
Network Science 9 (S1): S157–S174, 2021
doi:10.1017/nws.2021.3

OR I G I N A L ART I C L E

Logic and learning in network cascades
Galen J. Wilkerson∗ and Sotiris Moschoyiannis

University of Surrey, Guildford, UK GU2 7XH, UK (e-mail: s.moschoyiannis@surrey.ac.uk)
∗Corresponding author. Email: g.wilkerson@surrey.ac.uk

Action Editor: Hocine Cherifi

Abstract
Critical cascades are found in many self-organizing systems. Here, we examine critical cascades as a design
paradigm for logic and learning under the linear threshold model (LTM), and simple biologically inspired
variants of it as sources of computational power, learning efficiency, and robustness. First, we show that
the LTM can compute logic, and with a small modification, universal Boolean logic, examining its stability
and cascade frequency. We then frame it formally as a binary classifier and remark on implications for
accuracy. Second, we examine the LTM as a statistical learning model, studying benefits of spatial con-
straints and criticality to efficiency. We also discuss implications for robustness in information encoding.
Our experiments show that spatial constraints can greatly increase efficiency. Theoretical investigation and
initial experimental results also indicate that criticality can result in a sudden increase in accuracy.

Keywords: percolation; critical cascades; information cascade; information diffusion; influence maximization; network
rewiring; neuronal avalanches; statistical learning; linear threshold model; universal Boolean logic

1. Introduction
Critical network cascades are ubiquitous, found in brain function (neuronal avalanches), social
and biological systems (information cascades), epidemics (SIR model), and many other self-
organizing systems where there is interaction between entities (Bak et al., 1987; Easley et al., 2010;
Newman, 2018). A very simple Boolean model that undergoes critical cascades (also known as
avalanches) as a function of network topology is available (Watts, 2002) as a networked version of
the linear threshold model (LTM) (Sakoda, 1971; Schelling, 1971; Granovetter, 1978), which we
use as a basis for simple, biologically motivated learning. This is a departure from usual studies
of the LTM, since we treat it not only as a model of critical cascades in complex systems, but as a
model for classification and statistical learning.

Here our focus is on the benefits of certain elementary and biologicallymotivatedmodifications
to this simple LTM. Of particular interest are logic computation, spatial (geometric) constraints,
criticality, lack of type I error, and information encoding. This is a preliminary investigation of
these simple modifications, how they scale over large networks, and their effect on the network’s
ability to solve problems. Logic is useful to understand if comparing the action of natural networks
to various types of artificial learning and computation. Presence or absence of types of error may
contribute to robustness of classification or computation actions of the network (Rubin et al.,
2017). Criticality occurs as percolation (see below) in many naturally occurring networks and
may be a key to efficient learning. A geometric constraint (distance) is motivated by energetic or
metabolic costs of edges in many real-world networks (Lynn & Bassett, 2019). Information coding
may also be important as an efficient way for the network to take in information or express its
action (Dayan & Abbott, 2001).
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In the fields of complex systems and closely related network science, information cascades have
been studied as a form of information diffusion in recent years (Jalili & Perc, 2017; Easley et al.,
2010). Generally speaking, this phenomenon describes how information is passed between entities
over a network and may describe how the information is processed by the network, subject to
parameters such as topology. Of particular interest is identification of important nodes in these
networks by various network centralitymeasures.

While it is impossible to model all of the brain’s or a social network’s dynamical operations with
exactness, here we investigate fundamentals of computational power, efficiency, and robustness
in one of the simplest learning models of cascades sufficient for computation and classification
(Vapnik, 1999). We therefore attempt to maintain a policy of simplicity throughout this work,
using basic models or modifications to them, since complex behavior can emerge as these models
are scaled in size. We study whether actions or small modifications of the LTM are sufficient to
perform complex information processing and learning.

Here we must mention the McCulloch–Pitts (MP) neuron (McCulloch & Pitts, 1943), as the
origin of neural networks and other areas of machine learning (Murphy, 2012, pp. 568-569), but
also bearing some similarity to action of a single node in the LTM (described below), since both
are Boolean threshold units. Like the LTM, the MP neuron has Boolean inputs and outputs and
a threshold value, but unlike the LTM, it contains a vector of real weights, as well as inhibitory
inputs which can block the firing of the neuron. It then computes a dot product of the inputs
with the weights, firing if this dot product attains the threshold and no inhibitory inputs are
present. Subsequent to the MP neuron, seen especially in backpropagation and gradient descent,
a major focus in machine learning has been on adjusting the weights of these networked neurons
to achieve learning or passing the neuron output through an activation function of various types
to improve learning (Murphy, 2012). The mechanism we investigate here with the LTM is to
continue to use simple thresholding at the neuron level, but rather than making the neuron
more complex, to look at ways learning emerges from simple Boolean neuron connectivity. Then
the activity of the network becomes synthesis of information and decisions from micro-scale to
macro-scale (Lynn & Bassett, 2019). This is exactly the action of critical state change observed in
many naturally occurring networks undergoing cascades (Beggs & Plenz, 2003; Easley et al., 2010;
Newman, 2018).

We motivate our biological perspective and simplicity by information cascades and informa-
tion flow in social networks (Kempe et al., 2003), similar neuronal avalanches in brain networks
(Hesse & Gross, 2014), along with the other related fields mentioned above (Easley et al., 2010).
Arguably, cascades and avalanches are a complex activity that results from very simple interaction,
hence our interest here. Of course, much more complex and dynamic activity can also be found
in biological networks (Bohte et al., 2002), not our focus in this article.

Critical cascades are a kind of percolation, a model found in theoretical physics and graph the-
ory (Stauffer & Aharony, 2018). A key feature of cascade percolation is a sudden phase transition
of the cascade size or frequency (macro-state) order parameter as the individual edge or node
(micro-state) control parameter reaches a critical value. In biological systems, it has been shown
that these critical avalanches are fundamental and can lead to optimal information processing (the
“criticality hypothesis”) (Hesse & Gross, 2014; Shew & Plenz, 2013). It has been shown that the
LTM on Erdos–Renyi graphs undergoes a phase transition in cascade frequency as a function of
the control parameter connectivity, expressed as the mean degree z, or graph edge probability p
(Watts, 2002).

The problem of learning in networks undergoing cascades lies at the intersection of social and
computer science (information diffusion and influence maximization) (Domingos & Richardson,
2001; Kempe et al., 2003; Khalil et al., 2014), neuroscience (neuronal avalanches, neural plasticity)
(Lynn & Bassett, 2019; Shew & Plenz, 2013), percolation theory (statistical mechanics and
graph theory) (Stauffer & Aharony, 2018), and learning theory (cognitive science and statistical
learning) (Coolen, 1998; Hastie et al., 2009; Rojas, 2013; Vapnik, 1999).
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Brain-motivated origins and recent rapid advances notwithstanding neither modern com-
puting nor machine learning adopt critical cascades as a design paradigm, although they suffer
significant deficits in efficiency when compared to naturally occurring information processing
systems (Coolen, 1998; Minsky & Papert, 1969; Rojas, 2013) and seem to be reaching physical
limits (Conte et al., 2019).

This last statement means that the area of critical cascades as a computational or statistical
learningmodel remains largely unexplored. As stated, our present work originates from the simple
model of critical percolation in the form of global cascades (Newman, 2018; Watts, 2002). There
has been work on identifying influencers and minimizing epidemics in the SIR model, another
kind of cascade (Chen et al., 2012; Newman, 2002). Also there is work on various attacks to dis-
rupt or disconnect networks, which relates to percolation because of connectivity (Callaway et al.,
2000). The nascent field of guided self-organization also has some connections, since a cascade can
emerge from node-level connection choices in adaptive rewiring (Jarman et al., 2017; Prokopenko,
2009). In fact, we view our present work as fitting into this context, since we discuss criticality here
as well as constraints which could result in efficient individual edge choices and emergent learn-
ing. Also similar to the present work is that on influence maximization (Domingos & Richardson,
2001; Kempe et al., 2003; Khalil et al., 2014). However, again there the focus is not identical to
ours, since that work is framed as an maximization problem, and usually focuses on approxima-
tion algorithms and sub- or super-modular activation in a social influence context rather than
criticality or percolation and learning.

In machine and deep learning, there has been some work on phase transitions in the Hopfield
model, Markov random fields, and restricted Boltzmann machines. These have theoretical links
to the Ising model, another basic physical model that can undergo phase transitions (Barra et al.,
2017; Bruce et al., 1987; Häggström, 2000; Wang et al., 2013), so this has some closer connections
to our work. Here however, we examine an arguably simpler model and some biologically moti-
vated variants. Deep learning generally has some connections here as a form of network-based
statistical learning, but as we have stated these methods do not focus on criticality or cascades,
but rather on edge weight optimization (Rojas, 2013). In the field of brain research, there has
been work on the physics of neuronal networks and their ability to learn and process informa-
tion, as well as the benefits of criticality, but again this is largely not framed as statistical learning
(Bassett et al., 2011; Beggs & Plenz, 2003; Hesse & Gross, 2014; Lynn & Bassett, 2019; Shew &
Plenz, 2013). There has been development at the intersection of brain research andmachine learn-
ing in areas of spike timing dynamics in networks, particularly in applying techniques such as
backpropagation and gradient descent (Bohte et al., 2002). While these are very exciting, they
are also complex and dynamical models, investigating temporal patterns over networks. It has
also come into question whether backpropagation is biologically plausible (Bengio et al., 2015)
and seems that self-organization may be a more tenable mechanism (Hesse & Gross, 2014). Our
interest is again in the simplest possible biologically motivated model of cascades and what it can
achieve. Finally, there has been work on percolation in spatial networks, but also not as learning
(Barthélemy, 2011; Gao et al., 2015; Gray et al., 2018; Penrose, 2003).

In the first section of the present work, we introduce the LTM and show how it can compute
monotone logical operations. We then develop an antagonistic linear threshold model (ALTM),
by taking the complement of the original labeling rule, and show that it can compute (function-
ally complete) universal logic. We also observe that the ALTM introduces order dependence and
compare its cascade frequency to that of the LTM. Finally, we introduce a formalism of the LTM
as a binary statistical classifier and discuss classification accuracy and error.

In the second section, we develop a formalism for the original LTM as a statistical learning
model.We then experimentally investigate the biologically motivated effect of spatial distance and
criticality on learning in the LTM (Wilkerson, 2021). Finally, we examine how the LTM robustly
encodes information.
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2. Methods
2.1 Linear Threshold Model (LTM)
The LTM, which can undergo critical cascades, is defined as follows (Watts, 2002):

1 Linear threshold model (LTM)
1: G←G(N, p) � create Erdos–Renyi network
2: φ̄←∼U[0, 1]N � set random threshold values
3: mark all nodes unlabeled
4: set A such that |A| �N � randomly set a few seeds
5: while σ (A) changes do � while node labels change
6: randomly examine all unlabeled nodes u, applying the labeling function

g(u, ν, φ)=
{
label u ν ≥ φ

no change ν < φ
(1)

for ν = L(u)
deg(u) , where ν is the fraction: L(u) number of node u’s neighbors labeled over deg(u).

We can think of the labeling of the seed nodes as a shock or perturbation of the system, which
was otherwise at stable equilibrium (Watts, 2002). The cascade size (or activation) σ (A) ∈ [0, 1]
on seed set A is the resulting fraction of nodes that are labeled after the cascade of the LTM above
is run in steps 5–6, σ (A)= num labeled

N . A global cascade is said to occur if the cascade size attains
a predetermined fixed fraction of the network (σ (A)≥�), where � ∈ [0, 1] is a constant. For
example, in prior work, a value of �= 0.1 has been used (Gray et al., 2018; Watts, 2002), so we
would be evaluating σ (A)≥ 0.1 for the global cascade (Gray et al., 2018; Kempe et al., 2003;Watts,
2002).

The cascade frequency is then defined over a number of trials as the fraction of times the cascade
size reaches �:

fc = |σ (A)≥�|
num trials

(2)

Here, graph edges are considered to be undirected and unweighted. Note that in some formula-
tions of the LTM, edges are directed and have weights (Kempe et al., 2003).

2.2 Cascades and logic
2.2.1 Equivalence of LTM to AND, OR
The threshold function in the LTM can compute logical AND or OR, depending on the thresh-
old value. Low-threshold nodes are easily influenced, corresponding to OR, while high-threshold
nodes are more difficult to influence and correspond to AND. Formally, we see that for a node
having two neighbors and a threshold φ ≤ 1/2, its activation is exactly equivalent to a logical OR.
Similarly, when the node has threshold φ > 1/2, it is equivalent to AND (Figure 1) (Wilkerson &
Moschoyiannis, 2019).

Generally, for k neighbors, a node behaves like multi-input OR for any φ ≤ 1
k , and multi-input

AND for any φ > k−1
k . For 1

k < φ ≤ k−1
k , a node behaves like a threshold logic unit (Rojas, 2013).

Note that these are monotone Boolean functions (increasing the number of true inputs cannot
decrease the number of true outputs).
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Figure 1. Cascades compute logic: A graph focus-
ing on node C’s behavior from neighbors (inputs) A
and B under the original labeling rule (Equation (1)).
Top: Truth table for OR and corresponding cascade
network when node C’s threshold φ ≤ 1

2 . Bottom:
Truth table for AND and cascade network when C’s
φ > 1

2 . Networks drawn as directed to show flow of
information.

Figure 2. Logic under the complementary labeling
rule (Equation (3)): Top: Truth table for NOR and
corresponding cascade network whenever node C’s
φ ≤ 1

2 . Bottom: Truth table for NAND and cascade
network whenever C’s φ > 1

2 .

Figure 3. An example of a cascade using the antagonistic model’s (ALTM’s) rule (Equation (3)), starting at seed node A (step I)
and proceeding to nodes C (step II) and D (step III).

2.2.2 Antagonistic cascades and NAND/NOR
Making a single modification to the LTM, we construct a new antagonistic labeling rule simply by
taking the complement of Equation (1), reversing the inequalities:

¬g(u, ν, φ)=
{
label u ν < φ

no change ν ≥ φ
(3)

again for node u and ν the fraction of neighbors labeled. The result of this rule is that each node
computes NAND or NOR. Also note that this function is monotonically decreasing (Figure 2).
Antagonistic interactions have been investigated in social networks (Leskovec et al., 2010; Altafini,
2012) and can also be constructed from connected MP neurons using excitatory and inhibitory
connections (Rojas, 2013, pp. 34).

For convenience, we will call the LTM with this antagonistic labeling rule (Equation (3)) the
ALTM. The ALTM can also undergo cascades. An example of the cascade operation in the ALTM
can be seen in (Figure 3).
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Figure 4. The antagonistic labeling rule creates order
dependence. In a small fixed network, nodes B and
C have φ > 1

2 ≡ NAND (¬∧ ) I. Start with seed node
A labeled. The final state of the network depends on
whether we examine II. B first or III. C first.

Figure 5. A half-adder implemented by an ALTM network having the antagonistic labeling rule (Equation (3)). Here all nodes
have been assigned φ values equivalent to NAND. This is a very small example of the power of the functionally complete
Boolean logic that can be computed by these networks.

Note that while the LTM labeling is stable with respect to the order of node examination and
converges to equilibrium, the ALTM is very unstable and order-dependent (Demirel, 2013, p. 13).
Chosen in another order, the ALTM’s cascade may obtain a different final state of the network
labeling as in Figure 4.

2.2.3 Universal Boolean logic and the XOR problem
As stated, the original LTM, computing a monotone Boolean function at each node, can only
compute monotonically increasing functions on the network. (There are no negative weights
or inhibitory connections.) Therefore, it is unable to compose functions to compute (non-
monotone) XOR, a problem faced by early neural networks (Minsky & Papert, 1969; Rojas,
2013).

However, the ALTM’s antagonistic labeling rule (Equation (3)) computes NAND or NOR so
when connected in a logic circuit can compute universal Boolean logic, including NOT, NAND,
XOR, and much more complex Boolean functions. The universality of NAND or NOR composi-
tion is well known and is called functional completeness (Savage, 1998). An example of this can be
seen in a half-adder (Figure 5), a common component in modern integrated logic circuits (Mano,
1993, pp. 19-20).
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Figure 6. Bimodality in the cascade frequency fc in the ALTM, here on a network with 10,000 nodes over 100 realizations per
average degree z, a fixed φ∗ = 0.18 for all nodes, and one labeled seed node. A cascade is called global when its activation
size is above the median cascade size (�= 0.62) of the entire graph.

2.2.4 Cascade frequency
Frequency of global cascades under the ALTM (Figure 6) approximately complements that of
the LTM ((Watts, 2002), Figure 2b). We calculate the frequency that the cascade size exceeds the
global threshold (Equation (2)) of median cascade size (�= 0.62), a fraction of the entire graph,
over 100 samples, withN = 10, 000. Here a fixed node threshold φ∗ = 0.18 is assigned to all nodes
(as in the original work (Watts, 2002)). The minimum cascade frequency occurs in the samemean
degree (z) region where frequency was maximized in the LTM (Watts, 2002).

A vulnerable node u is a node having degree k and threshold φ small enough that, if only one of
u’s neighbors becomes labeled, u will become labeled. Near mean degree z= 5, we see low cascade
frequency (Figure 6). Here the graph may still be tree-like, having a very small clustering coeffi-
cient (〈C〉 ∝ z

N−1 ≈ 0.0005), so that seeds largely reach nodes from only one neighbor. However,
since we have chosen φ∗ = 0.18, nodes are not vulnerable, since the fraction of neighbors labeled
ν = 1/5> 0.18= φ∗ (Watts, 2002).

In the original LTM model, as z increases, densely connected unlabeled nodes tend to dilute
or block the effects of incoming labeled nodes, which are often unable to overcome thresholds φ,
driving down the cascade frequency. Just as there is a “blocking” effect of edge density in the LTM,
in the ALTM there is an expected “anti-blocking” effect as z increases (Watts, 2002). In the right-
hand side (z≥ 8) of the ALTM cascade frequency (Figure 6), unlabeled dense networks tend to
be easily influenced by incoming labels, increasing labeling until negative feedback (antagonism)
discourages further labeling, as seems indicated by the lower peak in the right-hand mode.

2.3 Cascade as classification
The activation σ of a cascade from a set of labeled seed nodes A can be considered a binary
classifier. Here, we mainly consider the original LTM.

We note that for the LTM we can choose a set of nodes to be an input set, and rather than
choosing any random seed in the graph, only choose seed nodes out of that input set without loss
of generality to previous results on cascade percolation (Watts, 2002). Therefore, starting with
one possible seed node a ∈A, so that if a= node1(a labeled seed), |A| = 1, or if a=∅ (no seed
labeled), |A| = 0, we can restrict the seed set A to be either that particular node (A= {a}), or the
null set (A=∅). We remind the reader that, when we run a cascade on a set of seed nodes, we
measure the output as in previous work (Watts, 2002), calling the cascade global if it attains some
predetermined global threshold �, a fraction of the graph’s nodes (Equation (2)). We can then
consider the cascade action as a binary indicator function (binary classifier) (Murphy, 2012, p. 3),
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Figure 7. The confusionmatrix of seed node classification. The LTM cannot undergo a cascadewhen there is no seed labeled
(false positive); therefore, there is no type I error. Clouds are abstract representations of LTM networks.

where global or not global cascade equate to True or False, respectively, as we see in statistical
learning (e.g., medical testing). The function ŷ estimates the classification of the activation σ (A)
on seed node set A, evident in the confusion matrix (Figure 7).

The classification is therefore,

ŷ(G,A, φ̄)=
{
True σ (A)≥�

False σ (A)< �
(4)

for graph G, seed node set A, vector of node thresholds φ̄ ∈ [0, 1]N , activation (cascade) function
σ : X→ Y , X⊆A, Y ∈ {False, True}, and global threshold � ∈ [0, 1]. Intuitively, we can then see ŷ
as classifying the truth or falsity of the input seed setA via the cascade activation σ . From a popular
classification example, for a particular data point (e.g., patient), we can then consider labeling or
not labeling of LTM seeds as presence or absence of particular features (e.g., fever, cough, etc.) and
the hypothesis as ill (True) or not ill (False). If only one seed is present, only one feature is being
used for classification.

This has some interesting implications for accuracy, particularly sensitivity and specificity, as
follows:

When a data point is “classified” via its input feature (seed) by ŷ (Equation (4)), it is possible
to measure sensitivity or true positive rate (TPR) in the usual way (TPR= TP

N+ ), whereby N+ =
TP+ FN, the true positives together with false negatives make up the number of positive results
also seen below (Equation (5), LHS) (Murphy, 2012, pp. 181–182).

However, as we have seen, the LTM composes monotone functions; therefore, cascades cannot
occur with no seed labeled (Figure 7). Thus, it is not useful or informative to run cascades without
seed nodes, since trivially true negatives equal number of negative cases, TN =N−, so here we
do not run them. Therefore, here Ntrials =N+, the number of trials equals the number of positive
results. Cascade frequency measures the number of times global cascades (true positives) occur
over the total number of trials (Equation (2)), and thus (Equation (5), RHS). Letting TP be number
of true positives (σ (A)≥�) and FN number of false negatives, TP+ FN =Ntrials (Figure 7), we
thus obtain that cascade frequency is equivalent to sensitivity:

TPR= 1− β = TP
N+
= TP

(TP+ FN)
= TP

Ntrials
= fc, (5)

where 1− β is sensitivity, β is type II error, and fc is cascade frequency.
Since it is impossible to obtain a cascade when no seed is labeled (A=∅), the number of false

positives is always zero (Figure 7), and type I error is absent, giving us

TNR= 1− α = TN
(TN + FP)

= TN
(TN + 0)

= 1, (6)

where TNR is true negative rate, equivalent to specificity (1− α) (Murphy, 2012, p. 181), α is type
I error, TN are number of true negatives, and FP are number of false positives.
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However, we briefly note that the ALTM, since it computes universal logic, is able to undergo
cascades both when seeds are labeled and unlabeled, as we see from the truth tables for
NAND/NOR (Figure 2), and in the half-adder (Figure 5). As a result, both type I and type II
error can be obtained.

2.4 Learning in the LTM
For the remainder of this paper, we will discuss basics of learning in the original LTM (Watts,
2002). As this model is already well known, and holding to our policy of simplicity, we believe it
is valuable to understand as the first step in the context of statistical learning. Here we take some
initial experimental and theoretical steps toward sources of efficiency in biologically motivated
model of learning in cascades.

We, therefore, begin with the seemingly trivial problem of classifying data points hav-
ing a single feature, that is, a single seed node, evaluating ŷ (Equation (4)) on a seed set A
when |A| = 1. (Intuitively, we can think of this as classification of a set of data points only
having one feature.) This is already interesting, since in the LTM, type II error is possible
(Figure 7).

Classifying a data point having a single feature (seed) using a cascade is also interesting because
it is a nontrivial NP-hard problem, as can be seen in the theoretical work we have mentioned on
influencemaximization, maximizing activation of a network (cascade size) from a set of seed nodes
(Domingos & Richardson, 2001; Kempe et al., 2003). Formally, the problem is: Given a Linear
Threshold Model, which k edges maximize the activation for a fixed set of seeds? (Khalil et al., 2014).

As the first step, it is sufficient to simply maximize the cascade frequency when the seed node
is labeled. Doing so will minimize type II error (false negatives) and thereby increase sensitivity
(Equation (5)), as described below.

2.4.1 The LTM as a statistical learningmodel
Although we have formulated it above as a classifier, it is not apparent that the LTM can be con-
sidered formally as a learning model (Vapnik, 1999, pp. 17–19), so first we frame it as such. In this
context, we can consider the edge probability p of graph G and the node thresholds vector φ̄ as
making up the parameter set � of the model, such that �= {p, φ̄}. In learning, we need to find
the best � that minimizes the loss L between the true seed value y, and the ŷ, the response of the
learning model (Equation (4)). Here the simple misclassification (or “0–1”) loss (Murphy, 2012,
pp. 177) is used, thus

L(y, ŷ(x, α))=
{
1 y �= ŷ(x, α)
0 y= ŷ(x, α)

(7)

where α ∈�, the set of parameters {p, φ̄}, and choice of seed node x ∈A is in the input vector, for
the seed set A.

The meaning of the above formalism is that we can randomly add edges or choose values of φ
to minimize the loss. In the present work, we are interested in the parameter of topology (edges),
so do not study values of φ. This means we are learning the value of p that minimizes the loss , so
here �= {p}, the set of all possible edge probabilities, and α = pi, a particular edge probability.

Since, as shown above, type I error does not occur (Figure 7), the only case where L= 1 in the
loss (Equation (7)) is the false negatives. Thus, the loss to be minimized is simply the type II error,
or false negative rate:

FNR= β = FN
(TP+ FN)

= FN
Ntrials

= 1− fc (8)
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Figure 8. (Left) Examples showing circles of possible neighbors for node centered at (0.5, 0.5) within the unit square, having
radii = 0.2 and 0.56 (areas 0.13 and 1.0, respectively). (Right) Fraction of available edges under radius r over complete graph
edges er = |Ea|/|Emax | for |Emax | = N(N− 1)/2. This fraction behaves as expected, gradually decreasing as random edges are
added, increasing mean degree z. Note that few edges are excluded by r= 1.0, although the maximum distance in the unit
square is 1.42≈√2.

where β is commonly known as the false negative rate (FNR) (Murphy, 2012, p. 181) and fc is
again the cascade frequency. Thus, minimizing the loss is equivalent to maximizing the cascade
frequency, or sensitivity (Equation (5)).

As we are at the initial stage of this investigation, it is important to understand this rudimentary
behavior from a single seed and the basic connectivity p before trying more sophisticated learning
algorithms.

2.4.2 Spatial networks and cascade efficiency
As stated in the introduction, our eventual goal is to understand the efficiency of biologically
inspired learning compared to artificial learning. Here, we examine the benefits of spatial dis-
tance for maximizing the cascade size and frequency, thereby minimizing loss while examining
a restricted number of edges to do so. Since in neuronal networks, connections have a metabolic
cost (Lynn & Bassett, 2019), this is a simple study of the effect of spatial constraints.

For this reason, we initially choose the random geometric graph—a kind of spatial Erdos–
Renyi topology (Penrose, 2003, pp. 1–2). We lay out the nodes of the random geometric graph
distributed randomly and uniformly on the unit square in positions x, y∼U[0, 1)2. For all
experiments, and due to computational constraints, we use N = 100 nodes over 200 trials.

We study the effect of spatial distance when creating edges in these graphs. That is, we impose a
radius r and only allow nodes within that radius to connect. This is motivated by several factors. In
the random geometric graph case, it has been observed that smaller connection distance results in
a lattice-like topology, while a larger distance results in an Erdos–Renyi topology (Lynn & Bassett,
2019). It has also been observed that in spatial graphs, a smaller connection distance can reduce
the “blocking” effect of graph density (Gray et al., 2018; Watts, 2002).

Therefore, the parameters for these experiments are the distance (radius) at radius values r=
0.2, 0.3, 0.4, 0.56, 1.0, and 1.42, within the unit square (Figure 8). Below r= 0.2, very few edges
are available, approaching 0 as edges are added (Figure 8, right). At r= 0.56, the circle around a
node has area approximately 1 (Figure 8, left), and r= 1.42≈√2 is the maximum distance (along
the diagonal) of the unit square. Few radius values are shown between r= 0.56 and r= 1.42, for
clarity, and because cascade effects are not significantly different (Figure 9).
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Figure 9. (Left) Mean cascade size versus mean degree z shows similar behavior for r= 0.2, 0.3, 0.4, 0.56, 1.0, and 1.42, near
z= 1. Notably, the small r= 0.2 (blue) still achieves large cascade size. However, near z= 7, there is significantly less “block-
ing” effect for smaller radius (blue) than larger (brown). Shading shows 95% confidence interval. (Right) Cascade frequency
shows similar results (�= 0.1). Most notably, sudden increase in cascade frequency implies explosive increase in sensitivity
(true positive rate) (Equation (5)). Networks have 100 nodes over 200 trials.

In preparation to understanding cascade frequency versus the number of available edges due to
radius, we define cascade efficiency ec to be the ratio of cascade frequency fc to fraction of available
edges:

ec = fc
er

(9)

where fraction of available edges under radius r is er = |Ea|/|Emax|, such that |Ea| is the number of
available edges in the graph within a given radius r, and |Emax| = N(N−1)

2 , the maximum number
of edges for the Erdos–Renyi graph of size N (Figure 8, right). Intuitively, ec is a measure of the
accuracy contribution per available edge in the graph.

We start each experiment with an empty graph and add random edges one at a time, so the
average degree (z) ranges from 0 to 7 (recalling that the average degree relates to the edge proba-
bility in Erdos–Renyi graphs by z= p(N − 1)). Since the edges added are random and p= 2E

N(N−1) ,
this remains a random geometric graph (Penrose, 2003).

2.4.3 Hypotheses
We hypothesize that cascades under a smaller radius will not experience the ‘blocking’ effect of
edge density as edges are added (Gray et al., 2018; Watts, 2002).

We also expect that, as the radius approaches r=0.56 and above, where the circle area≥ 1 (equal
to the area of the unit square in which the nodes are positioned), the cascade size and frequency
will be similar that of larger radii.

Furthermore, as a smaller radius reduces the number of available edges and therefore avail-
able nodes due to sparseness, we expect maximum cascade size to increase as radius increases.
Subsequently, we therefore also expect maximum cascade frequency to increase with radius.

As maximum cascade size and frequency remain relatively high, even for small radii that utilize
smaller numbers of edges, we expect cascade efficiency for small radii to be significantly higher
than for large radii.

Due the above results, we therefore expect an inverse relationship between maximum cascade
frequency and maximum efficiency.
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2.4.4 Experiment
The steps for our experiment are the following (Wilkerson, 2021):

2 Experiment

1: r← [0, 1.42] and �← [0, 1] � set radius and global threshold
2: for 200 trials do
3: G←G(N, p) � create Erdos–Renyi network
4: φ̄← [0.18, ..., 0.18]T � use same threshold value for all nodes
5: x, y∼U[0, 1)2 � lay out nodes randomly in the unit square
6: A←{a= node0} � assign one seed node
7: whilemean degree z≤ 7 do
8: reset labeling of all nodes except seeds (A)
9: run cascade σ (A)
10: record cascade size and number of edges
11: add 50 random edges (nodes with mutual distance ≤ r)

12: fc = |σ (A)≥�|/num trials � calculate cascade frequency

2.4.5 Experimental results
The first hypothesis, that under a smaller radius there will be a lower blocking effect as density
increases (z≥ 4), is supported by the results (Figure 9, right), as we see that for r≤ 3. Cascade size
and frequency are significantly higher than for larger radii.

The second hypothesis seems to be confirmed, experimental results for r≥ 0.56 are not signifi-
cantly different from one another (Figure 9, right). Surprisingly, r= 4 (circle Area≈ 0.5) also has
a similar behavior to larger radii.

Cascade size and frequency for smaller radii (r≤ 0.3) are significantly lower than that of the
largest radius (r= 1.42), in the domain z≥ 3 (Figure 9). Also cascade size for r= 0.2 is signifi-
cantly smaller in 2≤ z≤ 4. Thus, there is some increase in cascade size and frequency as radius
increases. However, we note that near z= 3, cascade size and frequency for r= 0.3 and r= 1.0
are not significantly different; therefore, it does not always hold that larger radius leads to larger
cascade size or frequency.

Results also indicate that cascade efficiency is indeed significantly higher for small radii than
large radii (Figure 10, left), especially near maximum cascade size and frequency z= 4 (Figure 9),
indicating more efficient use of edges to obtain cascade frequency. We also note that for the
smallest radius r= 0.2, the efficiency gap grows with z.

Finally, a plot of the Pareto front of maximum cascade efficiency versus maximum cascade
frequency seems to indicate that there is a inverse relationship between these (Figure 10, right).
Pearson’s correlation between these factors of -0.57 with p-value 0.24 confirms this.

2.4.6 Criticality, loss, and cascade frequency
As mentioned above, in many self-organizing systems, cascades are critical phenomena. That is,
the cascade size or frequency may suddenly—continuously or discontinuously (“explosively”)—
percolate when the micro-scale control parameter nears a particular critical value (Watts, 2002).
This implies that a small change in the control parameter can lead to a sudden change in the
cascade frequency, which by (Equation (8)) is equivalent to a sudden or implosive reduction in
the loss function. Also, in the LTM, maximum cascade frequency has previously been found to be
maximized at connectivity far below the maximum degree (z≈ 3.7�N − 1) (Watts, 2002).
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Figure 10. (Left) Cascade efficiency ec (Equation (9)) versus mean degree z. Shading shows 95% confidence interval. (Right)
Pareto front of maximum cascade efficiency (maximum cascade frequency/available edges) versus maximum cascade fre-
quency. Note that r= 0.2 and r= 0.3 (area = 0.126 and 0.283) lie on the front and achieve frequency > 0.8, despite only
covering a small fraction of the unit square.

Lo
ss

Figure 11. Loss: The false negative rate β is 1—sensitivity,
therefore 1—cascade frequency (Equation (8)). As there is no
type I error, the false negative rate is our loss (Equation (7)) and
is minimized when cascade frequency is maximized. Therefore,
percolation of cascade frequency canmean sudden reduction in
loss. The graph of r= 1.42, where distance plays no role, illus-
trates previous theoretical results for criticality (Watts, 2002).
Other distances are shown for comparison. Shading shows 95%
confidence interval.

Therefore, this criticality and percolation of cascade frequency can be another source of effi-
ciency in learning, as the loss gradient may be sudden and steep for such systems, and the
minimum attained quickly. This means that the amount of edge rewiring may be significantly
reduced in order to reach a near-efficient solution to cascade size.

As a preliminary result, one can already observe this critical behavior at N = 100 for r= 1.42
near z= 1 and z= 4 (Figure 11). The random geometric graph having radius r= 1.42>

√
2 (the

maximum distance in the unit square) is an Erdos–Renyi graph as used in the LTM, since radius
no longer plays a role in connections. It has been shown previously that a critical phase transition
in cascade frequency occurs in the LTM as a function of average node degree z (Watts, 2002).

For example, here for r= 1.42 (Figure 11) observe that the loss is already approaching its min-
imum near z= 2, having ∼ 1/2 the edges than at z= 4 (recall 〈E〉 = N(N−1)p

2 = Nz
2 ). For a large

graph, this couldmean a very significant connection savings. Thus, this is another potential source
of efficiency in this kind of learning model. It remains to be shown theoretically and experimen-
tally for largerN that LTM cascades in random geometric graphs are subject to criticality, although
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Figure 12. The LTM maps between two information representations in networks, choice of particular nodes labeled (seed
node choice), and number of nodes labeled (seed size or cascade size). Left: Node B with random connections to nodes
in network A can be seen to randomly sample the activation in A and become activated if the cascade in A is sufficiently
large (σ (A)≥�), mapping the cascade size in A to the particular node B. Right: Nodes in network B having sufficiently low φ

thresholds to be vulnerable to the activation of node Amap activation of A to the seed size of B. Edges are drawn as directed
to show information flow.

theoretical results for percolation on random geometric graphs (Penrose, 2003) and experimental
results for cascades in similar Waxman graphs have been demonstrated (Gray et al., 2018).

Treating the LTM as a learning model, loss as a function of mean degree z is a kind of learning
curve (Figure 11). Training is simple addition of random edges, and loss decreases suddenly until
around the point z= 4, where it begins to increase again. One could call this increase over-fitting
in this context (Murphy, 2012, p. 22)—we have continued to present the same input to the model
as we train it, adding edges and increasing its complexity, but the classification performance dete-
riorates. Preliminary results on small networks seem to indicate that the rate of over-fitting is also
reduced for smaller radii as z≥ 5 (Figure 11).

2.5 Input/output and information representation
We have shown how the LTM can act as a classifier and statistical learning model. However, we
must pose a basic question: How can or should information be represented in an LTM model?
Particularly, if considering this as a learning algorithm, how should input and output be passed to
the LTM network?

Choice of particular nodes activated and number of nodes activated are two basically different
ways of representing or encoding information in the LTM (in the brain corresponding to sparse
or population coding, respectively (Dayan & Abbott, 2001, pp. 97, 379)), which seems a problem
when we are choosing how to consider the LTM as a learning model in real-world contexts. The
choice between these two representations can be seen in the influence maximization and global
cascade model literature, discussing seed node selection (particular nodes) (Kempe et al., 2003),
or seed and cascade size (number of nodes) (Gleeson & Cahalane, 2007; Watts, 2002).

Biological or social networks are often organized in a modular fashion, so that the output of
one (sub-) network may become the input of another. This is especially evident in the brain, where
cortices or other modular structures process information and pass the results to other structures
(Lynn & Bassett, 2019). This is a question of information coding of these networks, and since we
are also interested in biologically inspired algorithms, relates to neural coding, how information is
passed between neuronal avalanches, here occurring in the LTM, before and after it undergoes a
cascade (Dayan & Abbott, 2001).

Therefore, the question remains—how should input or output information be encoded in our
LTM learning model, by choosing particular nodes (e.g., binary encoding) or by number of nodes
(e.g., unary encoding) (Sayood, 2012, pp. 75, 102)? Fortunately, the LTM solves this dilemma
naturally. If we consider an LTMnetworkA, randomly connected to a particular node B in another
network (Figure 12, left), it is exactly the LTM threshold labeling rule (Equation (1)) which tells
us that, if sufficient (random) nodes in A are activated, B will be activated. Since the connections
are random, this is a random sampling of cascade size within A. Thus, cascade size is mapped to
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activation of a particular node. On the other hand, if we consider a particular node in network A,
connected to a set of nodes in network B, having sufficiently low-threshold (φ) values (Figure 12,
right), if node A is activated, the set of nodes in B will be activated. This maps activation of a
particular node A to seed size in B. Of course, this mapping between node choice and number
of nodes occurs within the LTM network itself as well. Therefore, the LTM can map both ways
between number of nodes and particular node encodings.

The implications of this are that, in a learning or classification context, the LTMmay be robust
to a variety of input or output representations. That is, it may be possible to use either seed size or
choice of particular seeds, or some combination of the two (patterns, clusters of activated nodes),
as input or output of an LTM, enabling us to pass complex input (e.g., an image) to the network
or out of it.

3. Discussion and conclusions
3.1 Discussion
Here, we have explored several sources of computational power and efficiency in the simple,
biologically motivated LTM, both as a logic computer and as a statistical learning model.

Universal Boolean logic of the ALTM means that any logical function can be computed if the
network is sufficiently large. Given the simplicity of this model, this gives some indication that fur-
ther theoretical connections can be made between percolation in networks and theory of Boolean
circuits.

Onemay view the lack of false positives in the LTM as a form of efficiency or increased accuracy
as well. It may be possible to take advantage of this, along with the universality of the ALTM, by
constructing a hybrid model containing a balance of nodes having threshold (LTM) and antago-
nistic (ALTM) rules. This balance, together with an appropriate global cascade threshold, may act
as a noise filter (Smith et al. , 1997; Rubin et al., 2017), whereby cascades compute universal logic
but only occur for sufficiently large activation.

Spatial organization is another substantial qualitative difference between naturally occur-
ring networks—for example, neurological networks subject to physical processes and metabolic
constraints—and theoretical networks (Lynn & Bassett, 2019). Spatial characteristics can greatly
benefit self-organization for cascades in the LTM in several ways: first, with spatial information,
the search space for edges or nodes is greatly reduced as we have seen (Figure 8), significantly
increasing the efficiency of information processing. Second, by only searching and connecting to
local nodes, the average degree of the graph is reduced, preserving node vulnerability to cascades.
Therefore, reducing the possible maximum connections may preserve or increase the cascade
probability and prevent any “blocking” that would normally result from network density (Gray
et al., 2018; Watts, 2002). Thus, the average cascade size and frequency per number of nodes
examined tends to increase another source of efficiency in the LTM when spatially organized.
Third, spatial organization can lead to different topologies and information mixing as discussed
below.

Criticality has been discussed here as a possible way to greatly speed up learning. As we have
seen, the loss function may decrease rapidly as random edges are added when percolation occurs.
We see this as important, as there can be a phase transition in the loss in response to the connec-
tivity control parameter (average number of edges, or equivalently edge probability p). It has been
shown that there are other information processing benefits to critical cascades in the “criticality
hypothesis” (Beggs & Plenz, 2003; Shew & Plenz, 2013), and it appears that the brain tends to
remain at homeostasis near criticality exactly for these benefits (Hesse & Gross, 2014).

We have also seen that the LTM may be robust to several ways of representing information.
The way data are passed into, out of, and within the LTM network seems to tolerate variation in
the encoding of information between number of nodes and particular nodes activated.
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3.2 Conclusion
The simple LTM and its biologically inspired variants yield computational power, learning effi-
ciency, and robustness. The LTM computes logical AND and OR, and replacing the threshold
rule with its complement allows the ALTM to compute universal logic. The LTM can be framed
as a classification model that does not produce type I error.

The LTM can also be formulated as a model of statistical learning, trainable by adjusting its
edges. Spatial constraints on edge formation can significantly increase the efficiency of cascades,
requiring examination of fewer edges to achieve similar cascade frequency, meaning efficient
increases in accuracy, supported by our experimental results. Criticality is also a potential source
of learning efficiency, with loss decreasing as an abrupt phase transition as percolation occurs.
We have shown the theoretical relationship between well-known cascade criticality and accuracy.
Finally, the LTM seems to naturally and robustly map between apparently different information
representations. These examinations therefore begin to bring together theories of percolation,
Boolean logic, and statistical, and biological learning in this basic ubiquitous model.

4. Future work
There remains much to be done in future:

Brain cortices can have modular organization, where networks are arranged into subnetworks.
Therefore, it is interesting to consider how learning can occur in modular topologies such as the
stochastic block model (Karrer & Newman, 2011). Similarly, layered topology can be found both
in naturally occurring and artificial neural networks, so should be investigated (Lynn & Bassett,
2019).

It is also usual that one would make trials on scale-free (preferential attachment) graphs, as
well as small-world graphs (Newman, 2018), since these have different properties of centrality and
modularity, and can have different computational implications in terms of integration or segrega-
tion of information (Bassett et al., 2011; Lynn & Bassett, 2019). Similar to decision trees, it may be
that large categorical decisions embodied in long, small-world connections lead to more efficient
learning (Hastie et al., 2009; Watts & Strogatz, 1998), so that rather than forcing all information
to pass through all nodes or layers, it can be efficiently categorized (Rojas, 2013). Therefore, more
investigation comparing lattice-like or layered topologies versus other topologies may be fruitful
in this context. Along with this, the interaction of topology with the information contained in
multi-class and multi-dimensional input data may lead to insights in efficiency. Intuitively, the
question here is: How should the network topology or learning (rewiring) method correspond to
the shape of the data?

The latter experiments will also require practical trials in the encoding of information as it is
passed into and out of the LTM. Therefore, the robustness of the LTM to these representations
can be studied in more detail.

Also, it remains to be seen whether other training schemes can be more effective. Neurobiology
has given us a rich literature on topics such as neuroplasticity and long-term potentiation vis-
a-vis learning in the brain (Bassett et al., 2011; Lynn & Bassett, 2019). Much of this originated
with the ideas of Hebb, and versions of it have been adapted to machine learning for many years
(Coolen, 1998; Hebb, 2005; Kato & Ikeguchi, 2008; Rojas, 2013). Therefore, rewiring methods
based on more recent research of biological learning may also be investigated. More advanced
and biologically motivated algorithms could involve edge creation or deletion methods based on a
combination of activation, proximity, and degree. For example, in future, we may also investigate
edge creation between labeled and unlabeled nodes based on spatial proximity.

Together with the discussion of criticality above, this also motivates investigation into guided
self-organization (Prokopenko, 2009), whereby nodes make their own connection decisions,
leading to emergence of optimal global states (e.g., minimal loss). This can perhaps reap other
time efficiency rewards if rewiring is performed concurrently at the micro-scale.
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We intend to continue studying the simplest possible models demonstrating biologically moti-
vated and efficient learning behavior, as these help us make theoretical progress, identify basic
sufficient conditions, and understand learning in the light of emergent complexity.

Conflict of interest. None.

References
Altafini, C. (2012). Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control,

58(4), 935–946.
Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters,

59(4), 381.
Barra, A., Genovese, G., Sollich, P., & Tantari, D. (2017). Phase transitions in restricted boltzmann machines with generic

priors. Physical Review E, 96(4), 042156.
Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101.
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of

human brain networks during learning. Proceedings of the National Academy of Sciences, 108(18), 7641–7646.
Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167–11177.
Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards biologically plausible deep learning. arxiv

preprint arxiv:1502.04156.
Bohte, S. M, Kok, J. N., & La Poutre, H. (2002). Error-backpropagation in temporally encoded networks of spiking neurons.

Neurocomputing, 48(1–4), 17–37.
Bruce, A. D., Gardner, E. J., & Wallace, D. J. (1987). Dynamics and statistical mechanics of the hopfield model. Journal of

Physics A: Mathematical and General, 20(10), 2909.
Callaway, D. S., Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on

random graphs. Physical Review Letters, 85(25), 5468.
Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., & Zhou, T. (2012). Identifying influential nodes in complex networks. Physica

A: Statistical Mechanics and Its Applications, 391(4), 1777–1787.
Conte, T., DeBenedictis, E., Ganesh, N., Hylton, T., Still, S., Strachan, J. P., Williams, R. S., Alemi, A., Altenberg, L., Crooks,

G., et al. (2019). Thermodynamic computing. arxiv preprint arxiv:1911.01968.
Coolen, A. C. C. (1998). A beginner’s guide to the mathematics of neural networks. In Concepts for neural networks (pp.

13–70). Springer.
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems.

Computational Neuroscience Series.
Demirel, Y. (2013). Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems.

Newnes.
Domingos, P., & Richardson, M. (2001). Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD

international conference on knowledge discovery and data mining (pp. 57–66).
Easley, D., Kleinberg, J, et al. (2010). Networks, crowds, and markets. Vol. 8. Cambridge: Cambridge University Press.
Gao, J., Zhou, T., & Hu, Y. (2015). Bootstrap percolation on spatial networks. Scientific Reports, 5, 14662.
Gleeson, J. P., & Cahalane, D. J. (2007). Seed size strongly affects cascades on random networks. Physical Review E, 75(5),

056103.
Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443.
Gray, C., Mitchell, L., & Roughan, M. (2018). Super-blockers and the effect of network structure on information cascades.

InCompanion proceedings of the the web conference 2018 (pp. 1435–1441).
Häggström, O. (2000). Markov random fields and percolation on general graphs. Advances in Applied Probability, 32(1),

39–66.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction.

Springer Science & Business Media.
Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Psychology Press.
Hesse, J., & Gross, T. (2014). Self-organized criticality as a fundamental property of neural systems. Frontiers in Systems

Neuroscience, 8, 166.
Jalili, M., & Perc, M. (2017). Information cascades in complex networks. Journal of Complex Networks, 5(5), 665–693.
Jarman, N., Steur, E., Trengove, C., Tyukin, I. Y., & van Leeuwen, C. (2017). Self-organisation of small-world networks by

adaptive rewiring in response to graph diffusion. Scientific Reports, 7(1), 1–9.
Karrer, B., & Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E,

83(1), 016107.
Kato, H., & Ikeguchi, T. (2008). Self-organized complex neural networks through nonlinear temporally asymmetric hebbian

plasticity. In International conference on artificial neural networks (pp. 623–631). Springer.

https://doi.org/10.1017/nws.2021.3 Published online by Cambridge University Press

https://arXiv.org/abs/1502.04156
https://doi.org/10.1017/nws.2021.3


S174 G. J. Wilkerson and S. Moschoyiannis

Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of
the ninth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 137–146).

Khalil, E. B., Dilkina, B., & Song, L. (2014). Scalable diffusion-aware optimization of network topology. In Proceedings of the
20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1226–1235).

Leskovec, J., Huttenlocher, D., & Kleinberg, J. (2010). Signed networks in social media. In Proceedings of the sigchi conference
on human factors in computing systems (pp. 1361–1370). ACM.

Lynn, C. W., & Bassett, D. S. (2019). The physics of brain network structure, function and control. Nature Reviews Physics,
1(5), 318.

Mano, M. M. (1993). Computer system architecture. Prentice-Hall, Inc.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of

Mathematical Biophysics, 5(4), 115–133.
Minsky, M. L., & Papert, S. (1969). Perceptrons; an introduction to computational geometry. MIT Press.
Murphy, K. P. (2012).Machine learning: a probabilistic perspective. MIT press.
Newman, M. (2018). Networks. Oxford university press.
Newman, M. E. J. (2002). Spread of epidemic disease on networks. Physical Review E, 66(1), 016128.
Penrose, M. (2003). Random geometric graphs. Vol. 5. Oxford University Press.
Prokopenko, M. (2009). Guided self-organization. Taylor & Francis.
Rojas, R. (2013). Neural networks: a systematic introduction. Springer Science & Business Media.
Rubin, R., Abbott, L. F., & Sompolinsky, H. (2017). Balanced excitation and inhibition are required for high-capacity, noise-

robust neuronal selectivity. Proceedings of the National Academy of Sciences, 114(44), E9366–E9375.
Sakoda, J. M. (1971). The checkerboard model of social interaction. The Journal of Mathematical Sociology, 1(1), 119–132.
Savage, J. E. (1998).Models of computation. Vol. 136. Addison-Wesley Reading, MA.
Sayood, K. (2012). Introduction to data compression. Newnes.
Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143–186.
Shew, W. L., & Plenz, D. (2013). The functional benefits of criticality in the cortex. The Neuroscientist, 19(1), 88–100.
Smith, S. W., et al. . (1997). The scientist and engineer’s guide to digital signal processing. California Technical Pub. San Diego.
Stauffer, D., & Aharony, A. (2018). Introduction to percolation theory. CRC press.
Vapnik, V. (1999). The nature of statistical learning theory. Information Science and Statistics. Springer New York.
Wang, C., Komodakis, N., & Paragios, N. (2013). Markov random field modeling, inference & learning in computer vision &

image understanding: A survey. Computer Vision and Image Understanding, 117(11), 1610–1627.
Watts, D. J. (2002). A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences,

99(9), 5766–5771.
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440.
Wilkerson, G., & Moschoyiannis, S. (2019). Universal boolean logic in cascading networks. In International conference on

complex networks and their applications (pp. 601–611). Springer.
Wilkerson, G. J. (2021). Logic and learning in network cascades. https://github.com/galenwilkerson/Logic-and-Learning-

in-Network-Cascades

Cite this article: Wilkerson G. J. and Moschoyiannis S. (2021). Logic and learning in network cascades. Network Science 9,
S157–S174. https://doi.org/10.1017/nws.2021.3

https://doi.org/10.1017/nws.2021.3 Published online by Cambridge University Press

https://github.com/galenwilkerson/Logic-and-Learning-in-Network-Cascades
https://github.com/galenwilkerson/Logic-and-Learning-in-Network-Cascades
https://doi.org/10.1017/nws.2021.3
https://doi.org/10.1017/nws.2021.3

	Logic and learning in network cascades
	Introduction
	Methods
	Linear Threshold Model (LTM)
	Cascades and logic
	Equivalence of LTM to AND, OR
	Antagonistic cascades and NAND/NOR
	Universal Boolean logic and the XOR problem
	Cascade frequency

	Cascade as classification
	Learning in the LTM
	The LTM as a statistical learning model
	Spatial networks and cascade efficiency
	Hypotheses
	Experiment
	Experimental results
	Criticality, loss, and cascade frequency

	Input/output and information representation

	Discussion and conclusions
	Discussion
	Conclusion

	Future work


