 1, 2, ... where dmax is the maximum degree.

Definition 2.5. Given n, let c > 0 be such that

∑
i≥1

⌊nc/i2⌋ = n
(c is approximately 6/π 2

). In the Zipf degree sequence, there are

di (n) = ⌊nc/i2⌋ nodes of degree i for each i > 1. The number of

nodes of degree 1 is either ⌊nc⌋ or ⌊nc⌋ − 1, chosen so that the sum

of degrees is even; in the former case, all nodes have degree at least

1; in the latter case, there is one node of degree 0.

Lemma 2.6. For all n, the Zipf degree sequence is feasible: there
exists a graph with that degree sequence.

Proof. The definition of the degree sequence guarantees that

the sum of degrees is even, and it is easy to see that the sequence

then satisfies the Erdös-Gallai condition [18]. �

Lemma 2.7. The Zipf degree sequence satisfies the following ele-

mentary properties.

• The maximum degree is dmax =
√
cn.

• The total numberm of edges satisfies

|m −
cn ln(cn)

4

| ≤
cn

2

and the average vertex degree satisfies

|IE(du ) −
c ln(cn)

2

| ≤ c

• Let d = δ
√
n = dmax/

√
a with a = c/δ2

. The number of nodes

of degree greater than or equal to δ
√
n is

√
cn[

a−1∑
1

1

√
i
−
a − 1

√
a

] +O(1).

3 GRAPHS WITH ANDWITHOUT LARGE

VERY DENSE SUBGRAPHS

In this section, we consider random graphs with a power-law degree

distribution, first without large very dense subgraphs and then with

such a subgraph.
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3.1 Uniform configuration model

Definition 3.1. The configuration model generates a multigraph

from a given degree sequence. The model constructs a uniform ran-

dom perfect matching π between stubs as a symmetric permutation

without fixed points: if π (i) = j , meaning that stub i maps to stub j ,
then j , i and π (j) = i . To construct π , we greedily match stubs at

random. We obtain a multigraph.
3

For a given degree sequence, let D denote the random variable

equal to the degree of a uniform random node, and G denote the

multigraph obtained from the degree sequence according to the

configuration model.

Definition 3.2. Let di (n) denotes the number of vertices of degree

i in an n-vertex graph. We define a well-behaved asymptotic degree

distribution (di (n))i ,n :

(1) It is feasible: for each n, there exists a graph with degree

distribution (di (n))i .
(2) It is smooth: for each i , ℓi = limn→∞ di (n)/n exists.

(3) The convergence of i(i − 2)di (n)/n to its limit ℓi is uniform:

∀ϵ∃N∀n > N∀i |i(i − 2)di (n)/n − ℓi | < ϵ .
(4) L(D) = limn→∞

∑
i i(i − 2)di (n)/n exists and the conver-

gence is uniform:

∀ϵ∃i0∃N∀n > N |
∑
i≤i0 i(i − 2)di (n)/n − L(D)| < ϵ .

Theorem 3.3. (1(b) from Molloy-Reed [26]) ) Consider an asymp-

totic degree sequence such that:

(1) the asymptotic degree sequence is well-behaved,

(2) Q(D) =
∑
i (i

2 − 2i)ℓi is less than a constant less than 0,

(3) the maximum vertex degree is less than n1/9
, and

(4) the average vertex degree is O(1).

Then the following holds almost surely in the configuration model:

the largest connected component ofG has size at most Bn1/4
for some

constant B depending on Q(D); no connected component of G has

more than one cycle; and there are at most 2Bn1/4
cycles.

As noted in [26], for a well-behaved sequence we have

L(D) = lim

n→∞

∑
i
i(i −2)di (n)/n =

∑
i
i(i −2) lim

n→∞
di (n)/n = Q(D)

We will apply Theorem 3.3 to the Reservoir R to bound the size

of its largest connected component.

First we prove a simple property of the uniform configuration

model.

Lemma 3.4. In the uniform configuration model, G almost surely

does not have a γ -clique of size Ω(
√
n).

Proof. Assume, for a contradiction, that there exists a set S of

size c
√
n/a which is γ -dense. Then there exists a subset S1 ⊆ S of

size at least c1

√
n and that is at least c ′

1
γ -dense, and whose vertices

have minimum degree c ′′
1

√
n. Let A consist of all vertices of degree

of G at least c ′′
1

√
n. Note that A is independent of S (thus sparing

the need to do some union bound) and that |A| ≤ c2

√
n. Then A

itself must be c2γ -dense.

3
Note that the distribution of the multigraph thus obtained is not uniform in general

[26]. We can obtain simple graphs, i.e. without self-loops or multi-edges by rejection

sampling, and they satisfy the same properties.

Let E(A) the set of possible internal edges inA: then |E(A)| = θ (n),
whereas we have m = θ (n. logn) edges. The probability that a

random edge, created by the random stub-matching algorithm,

is in E(A) is θ (n/n. logn) = θ (1/logn). The expected number of

edges internal to A is at most θ (
√
n/logn) and the expected den-

sity |E(A)|/|A| = θ (1/logn), i.e. o(1). By Markov’s inequality, the

probability that A is c2γ -dense is O(1/logn), hence we obtain a

contradiction. �

3.2 Models with a large very dense subgraph

The configuration model generates a random graph which follows

a power law degree distribution, as explained in section 2.3.2, with

a uniform matching between the stubs. With a power law degree

distribution, the random graph G has a giant component almost

surely. We show in Theorem 4.2 that the Reservoir almost surely

does not have a giant component and that G does not have a large

very dense subgraph.

We now define a concentrated model, a stochastic power law

model that defines a graph that contains a large very dense sub-

graph. In Theorem 6.1, we will prove that in that case, there is an

algorithm, Algorithm 2, that not only decides but also reconstructs

(approximately) the underlying very dense subgraph.

Our model for a random graph with a very dense subgraph

(concentrated model) is as follows. Let δ ≤
√
c/2 and 0 < γ ≤ 1 be

fixed. We now construct a graph with a γ -clique .

• We attach d stubs (half-edges) to each node v of degree d of

the distribution D,

• Let S be a set of δ
√
n nodes chosen arbitrarily among all

nodes that have degree at least δ
√
n.

• For each vertexu of S , we mark δ
√
n−1 stubs ofu at random.

For each pair of marked stubs between different vertices,

we put in the graph the edge between those stubs indepen-

dently and with probability γ , creating a random graph over

S distributed as the Erdös-Renyi model G(|S |,γ );
• The remaining unmarked stubs of V and the marked stubs

not chosen in (1) are matched uniformly.

By Lemma 2.7, for δ ≤
√
c/2 there are at least δ

√
n nodes of degree

at least δ
√
n, so there exist such subsets S . Let 0 < γ ≤ 1 be fixed.

Notice that the second procedure may add some edges in S .

4 DECIDINGWHETHER THERE EXISTS A

VERY DENSE SUBGRAPH

Let C be the largest connected component of the Reservoir of size

k = Θ(α
√
n logn). In order to decide the graph property P : is there is

a γ -clique of size greater then δ .
√
n? Consider this simple algorithm,

where α > 1/γδ is an auxiliary parameter.

Algorithm Detect(γ , δ )

The bound n1/8
log

2 n is a direct application of the Molloy-Reed

Theorem 3.3. The sampling rate
k
m =

c .α
√
n logn/4

cn . logn/4
= α√

n
. We show

the correctness of this algorithm in two steps. In section 4.2, we

show in Theorem 4.2 that Algorithm Detect(γ , δ ) rejects almost

surely in the uniform case. In the next section, we show in Theorem

4.1 that Algorithm Detect(γ , δ ) accepts almost surely if there is a

large γ -clique .
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Input: a stream of edges of a graph G.
Output: whether G contains a large very dense subgraph

Let α = Θ(1/(γδ )).
• Use Reservoir sampling to maintain a reservoir R of size

k = Θ(c .α
√
n logn)/4).

•Let C denote the vertices of the largest connected

component of R.

• Accept iff |C | ≥ Θ(n1/8
log

2 n)

4.1 Analysis of Algorithm Detect(γ , δ ) :
Detection of a large very dense subgraph S

In this section we analyze the size of the largest connected com-

ponent C of the Reservoir used for the detection of a very dense

subgraph (Algorithm Detect(γ , δ ) ). The following theorem for-

malizes the fact that Algorithm Detect(γ , δ ) is correct with high

probability on any graph that contains a large γ -clique .

Theorem 4.1. Assume that G contains a γ -clique on S where

|S | > δ .
√
n. If α > (1+ϵ )

γ .δ , then Algorithm Detect(γ , δ ) Accepts

almost surely.

Proof. If S is a γ -clique ,

k

m
=

α
√
n
>

(1 + ϵ)

γ .|S |

By Lemma 2.4 there is a giant component as

k

m
>

(1 + ϵ)

γ .|S |

Hence Algorithm Detect(γ , δ ) accepts almost surely. �

The above theorem shows that on positive instances, Algorithm

Detect(γ , δ ) is almost surely correct. What about negative in-

stances? We observe that there exists an input graphG that does

not have a γ -clique of size strictly greater than ϵ
√
n, yet which

Algorithm Detect(γ , δ ) (incorrectly) accepts.G consists of a clique

K of size ϵ
√
n and of a path of size n − |K |. With high probability,

the Reservoir contains a component of size at least 90% of K , and
will therefore accept, incorrectly.

However this input is somewhat pathological. In Theorem 4.2,

we will prove that, assuming that G is drawn from the following

stochastic power law model, the algorithm is correct on G with

high probability.

4.2 Analysis of Algorithm Detect(γ , δ ) :
uniform case

Theorem 4.2. In the uniform configurationmodel (subsection 2.3.2),

Algorithm Detect(γ , δ ) Rejects almost surely.

The Reservoir R is constructed by a 3-step process, which we

call the Configuration-first process:

(1) Take the Zipf degree sequence (Definition 2.5).

(2) Use the configuration model (Definition 3.1) to generate a

multigraph G from the Zipf degree sequence

(3) Take a random uniform sample (without replacement) of k
edges from G to define the Reservoir R.

Instead, we will analyze the following process, which we call the

Configuration-last process:

(1) Take the Zipf degree distribution (Definition 2.5) as the de-

gree sequence of the overall graph G.
(2) Take a random uniform sample (without replacement) of 2k

stubs, determining the degree sequence in R.
(3) Use the Configuration model (Definition 3.1) to generate a

random multigraph R from that degree sequence.

Lemma 4.3. The above two processes give the same distribution for

multigraph R.

Proof. The configuration model is simply a greedy matching

of stubs. �

Proof. (of Theorem 4.2) By Lemma 4.3, we will analyze the

second process for generating R. The plan is to apply Theorem 3.3

to the configuration model generated from the degree sequence of R.
One difficulty is that that degree sequence is not deterministic but

random. Theorem 3.3 assumes a deterministic degree sequence for

each n. In our setting, we have a distribution of degree sequences

for each n.
We analyze the properties of the random degree sequence inR, so

as to prove that with probability 1−o(1) it satisfies the assumptions

of Theorem 3.3. We define one degree sequence for each n. We will

prove that this asymptotic sequence satisfies the assumptions of

Theorem 3.3.

The proof relies on a series of technical Lemmas, that are deferred

to the next subsections. The degree distribution of the Reservoir is

well-behaved: the first property (feasibility) holds by definition. The

second property (smoothness) holds by Lemma 4.5 for i = 1 and

by Lemma 4.6 for i ≥ 2. The third property (uniform convergence)

also holds by Lemma 4.8. The fourth property (uniform limit) holds

by Lemma 4.10. Thus the degree sequence is well-behaved. As to

the other assumptions of Theorem 3.3, the second one (Q negative)

follows from the previous Lemmas, the third one (maximum de-

gree) from Lemma 4.7, and the fourth one (average degree) from

Lemma 4.9.

By Theorem 3.3, we then have that, with probability 1−o(1), the

largest connected component of R has size O(n
1/4

R lognR ). Since

nR = O(
√
n logn), this is O(n1/8

ln
5/4 n), and then Algorithm De-

tect(γ , δ ) rejects. �

4.2.1 Mathematical analysis of the degree distribution. Let DR de-

note the distribution of degrees in R. Let NR denote the number of

nodes spanned by the edges of R, with expectation nR = IE[NR ],

and let Xi be the random variable equal to the number of nodes of

degree i in R, with expectation xi = IE[Xi ], where the expectation
is over the Configuration-last process. We will use the following

basic fact:

Lemma 4.4. If n ≥ 0 and 0 ≤ x ≤ 1 then (1 − x)n ≥ 1 − nx .

Lemma 4.5. In the Reservoir R:

• X1 ≤ NR ≤ 2k .

• IE(X1) = x1 ≥ 2k(1 −O( ln lnn
lnn )).

• Let η > 0. Then, with probability at least 1 − η we have:

X1 ≥ 2k(1 −O( ln lnn
η . lnn )).

• The limit in probability of X1/NR exists and is equal to ℓ1 = 1:

that is, plimn→∞X1/NR = 1.
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Proof. The first statement is obvious: the number of vertices of

degree 1 is at most the toal number NR of vertices spanned by the

k edges of R, which is at most 2k .
For the second statement, we start from an exact expression

for the expected number of nodes of degree 1 in R. A vertex that

has degree j in G has degree 1 in R if and only if the Reservoir

picks exactly one of its j edges, which has probability j · (α/
√
n)(1−

α/
√
n)j−1

. Since there are ⌊cn/j2⌋ vertices of degree j in G, we can
write:

x1 =

√
c .n∑
j=1

⌊
c .n

j2
⌋ · j

α
√
n
(1 −

α
√
n
)j−1.

Let ϵ = 2 ln lnn
α
√
c ln(n)

. We use Lemma 4.4 to write:

(1 −
α
√
n
)j−1 ≥

{
1 − ϵα

√
c if j ≤ ϵ

√
cn

0 otherwise.

Thus

x1 ≥ (1 − ϵα
√
c)

ϵ
√
c .n∑

j=1

⌊
c .n

j2
⌋ · j

α
√
n
.

On the other hand, since 2k equals the expected sum of the degrees

of vertices in R, and a vertex of degree j in G has expected degree

j · α/
√
n in R, we can therefore write

2k =

√
c .n∑
j=1

⌊
c .n

j2
⌋ · j

α
√
n

and

x1 ≥ (1 − ϵα
√
c)
©«2k −

√
c .n∑

j=ϵ
√
cn+1

⌊
c .n

j2
⌋ · j

α
√
n

ª®¬ .
Now we can bound the last term by

√
c .n∑

j=ϵ
√
cn+1

⌊
c .n

j2
⌋ · j

α
√
n
≤ c

√
nα

∫ √
c .n

ϵ
√
cn

dt

t
= c

√
nα ln(1/ϵ).

Recall thatk =mα/
√
n andm ∼ cn ln(n)/4, so that 2k ∼ c

√
nα ln(n)/2.

We obtain:

x1 ≥ 2k(1 − 2

ln(1/ϵ)

ln(n)
)(1 − ϵα

√
c).

Substituting the value of ϵ , we obtain x1 ≥ 2k(1 −O( ln lnn
lnn )).

For the third statement, we use Markov’s inequality on Y1 =

2k − X1. We have: Y1 ≥ 0, and IE(Y1) = 2k − x1 ≤ 2kO( ln lnn
lnn ) by

Lemma 4.5, so Pr(Y1 > IE(Y1)/η) < η, hence the result.
For the fourth statement, observe that X1/NR ≤ 1 always. Let

η = (ln lnn)2/lnn. Then, by the previous statement, with probabil-

ity 1 − η = 1 − o(1) we have

X1

NR
≥

X1

2k
≥ 1 −O(ln lnn/lnn)

1

η
= 1 −O(1/ln lnn), i.e.

Pr(|
X1

NR
− 1| ≥ ϵ) = O(

ln lnn

ϵ lnn
),

hence for all ε we have limn→∞ Pr [| X1

NR
− l1 | ≥ ε] = 0, therefore

plimn→∞
X1

NR
= 1. �

Lemma 4.6. In the Reservoir R:

• for i ≥ 2, the expected number of nodes of degree i satisfies

IE(Xi ) = xi ≤
(α

√
c)i

i !.i−1
.
√
c .n.

• The limit in probability of Xi/NR exists and is equal to ℓi = 0:

that is, plimn→∞Xi/NR = 0.

Proof. For the first statement, consider that a vertex that has

degree j in G has degree i in R if and only if the Reservoir picks

exactly i of its j edges; since there are ⌊c .n/j2⌋ vertices of degree j
in G, we can write:

xi =

√
c .n∑
j=i

⌊
c .n

j2
⌋ .

(
j

i

)
.(
k

m
)i .(1 −

k

m
)j−i

Since (1 − k
m )j−i ≤ 1 and

(j
i
)
≤ ji/i!,

xi ≤ c .n.(
k

m
)i .

1

i!

√
c .n∑
j=i

1

j2
.ji .

We use

∑√
c .n

j=i ji−2 ≤
∫ √

cn
0

t i−2dt = 1

i−1

√
cn

i−1

.

xi ≤ c .n.(
α
√
n
)i .

1

i!(i − 1)

√
cn

i−1

=
(α
√
c)i

i!(i − 1)

√
cn,

hence the first statement.

The second statement follows from Xi ≤ NR − X1 and the fact

that plimn→∞X1/NR = 1. �

Lemma 4.7. Let η > 0. Let i∗ denote the maximum vertex degree

in the Reservoir R. Then:

• With probability at least 1−η, we have i∗ ≤ log(n/η)/log log(n/η).
• IE(i∗) = O(logn/log logn).

Proof. Consider the first statement. For any i we have Pr(i∗ <
i) = 1−Pr(∃v of degree ≥ i). Let i ≥ 2α

√
c . With the union bound,

we compute:

Pr(∃v of degree ≥ i) ≤
∑

i≤j′≤
√
cn

⌊
cn

j2
⌋

∑
i≤j≤j′

(
j ′

j

)
(
k

m
)j (1−

k

m
)j

′−j .

A short calculation ensues:

(j′
j
)
≤ j ′j/j!, and 1 − k/m ≤ 1. Ex-

changing the order of summation, the right hand side is bounded

by

√
cn∑
j=i

cn(k/m)j

j!

√
cn∑

j′=j
j ′j−2 ≤

√
cn∑
j=i

cn(k/m)j

j!

1

j − 1

√
cn

j−1

.

Substituting k/m = α
√
c , the right-hand-side is bounded by

√
cn

√
cn∑
j=i

1

j − 1

(α
√
c)j

j!
.

Since j ≥ i ≥ 2α
√
c , we have α

√
c/j ≤ 1/2, and so we can use

bound the sum by the first term times (1 + 1/2 + 1/4 + · · · ) ≤ 2:

√
cn

√
cn∑
j=i

1

j − 1

(α
√
c)j

j!
≤ 2

√
cn

1

i − 1

(α
√
c)i

i
.

Fix η > 0. The right-hand side is less than η for i =
lg(n/η)

lg lg(n/η) .
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Consider the second statement. We write

IE(i∗) =
∑
i≥1

Pr(i∗ ≥ i) ≤ i0 +
∑
i≥i0

Pr(∃v of degree ≥ i).

For any i0 ≥ 2α
√
c , again we can write

IE(i∗) ≤ i0+
∑
i≥i0

√
cn

√
cn∑
j=i

1

j − 1

(α
√
c)j

j!
≤ i0+2

∑
i≥i0

√
cn

1

i − 1

(α
√
c)i

i!

≤ i0 + 4

√
cn

1

i0 − 1

(α
√
c)i0

i0!

Minimizing the right-hand-side over i0 ≥ 2α
√
c gives IE(i∗) =

O(lgn/lg lgn). �

Lemma 4.8. (Uniform convergence)

plimn→∞

∑
i≥2

i(i − 2)Xi
NR

= 0.

Proof. We must prove that for all ϵ > 0, we have Pr(
∑
i≥2

i(i −
2)Xi/NR > ϵ) = o(1).

Let η > 0. We first use NR ≥ X1 to infer i(i − 2)Xi/NR ≤

(i(i − 2)Xi/X1.

• By Lemma 4.5, with probability at least 1 − η we have X1 ≥

2k(1 − (1/η) ln lnn/lnn).
• By Lemma 4.7, with probability at least 1 − η, the maximum

degree i∗ satisfies i∗ = O(logn/log logn).
• Let 2 ≤ i ≤ i∗. By Markov’s inequality, with probability at

least 1 − η we have:∑
i≥2

i(i − 2)Xi ≤
∑
i≥2

i(i − 2)xi/η. Using Lemma 4.6, this

implies:∑
i≥2

i(i − 2)Xi ≤
∑
i≥2

(α
√
c)i

(i−1)!
.
√
c .n 1

η ≤ α
√
ceα

√
c√cn/η.

Combining, with probability 1−O(η), all the above statements hold,

implying:∑
i≥2

i(i − 2)
Xi
NR

≤ α
√
ceα

√
c√cn

1

η

1

2k(1 − (1/η) ln lnn/lnn)

Since α, c = Θ(1) and k = θ (
√
n logn), the above equation means

that with probability at least 1 −O(η):∑
i≥2

i(i − 2)
Xi
NR

≤
O(1)

η logn − log logn

Let η = (1/ϵ + log logn)/logn = o(1). Then

Pr(
∑
i≥2

i(i − 2)Xi/NR ≤ O(ϵ)) = 1 −O(η) = 1 − o(1)

�

Lemma 4.9. In the Reservoir R, with probability at least 1 − o(1),
the average vertex degree is at most 2. Here we take expectations over

the Configuration.last model, and then compute the average degree

over all vertices in the Reservoir.

Proof. The average vertex degree in R equals 2k/NR . The prob-

ability that it exceeds 2 equals the probability that NR < k , which
is at most the probability that X1 < k , which by Lemma 4.5 is

O(log logn/logn) = o(1). �

We now consider the last condition for a well-behaved degree

sequence: the limit L(DR ) = plimn→∞
∑
i i(i − 2)Xi/NR exists,

is equal to −1, and the convergence is uniform: ∀ϵ∃i0∃N∀n >
N |

∑
i≤i0 i(i − 2)Xi/NR − L(DR )| < ϵ . We will take i0 = 2.

Lemma 4.10. (Uniform limit) The limitL(DR ) = plimn→∞
∑
i i(i−

2)Xi/NR exists and is equal to −1. Moreover, the convergence is uni-

form: Let η > 0. Then, for every n > N , with probability at least 1−η
we have:

|

i=2∑
i=1

i(i − 2)
Xi
NR

− L(DR )| <
O(ln lnn)

η logn
= o(1)

and |
∑
i≥3

i(i − 2)
Xi
NR

| <
O(1)

η logn − log logn
= o(1)

Proof. This follows from Lemmas 4.5 and 4.8. �

4.2.2 High probability analysis for sequences of degree distributions.
We now consider a sequence of degrees indexed by both i and n,
where for each n: we pick a random degree sequence in R obtained

by the second step of the Configuration.last process. We use the

following construction to couple the degree sequences as n varies.

Given n and a degree sequence in the Configuration.last process,

let us write i∗ for the maximum degree and (X
(n)
i ) for the degree

sequence (X
(n)
1
,X

(n)
2
, ...X

(n)
i∗ ). We define

d((X
(n)
i )) =


1 if i∗ > N

1/9

R
or 2k/NR > 2

max(|
X (n)

1

NR
− 1|, |

∑
i≥2

i(i − 2)
X (n)
i
NR

|) otherwise.

For each n, we sort the degree sequences in non-increasing order

according to d , producing an order on those degree sequences,

(X
(n,1)
i ), (X

(n,2)
i ), . . ..

Then, to each number 0 < t < 1, we associate the unique se-

quence (X
(n,r )
i ) such that

∑
j<r Pr((X

(n, j)
i )) < t <

∑
j≤r Pr((X

(n, j)
i )).

Note that r is a function of t and n. This provides the desired cou-

pling: for each t , as n spans the natural integers we obtain a col-

lection of degree sequences, one for each n. We wish to apply the

Molloy-Reed Theorem (Theorem 3.3) to the resulting sequence of

degree sequences (X
(n,r )
i ).

Lemma 4.11. Consider a sequence indexed by both i and n, gener-
ated as above. Then the asymptotic degree sequence is almost surely

well-behaved and the other three assumptions of the Molloy-Reed

Theorem hold.

Proof. The lemmas 4.5, 4.8, 4.10 guarantee that the sequence is

well-behaved with probability 1 − o(1). The lemma 4.7 guarantee

that the maximum and average degrees satisfy the Molloy-Reed

conditions. The coeffcient Q is −1 and we can apply theorem 3.3.

The conclusion, i.e. the bound on the size of the largest connected

component C holds almost surely. Prt [|C | ≤ k1/4] = 1. �

We conclude that:

Pr
Configuration.last

[|C | ≤ k1/4] = Prµ ·Ω[|C | ≤ k1/4] →n→∞ 1
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5 SPACE LOWER BOUNDS

We reduce a hard problem for 1-way communication complexity to

the existence of an (1, δ )-large very dense subgraph. The multiparty

disjointness problem in the 1-way communication model is defined

as follows. There are q players and for each j = 1, ...q, player j has
an n-bit vector x j = x j ,1 . . . x j ,n . In the restricted problem:

• either all vectors x j are pairwise distinct (i.e. there is no

j, j ′, i such that x j ,i = x j′,i = 1),

• or there exists a unique i∗ such that

∧
j x j ,i∗ = 1, and all

vectors x j are otherwise pairwise distinct (i.e. there is no
j, j ′, i , i∗ such that x j ,i = x j′,i = 1).

In the 1-way communication model, information is only sent from

a player j to a player j ′ such that j ′ > j, and the last player, player

q, must decide whether there is an i such that

∧
j x j ,i = 1.

Lemma 5.1. [10] The restricted multiparty disjointness problem

with 1-way communication and q players requires communication

complexity Ω(n/q).

This lower bound is used to obtain other lower bounds for a

range of problem. An Ω(n) lower bound is presented in [5] for the

α-approximation of the maximum density ratio ρ∗, i.e. to find a

subgraph with a vertex S such that ρ(S) ≥ ρ∗/α .

Lemma 5.2. [5] An

√
q/2-approximation streaming algorithm for

the maximum density ratio requires space Ω(n/q).

We keep the same reduction presented in [5]: it reduces the

restricted multiparty disjointness problem with 1-way communi-

cation and q players to the

√
q/2-approximation of the maximum

density ratio ρ∗. Consider an instance of the restricted q-party
disjointness problem with 1-way communication. Player j holds
boolean variables x j ,1, x j ,2, · · · , x j ,n , for each j = 1, 2, . . . ,q. We

construct a graph G as a union of n disjoint graphs G1, ...Gn , each

over q vertices. For i = 1, 2, . . . ,n, the nodes of Gi are denoted

u1,i ,u2,i , ...uq,i . If x j ,i = 1 then we add the q − 1 edges from the

node uj ,i to all the other nodes uj′,i of Gi , for j
′ , j.

For a Yes instance of the multiparty disjointness problem, i.e.∧
j x j ,i∗ = 1, the graph Gi∗ is a clique of size q and the maximum

density ratio is therefore ρ∗ = (q − 1)/2. For a No instance, G is a

forest where each tree is of depth 1 and the maximum density ratio

is ρ∗ = (q − 1)/q = 1 − 1/q.
Let an input stream with the edges of player 1, then of player

2, ... then of player q coming last. A streaming algorithm for ρ∗

with approximation less than

√
q/2 and space o(n/q) could decide

between a Yes and a No instance of the q-multiparty disjointness

problem. If we assume that S must be large, let q = δ
√
n and we

obtain:

Corollary 5.3. A n1/4
-approximation streaming algorithm for

the maximum density ratio for S of size at least 2

√
n requires space

Ω(
√
n).

If we consider the very dense criterium, i.e. γ = 1, we obtain our

lower bound:

Corollary 5.4. The detection of a (γ , δ ) large very dense subgraph
requires Ω(

√
n) space.

Proof. Let q = δ
√
n in the reduction of Lemma 5.2 in [5]. A

Yes (resp. No) instance of the multiparty disjointness problem is

reduced to a Yes (resp. No) instance of the (1, δ )-Large very dense

subgraph problem. It implies the space lower bound of 5.1. �

6 CONCENTRATED CASE:

RECONSTRUCTING THE VERY DENSE

SUBGRAPH

In this section we propose an algorithm (Algorithm 2) to approx-

imately reconstruct a very dense subgraph. We show that in the

Concentrated model with a clique S (a γ -clique with γ = 1), the

output approximates S with high probability.

To reconstruct a clique, based on Algorithm Detect(γ , δ ) , it
would be tempting to output the largest connected component in

the Reservoir. However, in the Concentrated model with a clique

S , such an algorithm would overestimate the size of S and output

many vertices besides the vertices of S . Instead, we observe that
many of the extraneous vertices appear to be leaves of the con-

nected component of the Reservoir, and can thus be eliminated

by outputing the 2-core instead of the full connected component.

Formalizing this intuition leads to the following algorithm and

result.

Static very dense subgraph estimation Algorithm 2. Let

C be the largest connected component of the reservoir R. If |C | <

n1/8
ln

2 n then Reject, else output 2-core(C).
We now assume that the parameter α depends on n and slowly

grows to infinity. For example α = O(ln ln lnn) so that the anal-

ysis of the previous sections still hold. If α is constant, we just

approximate S within a constant factor.

Theorem 6.1. Assume the concentrated model (Section 3.2) with

a clique S , and let Ŝ = 2-core(C) denote the output of Algorithm 2. If

1/δ = o(α) and α = O(ln ln lnn/
√
c), then |S \ Ŝ | and |Ŝ \ S | almost

surely are both o(|S |).

Since S is a clique in this section, the edges of the reservoir R
that are internal to S are exactly distributed according to G(n,p).
Notice that:

• If v ∈ S , then the degree of v is O(
√
n)

• The degree of v in the Reservoir is logn

Recall Theorem 2.2 which gives us an estimate on the size of

|C | (|C | ≃ b .n) and of its 2-core(C) (|2-core(C)| ≃ b .(1− t).n). If S is

a clique, we can use this result and conclude that the 2-core(C) is
of size O(n) and in S with high probability. The proof follows the

successive steps, where results are taken with high probabilities:

• The Reservoir has no cycle disjoint of S , Lemma 6.2 ,

• The 2-core(C) consists of elements of S and possibly elements

of V − S which belong to cycles that go through S ,
• Lemmas 6.3 and 6.4 show that very few nodes ofV −S belong
to such cycles.

Lemma 6.2. With high probability, in the restriction of the Reser-

voir toV − S , the total size of connected components that have a cycle

is at most O(n1/4).

Proof. Use Molloy-Reed, Theorem 3.3. �

Nodes of S have a high degree. Some nodes in V − S have also

a high degree. Let us study false positives for S , that is, vertices u

8
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that belong to 2-core(C) but not to S .

µ = Pr[(u ∈ V − S ∧ u ∈ 2-core(C))]

One possibility is thatu is connected to 2-core(C)∩S by two disjoint
paths. We first consider the case where those paths have length 1.

Lemma 6.3. Let Z denote the number of verticesu inV −S incident

to two edges of R into S , (v1,u) ∈ R and (v2,u) ∈ R with v1,v2, ∈ S .
Then:

IE[Z ] ≤
√
n
O(α2)

(logn)2

Proof. By linearity of expectation, the desired quantity is equal

to:

A =
∑

u ∈V−S
Pr[there exist v1,v2 ∈ S such that (v1,u), (u,v2) ∈ R].

Edges (v1,u) and (v2,u) are border edges of S . By definition of S-
concentrated dynamics and of the size of R, S has O(α

√
n) border

edges in R. By construction of the power law graph, each of those

edges is attached to a random stub of V − S . Since there are ∼

cn logn/2 stubs inV−S , the probability that such an edge is attached
to a stub of u is Θ(du/(n logn)). We will also use∑
u ∈V−S

d2

u ∼

i=
√
cn∑

i=1

c .n.i2/i2 =

i=
√
cn∑

i=1

c .n = c
√
c .n.

√
n = Θ(n3/2).

A =
∑

u ∈V−S

(
O(α

√
n)

2

)
(Θ(du/n. logn))2 =

O(α2)

n.(logn)2

∑
u ∈V−S

d2

u

=
O(α2)

√
n

(logn)2

�

Lemma 6.4. Given i ≥ 2, let Y denote the number of chains

(v,u1,u2, . . . ,ui ,v
′) ∈ S × (V \ S) × · · · × (V \ S) × S of R. Then:

IE[Y ] ≤
√
n
O(α i+1)

(logn)i+1
.

Proof. We will give the full proof for i = 2, and the generaliza-

tion to i ≥ 2 is immediate. Fix two nodes u1,u2 ∈ V − S .

Pr[(u1,u2) ∈ R] = Pr[(u1,u2) ∈ G] Pr[(u1,u2) ∈ R |(u1,u2) ∈ G]

∼
du1
.du2

m
.
O(α)
√
n

For u1, the probability to be connected to S is:

Pr[∃v ∈ S : (v,u1) ∈ R] =
du1

m
O(α)

√
n.

Similarly for ui ,

Pr[∃v ′ ∈ S : (ui ,v
′) ∈ R] =

dui
m

O(α)
√
n.

Combining, the probability that there exists v,v ′ ∈ with a path

(v,u1,u2,v
′) in R is bounded by

Pr(∃v,v ′ ∈ S : (v,u1,u2,v
′) path in R) =

d2

u1

d2

u2

m3
O(α3)

√
n.

Summing over u1,u2 ∈ V − S and recalling that

∑
u d

2

u = O(n3/2)

and thatm = Θ(n logn), we obtain that the expected number of

chains, for i = 2, is

√
n
O(α3)

(logn)3
.

The generalization to i > 2 is straightforward.

�

Proof. (Proof of Theorem 6.1) We use Theorem 2.2 to prove that

2-core(C) contains a large fraction of the elements of S . Indeed, the
theorem means that |2-core(C) ∩ S | ≥ |S |b(1 − t) with b = 1 − t/c1

and te−t = c1e
−c1

, where the probability that an edge of S is put

in the Reservoir is c1/|S |. We have |S | = δ
√
n and α/

√
n = c1/|S |.

Hence c1 = α .δ .
Assume α >> 1/δ . Then c1 → ∞, so t → 0 and b → 1, and then

|S |b(1 − t) ∼ |S |, so |S \ Ŝ | = o(|S |).

To analyze |Ŝ \ S |, observe that the nodes ofV − S that belong to

2-core(C) either have two disjoint paths leading to S , or belong to

a cycle of V − S .
The nodes that belong to a cycle of V − S are few in number,

O(n1/4) by Lemma 6.2.

Concerning the nodes that have two disjoint paths leading to S ,
Lemmas 6.3 and 6.4 give: The number of nodes u inV − S that have

two disjoint paths leading to S is at most:∑
i≥1

i
√
n
O(α i+1)

(logn)i+1
≃
√
n
O(α2)

(logn)2
.

Thus the expected total number of nodes ofV − S that belong to

2-core(C) is o(|S |). �

7 DYNAMIC GRAPHS

Consider the sequence of graphs Gi defined by the edges in each

window wi . We keep a Reservoir Ri but only store the 2-core of

the large connected components. We extend our model of random

graphs with or without a very dense subgraph to the dynamic case.

Let P be the graph property: there is a γ -clique of size greater

than δ .
√
n. How do we decide ^ P(t), i.e. there is a windowwi at

some time ti ≤ t such that Gi has a γ -clique of size greater than

δ .
√
n? Recall that α = Θ(1/γ .δ ) as in the static case.

Dynamic very dense subgraph detection Algorithm 3 (t):
let Ci be the largest connected component of the reservoir Ri of size
k = Θ(α

√
n logn) at time ti ≤ t . If there is an i such that |Ci | ≥

n
1/8

i ln
2 ni Accept, else Reject.

Consider the following Dynamics applied to a given graph G:
remove q ≥ 2 random edges, uniformly on the set of edges of

G, freeing 2.q stubs. In the case of the uniform Dynamics, we

generate a new uniform matching on these free stubs to obtain G ′
.

In the case of the S-concentrated Dynamics, we have fixed

some subset S of size δ .
√
n among the nodes of high degre and

some γ . Consider the q edges that we remove. Partition then into

internal edges E(S), external edges in E(S̄) and cut edges of E(S, S̄).
There are three cases and the analysis generalizes the static case.

7.1 Dynamics models

For the S-concentrated Dynamics, we have fixed some subset S
of size δ .

√
n among the nodes of high degre and some γ . Partition

9



,

the q removed edges into internal edges E(S), external edges in E(S̄)
and cut edges of E(S, S̄). There are three cases:

(1) The graph G had a γ -clique subgraph and we will maintain

such a very dense subgraph. We rematch the corresponding

stubs of each class with a uniformmatching.We conserve the

same number of edges in E(S), E(S̄) and E(S, S̄) and maintain

a γ -clique subgraph.

(2) The graph had no γ -clique subgraph. Let q′ be the number

of edges in E(S, S̄). With ⌊q′/2⌋ new edges in S , we don’t
have a γ -clique subgraph. If q′ is even, we match uniformly

all the stubs in S . If q′ is odd, we only take q′−1 stubs, match

uniformly all the stubs in S and leave one edge in E(S, S̄).
(3) The graph had no γ -clique subgraph but with q′′ < ⌊q′/2⌋

edges, we reach a γ -clique subgraph. We take the q′′ stubs
in S , match uniformly all the stubs in S , and match the other

edges in E(S, S̄) uniformly.

How does the distribution of random graphs evolve in time? Con-

sider the Markov chain M where nodes are the possible graphs

and transition probabilitiesM(i, j) are the probabilities to obtainG j
fromGi with the process of removing random q edges fromGi and

recombining the 2q stubs with the uniform or the S-concentrated
Dynamics.

Lemma 7.1. For the uniform Dynamics the stationary distribution

of the Markov chainM is uniform. For the S-concentrated S-Dynamics,

the stationary distribution of the Markov chainM is uniform among

all the graphs with a γ -clique S .

Proof. By definition of theMarkov chain, for all i ,
∑
j M(i, j) = 1.

The transition from Gi to G j can also occur backwards from G j
to Gi , and similarly for many Gk which lead to Gi . Therefore for

all j,
∑
i M(i, j) = 1 as it sums all possible transitions starting from

G j . The matrixM is then doubly stochastic and ergodic. Hence the

stationary distribution is uniform. Fo the S-concentrated dynamics,

we reach a γ -clique subgraph with the right number of edges.

Each transformation of a γ -clique subgraph into another one is

reversible. Hence the matrix M is also doubly stochastic and the

stationary distribution is uniform. �

General Dynamics are presented and analysed in Appendix A.

7.2 Implementation

An implementation of the method, in [12], considers streams of

edges defined by Twitter graphs
4
associated with tags (for example

#bitcoin or #cnn). With windows of length τ = 1 hour and step

λ = 30 mins, there were m = 20.10
3
edges per window and the

size k of the Reservoir was 500, of the order of

√
m. The #bitcoin

stream has a unique giant component C in the Reservoir with

approximately 100 edges, i.e. a compression factor of approximately

2.10
2
. In practice, a giant component in the Reservoir is the witness

of a large γ -clique, even though the coefficient γ can be small. The

analysis of the variations of the sizes of the giant components over

time is one of the motivations for the dynamic random graphs

introduced in this section.

4
The nodes of a Twitter graph are the tags, either @x or #t. A tweet sent by @x which

contains the tags @y and #t generates the edges (@x , @y) and (@x , #t ). Given a

tag or a set of tags, Twitter sends in a stream all the tweets which contain one of the

selected tags. This stream of tweets is transformed into a stream of edges.
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A DECIDING PROPERTIES OF DYNAMIC

RANDOM GRAPHS

A general Dynamics is a function which chooses at any given

time, one of the two strategies: either a uniform Dynamics or an

S-concentrated Dynamics for a fixed S . An example is the Step

Dynamics: apply the uniform Dynamics first, then switch to the

S-dynamics for a time period ∆, and switch back to the uniform

Dynamics. Notice that during the uniform Dynamics phase, there

are no large components in the Reservoir. For the step phase, we

store some components which will approximate S .
A stream G(t) has a large γ -clique subgraph if there is Gi and

Si such that |Si | > δ .
√
n and α > (1+ϵ )

γ .δ for a ti ≤ t . Assume

Prob[ Algorithm 1 Accepts ] ≥ 1−η in Theorem 4.1. We now show

that the detection error of Algorithm 3 decreases.

Corollary A.1. For a stream which has a large γ -clique (which

satisfies the conditions of Theorem 4.1) during a time interval ∆ ≥ τ ,

Algorithm 3 is such that Prob[ Algorithm 3 Accepts ] ≥ 1 − η∆/τ .

Proof. There are ⌊(∆ − τ )/λ⌋ different windows but ⌊∆/τ ⌋ in-
dependent windows, i.e. windows with no overlap. The samples

are then independent and we can then amplify the success proba-

bility. �

For the random graphs generated by the uniform Dynamics,

the situation is different and the error will increase. If we assume

that: Prob[ Algorithm 1 Rejects ] ≥ 1 − η′, the detection error of

Algorithm 3 is given by:

Corollary A.2. For a stream of random graphs which follow the

uniform Dynamics, Algorithm 3 is such that:

Prob[ Algorithm 3 Rejects ] ≥ 1 − (
t − τ

λ
).η′

Proof. There are ⌊ t−τλ ⌋ windows and the error probability is

less than the sum of the errors for each window. �

A.1 Dynamic estimation of S
Consider random graphs generated by a step Dynamics, i.e. a strat-

egy which maintains an S concentration during a time interval

∆ ≥ τ . In this case, we can improve the quality of the approxi-

mation of Theorem 6.1. Assume |S \ Ŝ | ≤ ρ.|S | for Algorithm 2,

where ρ ≤ 1. Let ε be an arbitrary tolerated error, and say that Ŝ

ε-approximates S if |S \ Ŝ | ≤ ε .|S |

Dynamic very dense subgraph estimation Algorithm 4 (t,

ε). Let Ŝ = ∅. Consider the first independent I = log(ε)/log(ρ) win-
dowswi whenCi , the largest connected component of the reservoir Ri

at time ti < t is such that |Ci | > n
1/8

i ln
2 ni . Then Ŝ = Ŝ ∪ 2-core(Ci ).

Corollary A.3. For a stream generated by the step Dynamics

during a time interval ∆ ≥ I .τ , Algorithm 4 will ε-approximate S
almost surely.

Proof. There are at least I independent windows where we

have a large connected component. For each element in S , there

is a probability ρ not to be selected in Ŝ for each window. For I
independent windows, the probability not to be selected is ρI = ε ,
hence a point is selected with probability 1 − ε . By Theorem 6.1

very few nodes of V − S are in Ŝ . �
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