
J. Functional Programming 10 (4): 409–415, July 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

409

F U N C T I O N A L P E A R L

Do we need dependent types?

DANIEL FRIDLENDER

BRICSã, Department of Computer Science, University of Aarhus,

Århus, Denmark

(e-mail: daniel@brics.dk)

MIA INDRIKA

Department of Computing Science,

Chalmers University of Technology and Göteborg University,

Göteborg, Sweden

(e-mail: indrika@cs.chalmers.se)

1 The problem

This pearl is about some functions whose definitions seem to require a language

with dependent types. We describe a technique for defining them in Haskell or ML,

which are languages without dependent types.

Consider, for example, the scheme defining zipWith in figure 1. When this scheme

is instantiated with n equal to 1 we obtain the standard function map. In practice,

other instances of the scheme are often useful as well.

Figure 1 cannot be used as a definition of a function in Haskell because of the

ellipses ‘...’. More importantly, the type of zipWith is parameterized by n, which

seems to indicate the need for dependent types. However, as mentioned above,

Haskell does not allow dependent types.

The way the Haskell library (Peyton Jones and Hughes, 1999a; Peyton Jones

and Hughes, 1999b) solves the problem is by providing a family of 8 (!) functions

zipWith0, zipWith1, zipWith2, zipWith3, . . . , zipWith7, where the number in the

name of the function indicates the value given to n when instantiating the scheme.1

The programmer can of course extend this family with more instances if (s)he needs.

zipWith :: (a1 -> ... -> an -> b) -> [a1] -> ... -> [an] -> [b]

zipWith f (a1:as1) ... (an:asn) = f a1 ... an : zipWith f as1 ... asn

zipWith _ _ ... _ = []

Fig. 1. Scheme for zipWith.

ã Basic Research in Computer Science, Centre of the Danish National Research Foundation.
1 In the Haskell library, zipWith0, zipWith1 and zipWith2 are called repeat, map and zipWith

respectively.

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658


410 D. Fridlender and M. Indrika

This mechanical repetition of code is very unpleasant. The main benefit of Haskell

and ML polymorphism is precisely the ability to define functions at an abstract level,

allowing a high degree of program reusability. However, in the case of zipWith this is

only partially achieved. Every member of the family of functions has a polymorphic

type, which means that it can be used to ‘zip’ lists of integers, booleans or of values

of any other type. However, their definitions are still not abstract enough, since one

cannot reuse them with different number of arguments.

The kind of problem that we address here is how to define within the Hindley–

Milner type system (the core of the type systems underlying Haskell and ML)

a general version of zipWith that can be used with a variable number of argu-

ments. We describe a technique that introduces ad hoc codings for natural numbers,

which resemble numerals in λ-calculus. The same technique can be applied to other

examples such as liftM – for which the Haskell library also provides families of

functions – and the tautology function taut, which is considered a standard example

of the expressive power of dependent types.

2 A preliminary solution

As a motivating example, suppose we want to ‘zip’ eight given lists as1, . . . , as8 with

a given 8-ary function f of appropriate type in Haskell. For the reasons mentioned

above, we decline defining a new instance zipWith8 of the scheme in figure 1. We

use instead the function zipWith7 from the Haskell library, and write

zipWith7 f as1 as2 as3 as4 as5 as6 as7 << as8

where << is defined as follows:

(<<) :: [a -> b] -> [a] -> [b]

(f:fs) << (a:as) = f a : (fs << as)

_ << _ = []

In effect, since f is 8-ary, zipWith7 f as1 as2 as3 as4 as5 as6 as7 returns a

list of functions, and the operator << makes sure that each function on that list is

applied to the corresponding argument in as8.

Thus there is no need to define zipWith8: one can just write as above in terms

of the existing zipWith7. Similarly, there is no need to use zipWith7, since it can

be replaced by an expression written in terms of zipWith6 and <<. Iterating this

process, and assuming that << associates to the left, the expression above can be

written as

repeat f << as1 << ... << as8

where repeat – Haskell’s name for zipWith0 – is a function returning a list that

consists of infinitely many copies of its argument, i.e.:

repeat :: b -> [b]

repeat f = f : repeat f

In general ‘zipping’ n given lists as1, . . . , asn with a given n-ary function f of

appropriate type can be written as

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658


Functional pearl 411

repeat f << as1 << ... << asn (1)

in Haskell.

Using expressions like (1) is already more flexible than implementing many

different instances of the scheme. The disadvantage is that the partial application

zipWith8 f as1 would have to be expressed in the following clumsy form:

\as2 ... as8 -> repeat f << as1 << ... << as8

The final expression that we propose in the next section will solve this problem.

3 Introducing numerals

Notice that expression (1) contains not only the lists as1, . . . , asn to be ‘zipped’, but

also extra explicit information about how many the lists are, namely, an occurrence

of the operator << for each of them. This gives rise to introducing numerals.

We define the successor function succ as follows:

succ :: ([b] -> c) -> [a -> b] -> [a] -> c

succ = \n fs as -> n (fs << as)

This can be read in terms of continuations: given a continuation n, a list of functions

fs and a list of arguments as, it applies each function in fs to the corresponding

argument in as producing a list which is given to the continuation n.

The numeral zero is simply the identity function id :: a -> a, which in par-

ticular has type [a] -> [a]. The remaining numerals are obtained by iterating the

successor function succ on zero:

one = succ zero :: [a -> b] -> [a] -> [b]

two = succ one :: [a -> b -> c] -> [a] -> [b] -> [c]

In general, the numeral n corresponding to the number n has the following type:

n :: [a1 -> ... -> an -> b] -> [a1] -> ... -> [an] -> [b]

We now define zipWith as:

zipWith :: ([a] -> b) -> a -> b

zipWith n f = n (repeat f)

Thus, given a numeral n, zipWith n will have type

zipWith n :: (a1 -> ... -> an -> b) -> [a1] -> ... -> [an] -> [b]

which is exactly what we wanted. Expression (1) can finally be written:

zipWith n as1 ... asn (2)

The definitions for zipWith are summarized in figure 2.

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658


412 D. Fridlender and M. Indrika

(<<) :: [a -> b] -> [a] -> [b]

(f:fs) << (a:as) = f a : (fs << as)

_ << _ = []

succ :: ([b] -> c) -> [a -> b] -> [a] -> c

succ = \n fs as -> n (fs << as)

zero = id :: a -> a -- in particular [a] -> [a]

one = succ zero :: [a -> b] -> [a] -> [b]

two = succ one :: [a -> b -> c] -> [a] -> [b] -> [c]

n :: [a1 -> ... -> an -> b] -> [a1] -> ... -> [an] -> [b]

zipWith :: ([a] -> b) -> a -> b

zipWith n f = n (repeat f)

zipWith n :: (a1 -> ... -> an -> b) -> [a1] -> ... -> [an] -> [b]

Fig. 2. Numerals for zipWith.

4 The numerals in use

We can now revisit the motivating example from section 2. Assume that the numeral

seven is defined in the library. In order to ‘zip’ eight given lists as1, . . . , as8 with

a given 8-ary function f of appropriate type, we can define

eight = succ seven

and write the expression:

zipWith eight f as1 as2 as3 as4 as5 as6 as7 as8

Defining eight is of course unnecessary; one may replace it by (succ seven) in

the expression above.

The disadvantage mentioned in section 2 vanishes now because the equivalent to

zipWith8 f as1 becomes:

zipWith eight f as1

We can also show with an example how these numerals can be reused. Suppose

that we want to define a general function zap given by the following scheme:

zap :: [(a1 -> ... -> an -> b)] -> [a1] -> ... -> [an] -> [b]

zap (f:fs) (a1:as1) ... (an:asn) =

f a1 ... an : zap fs as1 ... asn

zap _ _ ... _ = []

A definition using the numerals from figure 2 would be

zap n = zipWith (succ n) id

which is certainly more convenient than following the approach that the Haskell

library used for zipWith, defining a new family of functions for zap.

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658


Functional pearl 413

succ :: (a -> Bool) -> (Bool -> a) -> Bool

succ = \n f -> n (f True) && n (f False)

zero = id :: a -> a -- in particular Bool -> Bool

one = succ zero :: (Bool -> Bool) -> Bool

two = succ one :: (Bool -> Bool -> Bool) -> Bool

n :: (Bool -> ... -> Bool -> Bool) -> Bool

taut n = n

Fig. 3. Numerals for taut.

5 Other examples

The idea of introducing numerals can be applied in several other cases. For each

of the functions liftM, zip, unzip, curry and uncurry one can define zero and

succ, which will make possible to give generic definitions of them.

We illustrate this with a final toy example that is interesting, since it is one of the

typical small examples of programs that one can write thanks to having dependent

types (Nordström et al., 1990).

We want to define a function taut and numerals n such that taut n has type

taut n :: (Bool -> ... -> Bool -> Bool) -> Bool

and taut n p determines whether p – which represents a Boolean expression of n

variables – is a tautology or not. This is achieved by making the definitions shown

in figure 3.

6 Conclusion

Inspired by the work presented in Danvy (1998), we considered several functions

whose implementability was generally believed to require dependent types. We have

shown that it is possible to define such functions without dependent types in an

elegant way by introducing ad hoc numerals.

The main disadvantage of this solution is precisely that the numerals we define

are too ad hoc. For each example we have to define special purpose numerals. The

numerals are so specific that the main function in each case becomes very simple

(as in zipWith) or completely trivial (as in taut). We are seeking for a way of

exploiting Haskell’s polymorphism and overloading to find generic numerals, that

is, numerals that would work for all or several of the functions zipWith, liftM,

zip, unzip, curry, uncurry and taut.

The reader may observe that polymorphism is already being exploited in this

paper all along. In figure 2, for example, zipWith and succ are defined in order to

be applied to numerals. However, the numerals zero, one, two, . . . have all different

types. Fortunately, the type of the first argument in the definitions of zipWith

and succ is more general than all of them. Probably the case of taut (figure 3)

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658


414 D. Fridlender and M. Indrika

makes the use of polymorphism most evident, since the successor function succ has

a polymorphic type even though the numerals do not.

Even though we have used Haskell syntax and assumed lazy evaluation in some

places (when using the function repeat), the idea of using numerals only requires

Hindley–Milner type system. With minor changes one can obtain numerals to

implement a general zipWith in strict languages such as ML.

From the computational point of view the use of numerals in the case of zipWith

produce a small loss of performance. Evaluating expression (1) or (2) implies

generating and consuming a number of intermediate lists. For this reason, the

performance of zipWith n as defined in figure 2 is a bit worse than the performance

of the corresponding instance of the scheme in figure 1. We have verified by hand

that with the deforestation algorithm given in Wadler (1990) it is possible to remove

the generation and consumption of intermediate lists. This means that if we had a

compiler with the ability of performing more advanced deforestation than present

day compilers, zipWith n would be as efficient as the corresponding instance of the

scheme in figure 1.

All the functions considered here can be generically defined in languages with

dependent types, like Cayenne (Augustsson, 1998). However, it is not clear to us

that this would benefit in a more convenient notation for the functions defined here.

In the current implementations of languages with dependent types, zipWith would

need to have extra parameter(s) with type information which, to the programmer,

might be harder to write than the numerals.

In languages for generic programming (Jeuring and Jansson, 1996), it is possible

to define a more general version of zipWith than the one in the Haskell library,

a zipWith which would work for arbitrary datatypes rather than only for lists.

However, the existing proposals of languages for generic programming cannot

express the idea of a variable number of arguments needed for defining zipWith as

we want here. It is possible that future proposals will. However, from the current

development (Hinze, 1999) it seems fair to expect that again – just as in languages

with dependent types – it would be necessary for the programmer to provide extra

typing information. On the other hand, our technique can also be applied in a

language for generic programming to define numerals for a zipWith which would

then work for arbitrary datatypes and for a variable number of arguments.

We have given a general definition of the function taut in Hindley–Milner type

system using numerals. As pointed out to us by Thomas Hallgren, if that type

system is extended with classes like in Haskell then it is also possible to give a more

convenient definition of taut which would not need numerals. That definition is

obtained by overloading the function taut.

Acknowledgements

We are grateful to Magnus Carlsson and Olivier Danvy with whom we discussed the

subject of this paper in several opportunities. Richard Bird, Olivier Danvy and an

anonymous reviewer gave us valuable comments on earlier versions of this paper.

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658


Functional pearl 415

References

Augustsson, L. (1998) Cayenne – A Language with Dependent Types. Proc. Third ACM

SIGPLAN International Conference on Functional Programming (ICFP ’98), pp. 239–250.

ACM Press.

Danvy, O. (1998) Functional unparsing. J. Functional Programming, 8(6), 621–625.

Hinze, R. (1999) A Generic Programming Extension for Haskell. In: E. Meijer (ed), Proc.

Third Haskell Workshop, Paris, France. (Technical Report UU-CS-1999-28, Department of

Computer Science, Utrecht University.)

Jeuring, J. and Jansson, P. (1996) Polytypic Programming. In: E. Meijer and T. Sheard (eds),

Advanced Functional Programming, pp. 68–114. Lecture Notes in Computer Science 1129.

Springer-Verlag.

Nordström, B., Petersson, K. and Smith, J. (1990) Programming in Martin-Löf ’s Type Theory.

An Introduction, pp. 98–100 Oxford University Press.

Peyton Jones, S. and Hughes, J. (eds). (1999a) Report on the Programming Language Haskell

98. http://www.haskell.org/onlinereport/

Peyton Jones, S. and Hughes, J. (eds). (1999b) Standard Libraries for the Haskell 98 Program-

ming Language. http://www.haskell.org/onlinelibrary/

Wadler, P. (1990) Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput.

Sci. 73(2), 231–248.

https://doi.org/10.1017/S0956796800003658 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003658

