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Abstract
We consider the simultaneous propagation of two contagions over a social network. We assume a thresh-
old model for the propagation of the two contagions and use the formal framework of discrete dynamical
systems. In particular, we study an optimization problemwhere the goal is to minimize the total number of
new infections subject to a budget constraint on the total number of available vaccinations for the conta-
gions. While this problem has been considered in the literature for a single contagion, our work considers
the simultaneous propagation of two contagions. This optimization problem is NP-hard. We present two
main solution approaches for the problem, namely an integer linear programming (ILP) formulation to
obtain optimal solutions and a heuristic based on a generalization of the set cover problem. We carry out a
comprehensive experimental evaluation of our solution approaches using many real-world networks. The
experimental results show that our heuristic algorithm produces solutions that are close to the optimal
solution and runs several orders of magnitude faster than the ILP-based approach for obtaining optimal
solutions. We also carry out sensitivity studies of our heuristic algorithm.
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1. Introduction
1.1 Motivation
Contagion models have been used to explain a host of observed phenomena in human popu-
lations (e.g., the spread of fads, opinions, diseases, information, and actions such as joining a
group) (González-Bailón et al., 2011; Romero et al., 2011; Ugander et al., 2012). In this paper, we
treat contagions as undesirable entities (such as infectious diseases, misinformation, or rumors)
propagating through a network. The network setting introduces many interesting combinatorial
optimization problems such as seed selection (i.e., choosing the initial set of nodes that have the
contagion) and blocking a contagion (i.e., reducing the amount of propagation of a contagion in
a network). Our focus in this paper is on blocking contagions. Previous work on blocking focuses
on the case where only a single contagion is propagating through a network (see, e.g., Kuhlman
et al., 2015; Chakrabarti et al., 2008 and the references cited therein). We seek to extend prior
work from the single contagion setting to the multiple-contagion setting. To understand the land-
scape of the area, we consider two independent contagions propagating under the thresholdmodel
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(Granovetter, 1978). Under this model, an individual (i.e., node in a social network) gets infected
because it has at least a sufficient number (called the threshold) of infected neighbors. Threshold
models (Granovetter, 1978; Schelling, 1978; Watts, 2002; Centola & Macy, 2007) have generally
been used to capture several other contagions (such as information, rumors, opinion, and fads).
In this paper, we use vaccinating nodes as the blocking strategy, that is, vaccinated nodes will not
contract a contagion no matter how many of its nodes are infected. Also, these nodes will never
contribute to infections of their neighbors. The goal is to reduce the number of newly infected
nodes subject to a resource constraint; this constraint is assumed to be a budget on the number of
nodes that can be vaccinated. Following Kuhlman et al. (2015), we use the synchronous dynamical
system (SyDS) as the formal model for contagion propagation. A formal definition of this model is
given in Section 2. For a more detailed exposition on various SyDS models and their applications,
we refer the reader to Adiga et al. (2019), Barrett et al. (2011), and Rosenkrantz et al. (2022).

1.2 Summary of contributions
A summary of our main contributions is as follows:

1. We discuss a general threshold-based model for the simultaneous propagation of two con-
tagions through a network. As this general model (which requires the specification of five
threshold values for each node) is somewhat complex, we present a simplified model that
uses only two threshold values for each node.

2. Using the simplified model, we formulate the problem of minimizing the number of new
infections in a network by vaccinating some nodes. In practice, there is a budget con-
straint on the number of vaccinations. We observe that the resulting budget-constrained
optimization problem is computationally intractable.

3. We develop twomain solution approaches for the optimization problemmentioned above.
One approach uses an integer linear programming (ILP) to find an optimal solution. Since
this approach uses exponential time in the worst-case, it is not practical for large networks.
Therefore, we develop an efficient heuristic algorithm called MCICH-SMC for the prob-
lem. This heuristic is based on the SetMulticover (SMC) problem (Vazirani, 2001), which is
a generalized version of theMinimum Set Cover (MSC) problem (Garey & Johnson, 1979).
We discuss several variants of the MCICH-SMC heuristic depending on the method used
to solve the SMC problem.

4. We carry out a comprehensive evaluation of our solution approaches using seven real-
world networks. The number of nodes in these networks varies from about 200 to about
77,000. These evaluations are based on how well the approaches reduce the number of
new infections as well as on the execution times of the corresponding algorithms. We also
examine the sensitivity of our heuristic on seeding methods and how the vaccination bud-
get is allocated between the two contagions. Our experimental results indicate that the
heuristic is able to block the two contagions effectively, and its execution time on large
networks is several orders of magnitude smaller than that of the ILP-based approach for
obtaining optimal solutions.

This is an expanded version of a conference paper (Carscadden et al., 2020). The additional results
presented in this version include the following:

1. We present an ILP formulation for finding an optimal solution. Our experimental results
include comparisons with optimal solutions.

2. As mentioned earlier, our heuristic algorithm is based on the SMC problem. While the
conference version of this paper presented experimental results using a greedy heuristic
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for SMC, this version also includes results based on an ILP-based approach for solving
SMC.

3. The conference version presented experimental results for three social networks; this
version presents results for seven networks.

4. The experimental results presented in this version address several additional topics (e.g.,
comparison of execution times, usefulness of the heuristic in flattening the epidemic curve,
and sensitivity studies) which were not considered in the conference version.

1.3 Related work
Reference (Kuhlman et al., 2015) studied the single-contagion blocking problem under the thresh-
old model. The goal is again to minimize the number of new infections subject to a budget on the
number of nodes that can be vaccinated. They show computational intractability results for the
optimization problem. Two efficient heuristics for the problem are introduced, and their perfor-
mance is evaluated on several social networks. Although single-contagion epidemic models have
been considered for years, the study of the multiple-contagion context is newer. For example,
conditions for the coexistence of two contagions in compartmental models are explored in Beutel
et al. (2012). A number of references (see e.g., Newman et al., 2013; Karrer & Newman, 2011;
Kumar et al., 2019 and the references cited therein) have considered the propagation of compet-
ing contagions (where infection by one contagion prevents or reduces the likelihood of infection
with another) and cooperating contagions (where infection by one contagion makes it easier to
get infected by another contagion). In Myers & Leskovec (2012), the more specific domain of
interaction with Tweets is studied as a case of competing contagions. Tweets are grouped into
categories, and each category is treated as a contagion. Interaction history is then used to simulate
future interactions, and the simulations are evaluated against the actual evolution of the system.
While our work uses the deterministic thresholdmodel, reference (Stanoev et al., 2014) discusses a
general framework for a probabilistic multiple-contagionmodel, namely the Susceptible-Infected-
Recovered (SIR)model; see Hethcote (2000) for additional details regarding the SIRmodel. To our
knowledge, optimization problems associated with blocking multiple contagions under threshold
models have not been studied in the literature.

2. Preliminary definitions and results
2.1 Model description
We use the SyDS framework studied in the literature (see, e.g., Adiga et al., 2019; Barrett et al.,
2007, 2011; Rosenkrantz et al., 2022). A SyDS S over a domain B is specified as a pair S= (G, F),
where (a) G(V , E), an undirected graph with |V| = n, represents the underlying graph of the
SyDS, with node set V and edge set E, and (b) F= {f1, f2, . . . , fn} is a collection of functions in the
system, with fi denoting the local function associated with node vi, 1≤ i≤ n. For a node v, we use
degree(v) (or dv) to denote the number of edges incident on v. Each node of G has a state value
fromB. Each function fi specifies the local interaction between node vi and its neighbors inG. The
inputs to function fi are the state of vi and those of the neighbors of vi in G; function fi maps each
combination of inputs to a value in B. This value becomes the next state of node vi. It is assumed
that each local function can be computed efficiently.

For a single contagion, the domain B is usually chosen as {0,1}, with 0 and 1 representing that
a node is uninfected and infected, respectively. Since we have two contagions (denoted by C1 and
C2) propagating through the underlying network, we have four possible states for each node. We
encode these states as 0, 1, 2, and 3, that is, we let B = {0, 1, 2, 3}. The interpretation of these state
values is shown in Table 1. An easy way to think of these states is to consider the 2-bit binary
expansion of the state values 0 through 3. The least (most) significant bit indicates whether the
node has been infected by C1 (C2).
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Table 1. Possible states for each node in the two
contagion SyDS

State Interpretation

0 Not infected by eitherC1 orC2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Infected byC1 only
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Infected byC2 only
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Infected by bothC1 andC2

Figure 1. Possible state transitions for each node.

We assume that the system is progressive with respect to each of the contagions (Easley &
Kleinberg, 2010), that is, once a node is infected by a contagion, it remains infected by that
contagion. Using this assumption, Figure 1 shows all the possible state transitions for each node.

State transition rules: As stated earlier, each node v is associated with a local transition function
fv that determines the next state of v given its current state and the states of its neighbors. Such a
function may be deterministic or stochastic (e.g., SIR systems Hethcote, 2000). Here, we consider
a class of deterministic functions called threshold functions.

A general form of local functions: We first discuss a very general (but somewhat complex) form
of local functions for the propagation of two contagions in a network and then present a simpler
form that will be used in the paper. In the general form, for each node v and for each of the five
possible state transitions x to y (shown in Figure 1), there is a threshold value θ(v, x, y). Let N(v, j)
denote the number of neighbors of v in state j, 0≤ j≤ 3. (If the state of node v is j, then v is also
included in the count N(v, j).) For any node v, the rules for each possible state transition which
collectively specify the local function fv are shown in Table 2.

We will briefly explain two of the state transition conditions as shown in Table 2. The expla-
nations for the other transitions are similar. Consider the condition for the “0−→ 1” transition.
For this transition to occur at a node v, the number of neighbors of v in state 1 or state 3 must be
at least θ(v, 0, 1) (i.e., N(v, 1)+N(v, 3)≥ θ(v, 0, 1)) and the number of neighbors of v in state 2 or
state 3 must be less than θ(v, 0, 2) (i.e., N(v, 2)+N(v, 3)< θ(v, 0, 2)). Likewise, for the “1−→ 3”
transition to occur at v, the number of neighbors of v in state 2 or state 3 must be at least θ(v, 1, 3)
(i.e., N(v, 2)+N(v, 3)≥ θ(v, 1, 3)).

The above general model is powerful as it allows the two contagions to interact. Many ref-
erences have considered cooperating and competing contagions (e.g., Karrer & Newman, 2011;
Newman et al., 2013; Kumar et al., 2019). For example, if a node has already contracted C1, it
may be “easier” for it to contract C2. This can be modeled by choosing a low value for θ(v, 1, 3).
However, the model is also complex since it requires the specification of five threshold values for
each node. In this paper, we consider a simpler model which uses only two threshold values for
each node. We now explain the simpler model.

A simpler form of local functions: In the simpler model, for each node v, we use two threshold
values, denoted by θ(v, 1) and θ(v, 2). The parameter θ(v, 1) is used when v is in state 0 or state 2
(i.e., v has not contracted contagionC1); it specifies theminimumnumber of neighbors of vwhose
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Table 2. Transition rules to specify the general form of local function fv at node v

Transition Condition

0−→ 1 (N(v, 1)+ N(v, 3)≥ θ (v, 0, 1)) and (N(v, 2)+ N(v, 3)< θ (v, 0, 2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0−→ 2 (N(v, 1)+ N(v, 3)< θ (v, 0, 1)) and (N(v, 2)+ N(v, 3)≥ θ (v, 0, 2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0−→ 3 (N(v, 1)+ N(v, 3)≥ θ (v, 0, 1)) and (N(v, 2)+ N(v, 3)≥ θ (v, 0, 2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−→ 3 N(v, 2)+ N(v, 3)≥ θ (v, 1, 3)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−→ 3 N(v, 1)+ N(v, 3)≥ θ (v, 2, 3)

Figure 2. The underlying network of a SyDS with two contagions. For each node v, the threshold values θ (v, 1) and θ (v, 2)
are both 1.

state is either 1 or 3 so that v can contract contagion C1. Similarly, θ(v, 2) specifies the minimum
number of neighbors of v whose state is either 2 or 3 so that v can contract contagion C2. Unlike
the general model, the simpler model does not permit interactions between the two contagions.
However, the simpler model facilitates the development of analytical and experimental results.

2.2 Additional definitions concerning SyDSs
At any time τ , the configuration C of a SyDS is the n-vector (sτ1 , s

τ
2 , . . . , sτn), where s

τ
i ∈B is the

state of node vi at time τ (1≤ i≤ n). Given a configurationC, the state of a node v inC is denoted
by C(v). In a SyDS, all nodes compute and update their next state synchronously. Other update
disciplines (e.g., sequential updates) have also been considered in the literature (e.g., Mortveit &
Reidys, 2007; Barrett et al., 2007). Suppose a given SyDS transitions in one step from a configura-
tion C

′ to a configuration C. Then, we say that C is the successor of C′, and C
′ is a predecessor of

C. Since the SyDSs considered in this paper are deterministic, each configuration has a unique suc-
cessor. However, a configuration may have zero or more predecessors. A configurationC which is
its own successor is called a fixed point. Thus, when a SyDS reaches a fixed point, no further state
changes occur at any node.

Example: The underlying network of a SyDS in which two contagions are propagating under the
simpler model discussed above is shown in Figure 2. For each node v, the two threshold values
θ(v, 1) and θ(v, 2) are both chosen as 1 in this example. Suppose the initial states of nodes v1, v2,
v3, and v4 are 1, 2, 0, and 0 respectively, that is, the initial configuration of the system is (1, 2, 0, 0).
The local function f1 at v1 is computed as follows. Since v1 is in state 1, we need to check if it
can contract contagion C2. Since θ(v1, 2) = 1 and v1 has a neighbor (namely v2) in state 2, v1 will
indeed contract contagion C2. Therefore, the value of the local function f1 is 3, that is, the next
state of v1 is 3. In a similar manner, it can be seen that the local functions f2 and f3 also evaluate
to 3. For node v4, whose current state is 0, there is one neighbor (namely, v2) whose state is 2.
Therefore, the local function f4 evaluates to 2. Thus, the configuration of the system at time 1 is
(3, 3, 3, 2). Since the system is progressive, the states of nodes v1, v2, and v3 will continue to be 3
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Figure 3. A sequence of configurations for the SyDS whose underlying graph is shown in Figure 2. Node colors red, green,
blue and brown indicate states 0, 1, 2 and 3 respectively. The sequence of transitions shown above can also be represented
as (1, 2, 0, 0) −→ (3, 3, 3, 2) −→ (3, 3, 3, 3).

in subsequent time steps. However, the state of node v4 changes to 3 at time step 2, since v4 has
a neighbor (namely, v2) whose state at time step 1 is 3. Thus, the configuration of the system at
the end of time step 2 is (3, 3, 3, 3). In other words, the sequence of configurations of the system
at times 0, 1, and 2 is

(1, 2, 0, 0)−→ (3, 3, 3, 2)−→ (3, 3, 3, 3)

This sequence is shown in Figure 3, where the node colors red, green, blue, and brown indicate
states 0, 1, 2, and 3 respectively. Once the system reaches the configuration (3, 3, 3, 3), no further
state changes can occur. Thus, the configuration (3, 3, 3, 3) is a fixed point for the system. �

This simple example illustrates the computations carried out by our simulation methods
as discussed in Section 5. The only difference is that the simulation methods carry out these
computations on much larger networks.

In this example, each of the nodes v3 and v4 had two new infections (one due to C1 and the
other due toC2). Further, node v1 had one new infection (due toC2) and v2 had one new infection
(due to C1). Thus, the sequence of transitions shown in Figure 3 has a total of six new infec-
tions. Since the number of possible infections is 2n= 8 for this example, and there are eight total
infections (including the initial infections), the fraction of possible infections equals 8/8= 1.

In the above example, the SyDS reached a fixed point. Using our assumption that the system is
progressive, one can show that every such SyDS reaches a fixed point.

Proposition 2.1. Every progressive SyDS under the two contagion model reaches a fixed point from
every initial configuration.

Proof: Consider any progressive SyDS on B = {0, 1, 2, 3}. Let n denote the number of nodes in the
underlying graph of the SyDS. In any transition from a configuration to a different configuration,
at least one node changes state. Because the system is progressive, each node may change state at
most twice: once from 0 to 1 (or 0 to 2) and then from 1 to 3 (or 2 to 3). Thus, after at most 2n
transitions where the states of one or more nodes change, there can be no further state changes.
In other words, the system reaches a fixed point after at most 2n transitions.

3. Problem formulation, complexity results, and the SMC problem
3.1 Blocking problem for two contagions
The focus of this paper is on a method for containing the propagation of the two contagions by
appropriately vaccinating a subset of nodes. Before defining the problem formally, we state the
assumptions used in our formulation.
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When a node is vaccinated for a certain contagion, the node cannot get infected by that conta-
gion; as a consequence, such a node cannot propagate the corresponding contagion. For i= 1, 2,
one can think of vaccinating a node v for a contagion Ci as increasing the threshold θ(v, i) of the
node v to degree(v)+1 so that the number of neighbors of v that are infected by Ci will always be
less than θ(v, i). If a node v is vaccinated for both C1 and C2, then it plays no role in propagating
either contagion. In such a situation, one can think of the effect of vaccinating v as removing node
v and all the edges incident on v from the network.

The optimization problem studied in this paper is a generalization of a problem studied in
Kuhlman et al. (2015) for a single contagion. This problem deals with choosing a small set of
nodes to vaccinate so that the total number of new infections when the system reaches a fixed
point is a minimum. Given a set C of nodes to be vaccinated, a vaccination scheme specifies for
each node w ∈ C, whether w is vaccinated against C1, C2, or both. The total number of vaccina-
tions used by a vaccination scheme for a set of nodesC is the sumN1 +N2, whereNi is the number
of nodes vaccinated against Ci, i= 1, 2. Note that if a node w is vaccinated against both C1 and
C2, then it is included in both the counts N1 and N2. Given a budget β on the number of vacci-
nations, the chosen vaccination scheme must ensure that β ≤N1 +N2. Also, after a vaccination
scheme is chosen and the contagions spread through the network, the number of new infections
is computed as follows. For 0≤ i≤ j≤ 3, let �ij denote the set of nodes whose initial state is i and
whose final state (when the system reaches a fixed point) is j. Then, the number of new infec-
tions is given by |�01| + |�02| + |�13| + |�23| + 2× |�03|; the reason for the factor 2 in the last
term of this expression is that nodes that start in state 0 and end in state 3 suffer two infections.
We can now provide a formal statement of the main optimization problem considered in this
paper.

Vaccination Scheme to Minimize the Total Number of New Infections (VS-MTNNI)

Given: A social network represented by the SyDS S = (G, F) over B = {0, 1, 2, 3}, with each local
function fv ∈ F at node v represented by two threshold values θ(v, 1) and θ(v, 2); the set I of seed
nodes which are initially infected (i.e., the state of each node in I is from {1,2,3}); an upper bound
β on the total number of vaccinations.

Requirement: A set C ⊆V of nodes to be vaccinated and a vaccination scheme for C so that
(i) the total number of vaccinations is at most β and (ii) among all subsets of V which can be
vaccinated to satisfy (i), the set C and the chosen vaccination scheme lead to the smallest number
of new infections.
To show the computationally intractability of Vaccination Scheme toMinimize the Total Number
of New Infections VS-MTNNI, we use the following problem and result from Kuhlman et al.
(2015).

Smallest Critical Set to Minimize the number of Newly Affected nodes (SCS-MNA)

Given: A SyDS represented by a graph G(V , E) through which a single contagion is propagating,
a threshold value θ(v) for each node v, a set I ⊆V of initially infected nodes, a vaccination budget
β , and an upper bound Q on the number of new infections.

Requirement: A subset C ⊆V such that |C| ≤ β and after vaccinating the nodes in C, the number
of new infections in G is at most Q.

The following result is from Kuhlman et al. (2015). In stating this result, we use the following
definition. An algorithm for the Smallest Critical Set to Minimize the number of Newly Affected
nodes (SCS-MNA) problem provides a factor ρ approximation if for every instance of the prob-
lem, the number of new infections is at most ρQ∗, where Q∗ is the minimum number of new
infections.
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Theorem 3.1. The SCS-MNA problem is NP-hard even when each threshold value is 2. Further, if
the vaccination budget cannot be violated, the problem cannot be efficiently approximated to within
any factor ρ ≥ 1, unless P = NP.

We now show that the result of Theorem 3.1 also holds for the VS-MTNNI problem.

Theorem 3.2. TheVS-MTNNI problem isNP-hard even when each threshold value is 2. Further, if
the vaccination budget cannot be violated, the problem cannot be approximated to within any factor
ρ ≥ 1, unless P = NP.

Proof: The SCS-MNA problem can be reduced in a straightforward manner to the VS-MTNNI
problem as follows. Let an instance of SCS-MNA be given by a graph G(V , E), a subset I ⊆V of
initially infected nodes (for the only contagion), a vaccination budget β , and an upper boundQ on
the number of new infections. From the graph G(V , E) of the SCS-MNA instance, we create a new
graphG′(V ′, E) by adding a new node v toV such that v has no incident edges (i.e., degree(v)= 0).
In the VS-MTNNI instance, the initial state of each node in I is chosen as 1 and the initial state of
the new node v is chosen as 2. The two threshold values for each node in G′ are chosen as 2. The
bound on the number of new infections in G′ is set to Q, the corresponding value for G. Clearly,
this construction can be carried out in polynomial time. Further, the construction ensures that
only C1 can spread in the SyDS represented by G′.

Suppose there is a solution to the SCS-MNA instance for G. The solution to the VS-MTNNI
instance is obtained from the solution to the SCS-MNA instance by using the budget β to block
contagion C1 in G′. Since only C1 can spread in G′, this vaccination scheme ensures that the
number of new infections inG′ is also at mostQ. Similarly, if there is a solution to the VS-MTNNI
instance, the vaccination scheme used in this solution is also a valid solution to the SCS-MNA
instance for G.

Therefore, any vaccination scheme forG′ which vaccinates at most β that causes at mostQ new
infections is also a solution to the SCS-MNA instance and vice versa. This completes our proof of
Theorem 3.2.

3.2 SMC problem
In Section 4, we will present a heuristic algorithm (which we refer to as MCICH-SMC) for the VS-
MTNNI problem. This heuristic relies on known methods for solving a generalized version of the
MSC problem (Garey & Johnson, 1979). This generalized version of MSC is called SMC (Vazirani,
2001). An approach based on SMC was used in Kuhlman et al. (2015) to obtain a heuristic for
blocking a single contagion. We now present the definition of the SMC problem and two known
methods for solving it. We state SMC as a constrained maximization problem, since that version
can be directly used in our heuristic for the VS-MTNNI problem.

Set Multicover (SMC)

Given: A universe U = {u1, u2, . . . , un} of n elements, a collection C = {C1, C2, . . . , Cm} of
subsets of U, an integer (coverage requirement) ri ≥ 1 for each ui ∈U, 1≤ i≤ n, a budget β ≤m.

Required: A collection C′ ⊆ C such that |C′| ≤ β and the size of the setU ′ given byU ′ = {ui ∈U :
the number of sets in C′ that contain ui is ≥ ri} is maximized.

In the above definition, U ′ represents the subset of elements whose coverage requirement is
satisfied by the chosen subcollection C′. Note that in SMC, if ri = 1, 1≤ i≤ n, and |U ′| = n, then
we have the usual MSC problem (Garey & Johnson, 1979). Thus, SMC is also a computationally
intractable problem.
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We use two known approaches to deal with the SMC problem. One approach is to solve the
problem optimally using an ILP formulation. The other approach is to use an efficient greedy
heuristic for the problem. These two approaches, which are used in our experimental study, are
discussed below.

An ILP Formulation for SMC: The following ILP for SMC is based on the description in Vazirani
(2001).

a. Variables: Given an SMC instance where there are m sets and n elements, our ILP formulation
usesm+ n variables as discussed below:

i. For each set Cj, we have a variable yj which takes on a value from {0, 1}, 1≤ j≤m. (If
yj = 1, then set Cj is chosen in the cover; otherwise, Cj is not chosen.)

ii. For each element ui, we have a variable xi which also takes on a value from {0, 1}, 1≤ i≤ n.
(If xi = 1, then the coverage requirement for element ui is satisfied; otherwise, the coverage
requirement is not satisfied.)

b. Objective function: We need to maximize the number of elements whose coverage requirement
is satisfied. So, the objective is

Maximize
n∑
i=1

xi.

c. Constraints:

a. The total number of subsets chosen must be at most β . This constraint is

m∑
j=1

yj ≤ β .

b. We need to check whether the chosen collection of sets satisfies the coverage requirement
for each element ui. Constraints must be chosen so that if the coverage requirement for
element ui is met, then xi = 1; otherwise, xi = 0. This can be done as follows. For ele-
ment ui, let Si ⊆ C be the collection of subsets each of which has ui as an element. Let
ti = [

∑
Cj∈Si yj]− ri. In this expression for ti, the summation gives the number of cho-

sen sets that have ui as an element. Therefore, if ti ≥ 0, then the coverage requirement for
ui is satisfied; otherwise, the coverage requirement for ui is not satisfied. We need to use
this expression to set xi appropriately. This can be done using the following two (linear)
constraints. (Recall thatm is the number of sets in the collection C.)

m xi ≥
⎡
⎣∑
Cj∈Si

yj

⎤
⎦ − ri + 1 and m xi ≤

⎡
⎣∑
Cj∈Si

yj

⎤
⎦ − ri +m.

This completes our ILP formulation for SMC.

A Greedy Heuristic for SMC: This iterative heuristic for SMC is similar to the greedy heuristic
for the MSC problem (Vazirani, 2001). In each iteration, it picks a set which covers the largest
number of elements whose coverage requirement has not yet been met. This algorithm returns a
collection of β subsets from C. Subject to this constraint, it tries to find a solution that satisfies the
coverage requirements for as many elements as possible. An outline for this method is shown in
Algorithm 1. In Section 4, we discuss how this heuristic is useful in developing our heuristic for
the VS-MTNNI problem.
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4. Approaches for solving the blocking problem
4.1 Overview
Theorem 3.2 points out that, in the worst-case, even obtaining an efficient approximation algo-
rithm with a provable performance guarantee for the VS-MTNNI problem is computationally
intractable. In this section, we now discuss two approaches for solving the VS-MTNNI problem
in practice. The first approach develops an ILP formulation for obtaining optimal solutions. Since
known algorithms for solving ILPs take exponential time in the worst-case, this approach is suit-
able for small networks. For larger networks, we present an efficient heuristic to obtain good (but
not necessarily optimal) solutions in practice.

4.2 Obtaining optimal solutions: An ILP formulation for VS-MTNNI
We first discuss the notation used to develop our ILP formulation for the VS-MTNNI problem.
The n nodes of the underlying network are denoted by v1, v2, . . ., vn. Each node vi has two thresh-
old values denoted by θ(vi, 1) and θ(vi, 2). We assume that all threshold values are ≥ 1. The set of
neighbors of node vi is denoted by Ni and the degree of node vi is denoted by di, 1≤ i≤ n. (Thus,
di = |Ni|.) The set of initially infected nodes (i.e., the seed set) is denoted by S. The number of
infections in S is N1 +N2, where Nj denotes the number of nodes infected by Cj, j= 1, 2. Thus, if
a node is infected by both C1 and C2, it is counted twice in the number of infections. The budget
on the number of nodes that can be blocked is denoted by β . We are now ready to present the ILP
formulation.

a. Variables: For each node vi, 1≤ i≤ n, we have six {0,1}-valued variables denoted by xi,j, yi,j and
zi,j, j= 1, 2. (Thus, the total number of variables in the ILP formulation is 6n.) The significance of
these variables is as follows:

i. Variable xi,j is 1 iff vi is susceptible to Cj (i.e., vi does not get infected by Cj after blocking).
ii. Variable yi,j is 1 iff vi is infected by Cj.
iii. Variable zi,j is 1 iff vi is blocked for Cj (i.e., it cannot get infected by Cj).

b. Objective function: We want to minimize the number of new infections. So,

Minimize
n∑
i=1

(yi,1 + yi,2) − γ ,

where γ is the number of initial infections. (We note that the number of initial infections γ can
be computed from the seed set S.)
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c. Constraints:

1. For each node vi and each contagion Cj, there are three possibilities: vi may be susceptible
or infected or blocked. Therefore, we have

xi,j + yi,j + zi,j = 1, 1≤ i≤ n and j= 1, 2.

2. For each node vi ∈ S, if it is infected by Cj, then yi,j = 1.
3. At the end of the simulation, if a node vi is not infected by Cj, the following constraint

must hold for 1≤ i≤ n and j= 1, 2:

di xi,j + ∑
vp∈Ni yp,j ≤ di + θ(vi, j)− 1,

where di is the degree of vi and Ni is the set of neighbors of vi.

Reason: Suppose xi,j is 1 at the end of the simulation. Then, the number of neighbors
of vi who are infected by Cj must be less than the threshold θ(vi, j). If xi,j = 0, the above
constraint holds trivially.

4. Budget constraint: The total number of nodes blocked for either or both of the contagions
should be at most β . This gives rise to the following constraint:

n∑
i=1

2∑
j=1

zi,j ≤ β .

This completes the ILP formulation for the VS-MTNNI problem. One advantage of this ILP
formulation is that it can be generalized in a straightforward manner to handle any number σ ≥ 2
of contagions as follows. The generalization uses a total of 3σn variables (i.e., xi,j, yi,j, zi,j, 1≤ i≤ n
and 1≤ j≤ σ ). In each of the above constraints, the range of the index j would be j= 1, 2, . . . , σ .

4.3 A heuristic for VS-MTNNI based on SMC
In this section, we will discuss a new heuristic called MCICH-SMC for the VS-MTNNI problem.
The basic idea is to solve a suitable SMC problem to identify a subset of nodes that are activated
at time t to set as blocking nodes, such that no nodes will be activated at time t + 1. If this is
accomplished, then the contagion is halted at t, and our goal is achieved.

A key idea, as noted in Kuhlman et al. (2015) for the single-contagion case, is that any node vi
that is activated at time t + 1 does so because it receives influence from nodes activated at time
t, for otherwise, vi would have activated at an earlier time. We now explain through an example
how the SMC problem arises naturally in the context of blocking contagions.

Example: Figure 4 provides an example that highlights the key features of MCICH-SMC.
Activated nodes are in green and inactive nodes are in red. The sets St and St+1 are the sets of
nodes that are newly activated at times t and t + 1, respectively, for one contagion. With no block-
ing, these nodes are green. The method identifies a small number of nodes in St to make red (i.e.,
to block) so that all nodes in St+1 turn red. There are three and four activated nodes, respectively,
in sets St and St+1. The nodes at time t that assist in activating nodes at time t + 1 are shown by
green solid arrows. The numbers of neighbors that have activated each vi in St+1 are shown as η1
values to the right of each node, and the values are 3 and 4. (Some of these nodes are from levels
that precede St .) These values of η1 must be decreased to η1 < θ in order for the nodes in St+1 to
not get activated. In the SMC instance constructed for St and St+1, one set is constructed for each
node v in St , and the elements of the set are the neighbors of v in St+1. The required amount of
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Figure 4. Illustration of the MCICH-SMC steps in selecting blocking nodes for a contagion. The panel on the left shows the
sets St and St+1 of newly activated nodes (in green) at times t and (t+ 1)> 1, respectively, from simulation output (with
no blocking). All nodes vi have θ = 3. There are 3 and 4 newly activated nodes, respectively in St and St+1. The numbers of
neighbors that have activated each vi in St+1 (some of which are from infected sets before time t) are shown as η1 values to
the right of each node.

decrease represents the coverage requirement for each element in the SMC constructed for St and
St+1. We can now discuss how the greedy algorithm for SMC works for this example. In step 1
(middle panel), v9 ∈ St is selected as the first blocking node because it has the most edges to nodes
in St+1. Its color changes to red (the inactive state). The edges from v9 are no longer active and
are shown in dashed red. This reduces by 1 the η1 values for v14, v22 and v39, such that now η1 < θ

for v22 and v39, and hence they change color to red. For v14, η1 = θ , so it is still activated. Now, in
the center panel, the activated node in St that has the most remaining edges to activated nodes in
St+1 is v7, and this node is selected as the next blocking node, which occurs at step 2 (right panel).
Hence, v7 is red in the right panel, and it reduces by 1 the η1 values of v6, v14 ∈ St+1 such that for
each of these two nodes η1 < θ . Hence, they are colored red. In summary, by selecting as blocking
nodes v7, v9 ∈ St at time t, no nodes are activated at time t + 1, and the contagion is halted. Thus,
in this example, there are two nodes, namely v7, v9 ∈ St that are identified as blocking nodes, that
is, B= {v7, v9} ⊂ St . �

The algorithm for theMCICH-SMC is presented in Algorithm 2. (For the sake of completeness,
Part (B) of the algorithm also includes the steps of the greedy heuristic for SMC.) The algorithm
considers one contagion at a time and computes the set B of blocking nodes using one simulation
iteration, which is running the contagion propagation model using a set A of activated seed nodes
at t = 0 through a specified maximum time tmax. Thus, with two contagions, the algorithm must
be run twice, once for each contagion.

Budget Allocation Between the Contagions: In generating all the blocking performance results
in this paper (except for the ones in Section 5.3.9), the blocking budget β was allocated between
the two contagions using the proportion of nodes infected by contagions C1 and C2 when there
is no blocking. More precisely, suppose n1 and n2 denote the total number of infected nodes
by C1 and C2, respectively, in the absence of any blocking. We use n1/(n1 + n2) fraction of the
budget for blocking C1 and the remaining budget for C2. If the algorithm consumes less than
the allocated budget for blocking C1, the remaining allocation is used to increase the budget for
C2. A discussion of the sensitivity of our approach for different budget allocations between the
contagions is provided in Section 5.3.9.

Variants of MCICH-SMC Used in Our Experiments: Our experiments with MCICH-SMC
(discussed in Section 5) consider several variants of the heuristic. We describe these variants
below.
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a. The variants MCICH-SMC-Greedy and MCICH-SMC-ILP use, respectively, the greedy algo-
rithm and the ILP for solving the SMC instances that arise during the execution of MCICH-SMC
outlined in Algorithm 2.

b. To understand the effect of the time parameter, we consider three variants of MCICH-SMC-
ILP calledMCICH-SMC-ILP-Low-Time,MCICH-SMC-ILP-Moderate-Time, andMCICH-SMC-
ILP-High-Time. These three variants are assigned wall clock time limits of 120 seconds (or 2
minutes), 28,800 seconds (or 8 hours), and 521,700 seconds (about 6 days), respectively.

c. To understand the usefulness of MCICH-SMC in flattening the epidemic curve (see
Section 5.3.7), we consider two variants of MCICH-SMC-Greedy, called “Before-Peak” and
“Unconstrained,” respectively. The “Before-Peak” variant is required to pick the blocking nodes
for each contagion at some time step before the number of infections for that contagion reaches
its peak value, while the “Unconstrained” variant may pick the blocking nodes at any time step.
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Table 3. Table summarizing our solution approaches for the VS-MTNNI problem

Solution approach Brief description

Integer linear Find an optimal solution to the VS-MTNNI problem using an integer
programming (ILP) linear program (Section 4.2)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MCICH-SMC A heuristic for the VS-MTNNI problem based on the
Set Multicover problem (Section 4.3). Variants of this
heuristic, namely MCICH-SMC-Greedy, MCICH-SMC-ILP,
MCICH-SMC-ILP-Low-Time, MCICH-SMC-ILP-Moderate-Time,
MCICH-SMC-ILP-High-Time, Before-Peak, and Unconstrained,
discussed in Section 4.3, are also used in our experiments

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random Choose the specified number of blocking nodes uniformly randomly
(Section 4.4)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

High degree Choose the specified number of blocking nodes with the largest
degrees (Section 4.4)

4.4 Two simple baselines for comparison purposes
Our experimental results also compare the performance of our main heuristic algorithmMCICH-
SMC with two simple baseline approaches. These baseline methods are as follows.

a. Random Heuristic. For a given budget βi on the number of blocking nodes per contagion,
select βi nodes from among all nodes, uniformly at random.

b. High-DegreeHeuristic. For a given budget βi on the number of blocking nodes per contagion,
select the βi nodes with the largest degrees (breaking ties arbitrarily).

4.5 Summary of solution approaches
A summary of ourmain solution approaches for the VS-MTNNI problem discussed in this section
is given in Table 3. Results from our experiments that compare the performance of these solution
approaches are presented in Section 5.

5. Experimental results
5.1 Overview
In this section, we provide the networks tested, descriptions of the key elements of the analysis
process and simulation, and results of the contagion blocking numerical experiments. Throughout
this section, we use the words “activated” and “infected” as synonyms.

Networks: The seven networks of Table 4 are evaluated. We use only the giant components from
the networks. Properties were generated with the the codes in Ahmed et al. (2020) and using
the structural analysis libraries of NetworkX (Hagberg et al., 2008) and SNAP (Leskovec & Sosič,
2016).

5.2 Simulation process
A simulation consists of a set of iterations. Each iteration consists of software execution of con-
tagion propagation from an initial configuration. This configuration consists of a seed set A of 20
nodes, where seed nodes possess at least one contagion (i.e., the state of each seed node is from
{1, 2, or 3}). Each of the seed nodes has a probability of 1/3 of being set to each of states 1, 2,
and 3. The remainder of the nodes in the initial configuration possess no contagion and are thus
in state 0.
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Table 4. Networks used in experiments, and selected properties. All properties are for the
giant component of each graph. The last three columns in the table give the average node
degree, average clustering coefficient and diameter respectively

Network #Nodes #Edges Ave. Deg. Ave. CC Dia.

Jazz 198 2,742 27.7 0.617 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FB-Politicians 5,908 41,706 14.1 0.385 14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wiki 7,115 100,762 28.3 0.141 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Astroph 17,903 196,972 22.0 0.633 14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Enron Emails 33,696 180,811 10.7 0.509 13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Epinions 75,877 405,739 10.7 0.138 15
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Slashdot-0811 77,360 469,180 12.1 0.055 12

The total number of seed nodes is 20 in all simulation iterations, and these nodes are chosen
from the 20-core1 of each graph. Selecting seed nodes from the 20-core, where nodes are more
well connected with other high-degree nodes, makes blocking contagion spreading more difficult.
There are two seeding methods. One method, which we refer to as “random 20-core,” selects uni-
formly at random 20 nodes from the 20-core. The second method selects a single node uniformly
randomly and adds 19 of its distance-1 neighbors, not necessarily from the 20-core, so that these
seed nodes induce a connected subgraph. We refer to this as the “Centola method” since it has
been used in Centola (2009) and Centola & Macy (2007). Each of the 100 iterations of a simula-
tion has a different seed set. The 100 seed sets (one for each iteration) are reused in all simulations
for 1 graph so that the results for different blocking methods can be compared on a per-iteration
basis. The great majority of results are presented for the Centola seeding method; the results for
the random 20-core method are qualitatively similar. There are two exceptions: (i) in the timing
studies of Section 5.3.6, we use software execution durations from both methods to increase the
number of timing data points, and (ii) in Section 5.3.8, where we compare the blocking results for
the two seeding methods.

An iteration starts at t = 0 with the seed nodes as the only activated nodes. From these nodes,
contagion propagates in discrete times t ∈ [1 .. tmax] as described in Section 2. All state transitions,
x to y, are recorded for all v ∈V . In this work, our simulations use uniform thresholds for all
nodes and all state transitions for one simulation, so we abbreviate the thresholds below by setting
θ = θ(v, x, y). We run 100 iterations per simulation, where the differences among the iterations is
the composition of the seed node sets. Simulations are run with and without blocking nodes, as
explained in the next subsection.

Our experiments were performed on a Linux compute cluster. This cluster is composed of Dell
PowerEdge C6420 2.666 GHz hardware nodes, with 384 GB RAM and 40 cores per node. Each
core in a node is an Intel Xeon Gold 6148, 2.40 GHz with 1280 KiB L1 cache, 20 MiB L2 cache,
and 27 MiB L3 cache. Our simulator is a serial code.

Summary of Analysis Process: The steps in our computational experiments are presented in
Figure 5. From the left, inputs to simulations include a network from Table 4, thresholdmodel and
values, and initial conditions. Outputs are the states of all nodes at all discrete time steps between
t = 0 and tmax. These outputs, as well as the blocking method, and budget βi on blocking nodes for
contagionCi, are inputs to the blocking code. Outputs are the blocking nodes for each iteration of
a simulation. The blocking nodes are added to the otherwise identical earlier simulation iteration,
rerun at this point, to compute the efficacy of the blocking nodes. Unless otherwise stated, all
results are averages over all 100 iterations of a simulation.
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Figure 5. Steps in numerical experiments to identify and evaluate blocking nodes for inhibiting the spread of multiple
contagions. Software modules are in blue boxes and data are in brown boxes.

5.3 Simulation and blocking results
5.3.1 Overview of experimental results
In the remainder of this section, we discuss results from the experiments conducted using the
blocking methods discussed in Section 4. The different topics covered by our experiments are
summarized in Table 5.

5.3.2 Basic diffusion dynamics without and with blocking
Figure 6 provides three types of results for the FB-Politicians network. The first two plots show
temporal data on the spread or propagation of both contagionsC1 andC2 simultaneouslywithout
blocking. The third plot shows temporal effects of blocking on the propagation of both contagions.
Figure 6(a) shows the number of newly activated infections at each time step. The curves rise as
uniform threshold decreases from 4 to 3 to 2, since contagion propagates more readily for lesser
thresholds. Figure 6(b) shows the corresponding plots of total or cumulative number of nodes
activated for both contagions as a function of time. Roughly 50% to 70% of FB-Politicians nodes
are activated by tmax = 10, depending on θ . Figure 6(c) uses the θ = 3 data from Figure 6(b) as a
baseline and shows three additional curves corresponding to the blocking methods random, high
degree, andMCICH-SMC. These data show that for a blocking budget βi = 0.02 fraction of nodes,
theMCICH-SMC performs best (i.e., the curve is the lowest). For blocking contagions, “lesser” (or
“lower”) is better. However, this budget is insufficient to completely halt the contagions. Note that
in all three plots, and in those below, the total number of infections—from which the fractions on
the y-axis are computed—is 2n, where n= |V|, because each node can acquire both contagions.

In the subsequent figures, we focus on the fraction of possible infections at fixed point con-
ditions (i.e., the ending data points in the curves of Figure 6(c)) and often plot these points as
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Table 5. Topics addressed in our experiments and the corresponding subsections

Topic Section

Basic diffusion dynamics without and with blocking Section 5.3.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Execution of all blocking methods on a small network Section 5.3.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Efficacy of blocking methods Section 5.3.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comparison of MCICH-SMC with differentILP versions for SMC Section 5.3.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Times used by blocking methods Section 5.3.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Usefulness of blocking in flattening the epidemic curve Section 5.3.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sensitivity with respect to seeding methods Section 5.3.8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sensitivity with respect to budgets for the contagions Section 5.3.9

Figure 6. Simulation results for the FB-Politicians network, where results are averages over 100 iterations. Part (a) shows
time histories of the average number of newly activated nodes at each time step for contagionsC1 andC2, for three thresh-
olds. Part (b) shows time histories of the average number of cumulative activated nodes at each time step for contagion C1
andC2, for the same thresholds. Part (c) provides data for θ = 3, for no blocking, and for each of the three blockingmethods
mentioned in the legend, where the blocking node budget βi = 0.02 fraction of nodes. No method completely blocks the
contagion (i.e., a greater budget is required for doing so), but MCICH-SMC performs best over the entire time history.

a function of the blocking budget βi for different networks, thresholds, and initial simulation
conditions.

5.3.3 Application of all the blockingmethods on a small network
Figure 7 shows the blocking performance of several methods on a small network, namely Jazz. In
addition to no blocking results, blockingmethod results are shown for high degree, MCICH-SMC,
MCICH-SMC-ILP, and optimal solutionmethod, denoted by OPT-ILP. (Recall that OPT-ILP uses
the ILP formulation discussed in Section 4.2). Because the network is small (it has only 198 nodes),
all of the computations for all of the methods completed in all iterations. This is in contrast to
results on larger networks where OPT-ILP did not finish for many iterations. As the blocking
budget increases, all of the methods produce decreases in the fraction of possible infections, with
optimal showing the best performance, as expected. The curves are the mean over all 100 itera-
tions. The rates of these decreases can vary markedly among the methods. The two versions of
our heuristic MCICH (namely, MCICH-SMC-Greedy and MCICH-SMC-ILP) have similar per-
formance, and their performance is significantly better than that of the high-degree method. For
the same budget, each blocking method performs better when the threshold is increased from 2
to 3. This is because it is more difficult to propagate a contagion as threshold increases.
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Figure 7. Results for a small network (Jazz), for all blocking methods, showing the performance of the methods and the
variability in results from the replicates of simulations. Parts (a) and (b) show the results for threshold values of 2 and 3
respectively. For each curve, the bands shows values within one standard deviation of the mean curve. The variability is
caused by the different seed sets across iterations; see text. In the legend, the names MCICH-SMC, MCICH-ILP and Optimal
refer to the variants MCICH-SMC, MCICH-SMC-ILP and OPT-ILP respectively.

The variability in results in Figure 7, as represented by standard deviation, can overlap across
methods. For example, the variabilities for OPT-ILP, MCICH-SMC-Greedy, and MCICH-SMC-
ILP are such that their scatter bands overlap. This is caused by the different seed sets and is not
caused by randomness in the methods themselves. Specifically, for each blocking budget, there
are 100 iterations, so averages are taken over all of these iterations that have different seed sets.
Some seed sets are more onerous (i.e., more difficult to block) than others. We have compared
results across methods on an iteration-by-iteration basis—across all of the networks—and found,
for example, that the optimal method always does better than (or at least as good as) the MCICH-
SMC-Greedy and MCICH-SMC-ILP methods.

5.3.4 Efficacy and comparisons of blockingmethods across networks
Figures 8 and 9 depict the efficacy of the simple heuristics (random and high degree), OPT-ILP,
and MCICH-SMC for six networks, for threshold values θ = 2, 3, and 4. Each of the two figures
presents results for three networks. The numbers of nodes in these networks varies from about
5,900 to 77,000 (see Table 4). Data for one network are in a row, and data for one threshold are
in one column. The y-axis presents the cumulative fraction of possible infections; recall that the
number of possible infections is twice the number of nodes since each node may be infected once
by each contagion. The x-axis depicts the blocking budget in terms of the fraction of each net-
work’s nodes. The cumulative fraction of possible infections corresponds to the points at tmax
in curves such as those presented in Figure 6(c), for the respective blocking methods, thresh-
olds, and networks. There is a “no blocking” curve, and five curves for blocking methods: one
for each of the random blocking nodes heuristic, high-degree blocking nodes heuristic, MCICH-
SMC-Greedy, MCICH-SMC-ILP, and OPT-ILP in each plot. Since lower curves represent more
effective blocking, it is clear that the two MCICH-SMC methods perform far better, in the great
majority of cases, compared to the random and high-degree blocking heuristics. The two variants
of our heuristic MCICH, namely MCICH-SMC-Greedy and MCICH-SMC-ILP-High Time, have
very similar performance across the six networks.

The reader would notice that our optimal ILP-based algorithm seems to have a worse perfor-
mance than MCICH in some cases (e.g., Figures 8(i), 9(g)). This is not the case; this apparent
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Figure 8. Performance comparison of blocking methods for Astroph, FB-Politicians and Wiki for three threshold values,
namely 2, 3 and 4. See main text for additional discussion regarding these plots. In the legend, the name Optimal refers to
OPT-ILP.

discrepancy is due to the fact that the optimal method and MCICH-SMC-ILP method did not
terminate in some of the iterations for large networks in a reasonable amount2 of time. Since
we computed averages using the values from the iterations in which the optimal algorithm and
MCICH-SMC-ILP terminated, the figures give the impression of a discrepancy. Additional exam-
ples of this apparent discrepancy are presented in Section 5.3.5. Clearly, this behavior cannot occur
in cases when the two ILP-based methods terminate in all iterations.
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Figure 9. Performance comparison of blocking methods for three more networks, namely Epinions, Enron Emails and
Slashdot-0811 for threshold values of 2, 3 and 4. See main text for additional discussion regarding these plots. In the legend,
the name Optimal refers to OPT-ILP.

5.3.5 Comparison of several versions of MCICH-SMC that use ILP for SMC
Here, the time parameter selected for the ILP-based solution method (MCICH-SMC-ILP) and
its effect on blocking efficacy is studied. This supplements the apparently anomalous blocking
performance due to limited execution times, as noted in Section 5.3.4.

Figure 10 provides worst-case MCICH-SMC-ILP-based behaviors for Wiki, Epinions, and
Slashdot-0811. “Worst case” in this context means abrupt changes in solution results for changing
blocking budgets; for example, see the magenta curves, corresponding to the MCICH-SMC-ILP
Moderate Times, in the plots of this figure.
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Figure 10. Blocking results from all methods for some larger networks to show that some methods do not terminate in a
reasonable amount of time. In the legend the name Optimal refers to OPT-ILP.

Recall that MCICH-SMC-ILP solves one instance of the SMC problem for each set St of newly
infected nodes at time t (found during the initial simulation which does not use any blocking). For
networks of substantial size, which for our methods are networks of roughly 10,000 nodes, these
computations are time-consuming. Execution duration may be controlled using a maximum time
or integrality gap parameter in the Gurobi ILP solver (Gurobi Optimizer ReferenceManual, 2020)
which halts the computations and uses the best feasible solution that the ILP solver has found
until that time. To understand the effect of the time parameter, three time limits are applied to
the method: 120 seconds, 28,800 seconds, and 521,700 seconds, which are labeled low, moderate,
and high time, respectively (as mentioned in Section 4). As seen in Figure 10, the MCICH-SMC-
ILP with low time (cyan curves) performs almost identically to MCICH-SMC-Greedy, although
its execution duration is greater. MCICH-SMC-ILP, with moderate time, does not finish all itera-
tions within our maximum allowable execution time, so averages in the plots of Figure 10 for this
method (magenta curves) do not produce data that can be used for comparison among methods.
The step-like nature of the moderate time curve (Part (c) of Figure 10) is likely due to the ILP
becoming stuck in local optima which it cannot leave in its allotted time. MCICH-SMC-ILP with
high time did not finish even one iteration for all blocking budget values in the plots depicted in
the figure, so it is not plotted.

This brings up practical issues when usingMCICH-SMC-ILP. First, perhaps counterintuitively,
lesser values of the integrality gap parameter may give better results, even though the resulting
computational time is less. Second, one must perform scoping studies to determine the ranges of
parameters that work best. Third, a more computationally efficient method, like MCICH-SMC,
can provide the context for comparing and evaluating different ILP parameter settings. This last
issue—computational execution time—is addressed in the next subsection.

5.3.6 Comparison of execution times of blockingmethods
In this subsection, we compare the execution times of MCICH-SMC and the ILP-based opti-
mal algorithm. Since the blocking performance of MCICH-SMC with greedy method for SMC
is close to that of MCICH-SMC-ILP, we compare the execution times of MCICH-SMC-Greedy
and the optimal method for six of our networks. The running times are shown as bar charts in
Figure 11, where the networks are shown in increasing order of the number of nodes. The bar
charts represent the average execution times across all iterations for threshold values of 2 and 4,
respectively.
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Figure 11. Comparison of execution times of MCICH-SMC and the ILP approach for six networks. The networks are listed in
increasing order of the number of nodes. Figure (a) shows the resultswhere each node has a threshold of 2 for each contagion
while Figure (b) shows the resultswhere eachnodehas a threshold of 4 for each contagion. The red andorangebars represent
respectively the times used by MCICH-SMC with the greedy approach for SMC and the optimal solution using the ILP. The
comparison of execution times between the two methods is conservative because the optimal ILP solution computations
did not finish for 53.1% of iterations. The thin vertical line at the top of each bar denotes one standard deviation.

It can be seen that in all cases, the execution time of MCICH-SMC-Greedy is several orders
of magnitude less than that of the optimal method. It should be noted that while MCICH-SMC-
Greedy completed in all iterations for all networks within the allotted execution times, the optimal
algorithm did not complete for some iterations of a simulation within the 145-hour time limit for
these computations. We computed the average execution time for the optimal method using the
times for the iterations where it completed within the maximum time limit. So, the actual average
execution time is larger for the optimal solution method than what is shown in the bar charts of
Figure 11. Thus, one should not conclude that the difference between the optimal method and
MCICH-SMC-Greedy decreases as network size increases. Further, the execution times for the
Wiki network are larger than some of the larger networks, since the average degree of Wiki is the
largest among the networks considered in our work (see Table 4).

5.3.7 Usefulness of blocking in flattening the epidemic curve
In this subsection, we compare the benefits of two variants of MCICH-SMC-Greedy. One of these
variants (referred to as “Before-Peak”) chooses the blocking nodes for each contagion, and for
each simulation iteration, at a time step before the number of new infections for that contagion
reaches a peak in the simulation where no blocking nodes are used. The other variant (referred to
as “Unconstrained”) has no such restriction; it may choose the blocking nodes for each contagion
at any time step. The comparison between these two variants was done for two networks (Wiki and
FB-Politicians) for two different budgets on the number of blocking nodes. We used the threshold
values of 2 and 3, respectively, for Wiki and FB-Politicians networks.

The results are shown in Figure 12. The curves in these plots show the total number of new
infections across both contagions in each time step. In all cases, it is observed that the two variants
of MCICH-SMC-Greedy do not delay the time of occurrence of the peak value; however, they
reduce the number of peak infections compared to no blocking. In particular, the Before-Peak
variant performs better than the Unconstrained variant in all cases by decreasing the peak number
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Figure 12. The effect of blocking by MCICH-SMC for the FB-Politicians and Wiki networks when blocking for each contagion
is done in two ways: (i) blocking is unconstrained (i.e., it may be done at any time step) and (ii) blocking is done before
the number of new infections (without any blocking) reaches a peak. The latter approach lowers the peak number of new
infections better than the former method. The black curves show the number of new infections without any blocking.

of new infections significantly compared to the no blocking case. This contrasts with findings that
the Before-Peak and Unconstrained variants of MCICH-SMC-Greedy do not differ significantly
in the cumulative number of infections.

5.3.8 Sensitivity with respect to seedingmethods
Recall from Section 5.2 that two seeding methods were used to choose the set of initially infected
nodes. Here, we study the sensitivity of MCICH-SMC-Greedy with respect to these methods,
namely the method due to Centola (2009) and the one that chooses seed nodes randomly, both of
which are based on the K-core of a network. The seed nodes were chosen from the 20-core of the
network so as to encourage diffusion. In our experiments, we chose the FB-Politicians network
and two threshold values, namely 2 and 3. The results are shown in Figure 13.
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Figure 13. Sensitivity of seeding methods on the fraction of infections for FB-Politicians for θ = 2 and 3. Here, the K-core
seeding methods used K = 20.

We first discuss the case where the threshold is 2. In this case, for a small budget value (namely,
0.5% of the nodes), the diffusion due to random seeding method is harder to block (i.e., causes a
larger number of new infections) compared to that due to Centola’s seeding method; however, as
the budget is increased, the diffusion due to Centola’s method becomes harder to block.

We hypothesize that the random 20-core method is more difficult to block for threshold 2,
when there are few blocking nodes, because nodes in the random seed set are more dispersed (i.e.,
seed nodes may not be connected to other seed nodes) and are likely to have many neighbors with
at least two connections to the seed set (the no blocking outbreak sizes in Figure 8(d) support this
idea). However, as the blocking budget increases, it is harder to disrupt contagion that emanates
from Centola seeding, where seed nodes are more concentrated in one region of a graph (i.e., it
is more difficult for blocking nodes to “surround” the Centola seed nodes). For this same reason,
it is more difficult to completely stymie both contagions (i.e., drive contagion spreading to zero)
when seeded with Centola method.

Addressing the threshold three results, the reasons for the Centola seeding method being
harder to block are as follows. First, as threshold increases, it is generally more difficult to ini-
tiate contagion spreading from seed nodes (Kuhlman et al., 2015). This is particularly the case in
this study for FB-Politicians, as seen by the decreases in the “no blocking” black curves, from 0.80
to 0.25 in Figure 8(d) through (f) as threshold increases from 2 to 4. Second and consequently, it
is more important, as threshold increases, to concentrate seed nodes in one region of a graph so
that uninfected nodes at distance-1 from seed nodes can meet their thresholds and thus transi-
tion state. This is because social networks have considerable clustering (as measured by clustering
coefficients in Table 4), so uninfected nodes with one infected neighbor are more likely to also
be connected to other infected neighbors, and thus are better able to meet their thresholds. The
Centola method concentrates seed nodes better than the random seeding method, making this
method more difficult to block.

5.3.9 Sensitivity with respect to allocation of budget between the two contagions
In this subsection, we study how blocking methods allocate node budgets for each contagion
C1 and C2. Figure 14 provides the results. In Figure 14(a), the now-familiar blocking results
for MCICH-SMC-Greedy and OPT-ILP are provided. Figure 14(b) shows how the two methods
allocate budget between the two contagions, to achieve these blocking results.

Figure 14(b) shows the difference in how MCICH-SMC-Greedy and OPT-ILP split their bud-
get across contagions C1 and C2. The difference in their budget splits helps explain the difference
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Figure 14. Figure showing sensitivity with respect to budget allocation. That is, how the blocking methods allocate the
total budget of blocking nodes between the two contagions. Jazz network with a threshold value of 2 was used in these
experiments. Part (a) shows the efficacy of the blocking nodes. Part (b) shows the fraction of budget allocated to the two
contagions for each of the twomethods.

between their execution performance presented in Section 5.3.6. MCICH-SMC-Greedy chooses
all blocking nodes for each contagion from one set of nodes which were all infected during the
same time step (during the simulation without blocking nodes). (The times at which each of
the two contagions is blocked may be different.) For that reason, MCICH-SMC-Greedy does not
always exhaust its budget, as is evident from Figure 14; the Y-axis values for the two red curves
do not sum to 1. OPT-ILP may choose nodes that are infected at any of the time steps (and across
time steps) and considers global effects that MCICH-SMC-Greedy does not. Both of these factors
contribute to the more even split seen in the budget allocation for OPT-ILP. Note that mirroring
the 50%–50% budget allocation split given by OPT-ILP may not necessarily improve the per-
formance of MCICH-SMC-Greedy because MCICH-SMC-Greedy cannot distribute its blocking
budget across nodes infected at different time steps.

The reader will notice that for MCICH-SMC-Greedy, the budget allocations for contagionsC1
and C2 diverge as the budget increases. The reason for this is the following. After performing
blocking for a given contagion, the leftover budget is allocated to the other contagion.

Thus, the unbalanced budget allocation between the two contagions in Figure 14 is caused by
MCICH-SMC-Greedy being unable to use the increased budget to block C2, but MCICH-SMC-
Greedy is still finding more opportunities to block C1. These opportunities could mean MCICH-
SMC-Greedy found a larger set to choose blocking nodes from or that MCICH-SMC-Greedy is
able to block more nodes from a previously selected set.

It is an important result of this study that the simplifying constraint that all blocking nodes
for one contagion must be applied at one time step for MCICH-SMC-Greedy still leads to very
good blocking efficacy. Thus, very good blocking performance is achieved with the best execution
performance.

6. Summary, limitations, and future work
We considered the problem of minimizing the number of new infections in a network through
vaccination when two independent contagions are propagating through a network and there
is a budget constraint on the number of vaccinations. Since the problem is computationally
intractable, we developed an efficient heuristic algorithm and demonstrated its performance
through experiments.
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There are several directions for future work. Some of these directions arise due to limitations of
our study. For example, it is of interest to evaluate the MCICH-SMC heuristic under several other
scenarios; examples include graphs with nonuniform threshold values for nodes, other ways of
selecting seed sets, and skewed distributions of seed nodes between the two contagions. Our com-
putational intractability result for the VS-MTNNI problem assumes that the budget constraint
cannot be violated. It is of interest to investigate whether efficient approximation algorithms can
be developed assuming that the vaccination budget can be violated by a small factor. Further, one
may consider restricted classes of graphs (e.g., graphs with bounded node degrees) and investigate
whether efficient algorithms or approximations can be developed for those classes. In our model,
the two contagions are assumed to be independent. It is of interest to consider a model where the
contagions interact, that is, a node that is infected one contagion may make it easier or harder
for the node to be infected by the other contagion. Developing suitable problem formulations and
algorithms for interacting contagions is an interesting research direction. Finally, our work con-
siders the deterministic threshold model. Many models for disease propagation are stochastic in
nature (see e.g., Marathe & Vullikanti, 2013; Hethcote, 2000). Developing appropriate techniques
for blocking multiple contagions under various stochastic propagation models is a challenging
research direction.
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Notes
1 For any nonnegative integer K, the K-core of a graph G is the subgraph in which each node has degree at least K (Easley &
Kleinberg, 2010).
2 Our run-out time for all computations, that is, the maximum allowable execution duration, was about 1 week [145 hours]
of wall clock time on the high-performance computing (HPC) compute cluster identified above. This is a long time for a
cluster that is a resource-shared among the members pf a large research group.
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