
ar
X

iv
:c

s/
99

06
02

6v
1

 [
cs

.C
L

]
 2

5
Ju

n
19

99

Robust Grammatical Analysis for Spoken Dialogue

Systems

Gertjan van Noord, Gosse Bouma, Rob Koeling, Mark-Jan Nederhof
Alfa-Informatica & BCN
University of Groningen

June 1998
Accepted for Journal of Natural Language Engineering

Abstract

We argue that grammatical analysis is a viable alternative to concept spotting for processing
spoken input in a practical spoken dialogue system. We discuss the structure of the grammar,
and a model for robust parsing which combines linguistic sources of information and statistical
sources of information. We discuss test results suggesting that grammatical processing allows
fast and accurate processing of spoken input.

1 Introduction

The NWO Priority Programme Language and Speech Technology is a research programme aiming
at the development of spoken language information systems. Its immediate goal is to develop a
demonstrator of a public transport information system, which operates over ordinary telephone
lines. This demonstrator is called OVIS, Openbaar Vervoer Informatie Systeem (Public Transport
Information System). The language of the system is Dutch.

At present, a prototype is in operation, which is a version of a German system developed
by Philips Dialogue Systems in Aachen (Aust et al., 1995), adapted to Dutch. This German sys-
tem processes spoken input using “concept spotting”, which means that the smallest information-
carrying units in the input are extracted, such as locative phrases (mostly names of train stations)
and temporal expressions, and these are translated more or less individually into updates of the
internal database representing the dialogue state. The words between the concepts thus per-
ceived are ignored.

The use of concept spotting is common in spoken-language information systems (Ward, 1989;
Jackson et al., 1991; Aust et al., 1995; Allen et al., 1996). Arguments in favour of this kind of
shallow parsing are that it is relatively easy to develop the NLP component, since larger sentence
constructs do not have to be taken into account, and that the robustness of the parser is enhanced,
since sources of ungrammaticality occurring between concepts are skipped and therefore do not
hinder the translation of the utterance to updates.

The prototype presently under construction (OVIS2) is based on a grammar which describes
grammatical sentences, i.e. complete and well-formed user utterances, and thus differs radically
from a concept spotting approach. This article presents a detailed account of a computational
grammar for Dutch, and a robust parsing algorithm which incorporates this grammatical knowl-
edge as well as other knowledge sources, such as acoustic evidence and Ngram statistics. We
argue that robust parsing can be based on sophisticated grammatical analysis. In particular, the
grammar describes full sentences, but in doing so, also describes the grammar of temporal ex-
pressions and locative phrases which are crucial for concept spotting. Robustness is achieved by
taking these phrases into consideration, if a full parse of an utterance is not available. We show

1

http://arxiv.org/abs/cs/9906026v1

that our approach is feasible in terms of both accuracy and computational resources, and thus is
a viable alternative to pure concept spotting.

Whereas some (e.g. Moore, Pereira, and Murveit (1989)) argue that grammatical analysis may
improve recognition accuracy, our current experiments have as yet not been able to reveal a sub-
stantial advantage in this respect. However, the grammatical approach may become essential as
soon as the application is extended in such a way that more complicated grammatical construc-
tions need to be recognized. In that case, simple concept spotting may not be able to correctly
process all constructions, whereas the capabilities of the grammatical approach extend much fur-
ther.

The structure of this paper is as follows. In section 2 we describe the grammar for OVIS2. We
present the grammar in some detail, since we believe it constitutes an interesting compromise
between linguistic and computational considerations. Readers interested in processing issues
rather than the details of linguistic analysis might prefer to skip section 2 (possibly except the
first paragraph) and jump to section 3 immediately. That section describes the robust parsing
algorithm. Section 4 reports test results, showing that grammatical analysis allows fast and accu-
rate processing of spoken input.

2 A computational grammar for Dutch

In developing the OVIS2 grammar we have tried to combine the short-term goal of developing a
grammar which meets the requirements imposed by the application (i.e. robust processing of the
output of the speech recogniser, extensive coverage of locative phrases and temporal expressions,
and the construction of fine-grained semantic representations) with the long-term goal of devel-
oping a general, computational, grammar which covers all the major constructions of Dutch.

The design and organisation of the grammar, as well as many aspects of the particular gram-
matical analyses we propose, are based on Head-driven Phrase Structure Grammar (Pollard and
Sag, 1994). We depart from this formalism mostly for computational reasons. As is explained be-
low, the grammar is compiled into a restricted kind of definite clause grammar for which efficient
processing is feasible. The semantic component follows the approach to monotonic semantic in-
terpretation using quasi-logical forms presented originally in Alshawi (1992).

The grammar currently covers the majority of verbal subcategorisation types (intransitives,
transitives, verbs selecting a PP, and modal and auxiliary verbs), NP-syntax (including pre- and
post-nominal modification, with the exception of relative clauses), PP-syntax, the distribution
of VP-modifiers, various clausal types (declaratives, yes/no and WH-questions, and subordinate
clauses), all temporal expressions and locative phrases relevant to the domain, and various typi-
cal spoken-language constructs. Due to restrictions imposed by the speech recogniser, the lexicon
is relatively small (3200 word forms, many of which are names of stations and cities).

In sections 2.1- 2.3 we introduce the grammar formalism from both a computational and lin-
guistic perspective. Section 2.4 describes the grammar of noun, prepositional, and verb phrases,
subordinate and main clauses, WH-questions and topicalisation, and a number of domain specific
constructions. Sections 2.5 and 2.6, finally, are concerned with semantics and the translation of
quasi-logical forms into (application-specific) update-expressions.

2.1 Formalism

The formalism that we use for the OVIS2 Grammar is a variant of Definite Clause Grammar
(DCG) (Pereira and Warren, 1980). We have chosen for DCG because:

• DCG provides for a balance between computational efficiency on the one hand and linguistic
expressiveness on the other.

• DCG is a (simple) member of the class of declarative and constraint-based grammar for-
malisms. Such formalisms are widely used in linguistic descriptions for NLP.

2

• DCG is straightforwardly related to context-free grammar. Almost all parsing technology
is developed for CFG; extending this technology to DCG is usually possible (although there
are many non-trivial problems as well).

• The compilation of richer constraint-based grammar formalisms into DCG is well investi-
gated and forms the basis of several wide-coverage and robust grammar systems (i.e. the
Alvey-grammar (Briscoe et al., 1987; Carroll, 1993; Briscoe and Carroll, 1993) and the Core
Language Engine (Alshawi, 1992)).

The formalism for the grammar of OVIS2 imposes the following additional requirements:

• External Prolog calls (in ordinary DCG these are introduced in right-hand sides using curly
brackets) are allowed, but must be resolved during grammar compilation time.

• Rules can be mapped to their ‘context-free skeleton’ (by taking the functor symbol of the
terms appearing in the right-hand and left-hand sides of the rule). This implies that we do
not allow the under-specification of categories in rules. This is motivated by our desire to
experiment with parsing strategies in which part of the work is achieved on the basis of the
context-free skeleton of the grammar. It also facilitates indexing techniques.

• An identifier is assigned to each rule. Such rule identifiers have a number of possible uses
(debugging, grammar filtering, grammar documentation).

• The grammar specifies for each rule which daughter is the head. This allows head-driven
parsing strategies.

An efficient head-corner parsing strategy for this formalism is discussed in van Noord (1997a).
The restriction that external Prolog calls must be resolved at compilation time implies that we
do not use delayed evaluation. More in particular, lexical rules (deriving a lexical entry from a
given ‘basic’ lexical entry) must be applied at compile time and are not interpreted as (relational)
constraints on under-specified lexical entries, as in van Noord and Bouma (1994). Although we
have experimented with combinations of delayed evaluation and memoisation, as described in
Johnson and Dörre (1995), the resulting systems were not efficient enough to be applied in the
kind of practical system considered here.

Grammar rules. A grammar rule is defined by a ternary predicate, rule/3. The first argument
of this predicate is a ground Prolog term indicating the rule identifier. The second argument of
the rule is the mother category. Categories are non-variable Prolog terms. The third argument
of the rule is a list of categories. Note that we require that the length of the list is given, and
that none of the categories appearing in the list is a variable. An example of a grammar rule is
provided:

rule(vp_vpnp, vp(Subj,Agr,Sem),

[v(Subj,Agr,trans,l(Arg,Sem)),np(_,Arg)]).

(1)

Terminal symbols cannot be introduced in rules directly, but are introduced by means of lexical
entries.

Lexical entries. The lexicon is defined by the predicate lex/2. As an example, the lexical entry
‘sleeps’ could be encoded as:

lex(sleeps,v(np,agr(3,sg),intrans,l(X,sleep(X)))).(2)

The first argument is the terminal symbol introduced by this lexical category. The second argu-
ment is the category (a non-variable term). In cases where a lexical entry introduces a sequence
of terminal symbols the first argument is also allowed to be a (non-empty) list of atoms.

3

Top category. The top category for the grammar (or start symbol) is defined by the unary predi-
cate top category. Its argument is an arbitrary non-variable Prolog term.

Feature constraints. Almost all work in computational grammar writing uses ‘feature-
structures’ of some sort. It is fairly standard to compile (descriptions of) such features-structures
into first-order terms (see Pulman (1996) for a recent overview). We use the HDRUG develop-
ment platform (van Noord and Bouma, 1997b), which contains a library for compiling feature
constraints into Prolog terms, and various predicates to visualise such Prolog terms as feature
structures in matrix notation.

The most important operators provided by the HDRUG library are the type assignment op-
erator (’=>’), the path equality operator (’<=>’), and the path operator (’:’). A typical grammar
fragment employing those operators is:

rule(1,S,[Np,Vp]) :-

S => s, np(Np), vp(Vp),

Vp:vform => finite,

subj_agreement(Vp,Np).

np(Np) :- Np => np, Np:lex => -.

vp(Vp) :- Vp => v, Vp:lex => -.

subj_agreement(Vp,Np) :- Vp:agr <=> Np:agr.

(3)

In this rule, the constraint Np:lex => - indicates that the value of the lex attribute of Np is of
type -. The constraint Vp:agr <=> Np:agr indicates that the value of the agr attribute of Vp
is identical to the value of the agr attribute of Np. Internally, such a rule could be represented
as follows (the actual result of the compilation depends on what attributes are allowed for what
types; declarations of this sort are part of the grammar):

rule(1,s,[np(Agr,-),v(Agr,-,finite,_,_)]).(4)

We often will write such rules in matrix notation, as follows:

rule(1, s, 〈

np
agr 1

lex -

,

v
agr 1

lex -
vform finite

〉).(5)

The feature library also supports boolean combinations of atomic values; these are compiled
into Prolog terms using a technique described in Mellish (1988) (who attributes it to Colmerauer)
and Pulman (1996). Thus, we may specify agr values such as sg ∧ (sec ∨ thi), denoting
an agreement value which is singular and either second or third person.

We have also found it useful to provide the predicates unify ifdef/3, ifdef/4, and
unify except/3. The predicate unify ifdef(C1,C2,Att) can be used to require that if
both C1 and C2 can have the attribute Att (i.e. C1, C2 are of a type for which Att is
a possible feature), then the values C1:Att and C2:Att must be identical. The predicate
ifdef(Att,Cat,Val,Otherwise) is used to require that Cat:Att is identical to Val if Att
is an appropriate feature for Cat. Otherwise Val is identical to Otherwise. The predicate
unify except(C1,C2,Path) unifies C1 and C2, with the exception of the value of Path,
which must be defined for both C1 and C2, but which may have incompatible values. These
predicates simplify the definition of the grammar code below.

2.2 Signs

In unification-based grammar formalisms, linguistic information is represented by means of
typed feature-structures. Each word or phrase in the grammar is associated with such a feature-
structure, in which syntactic and semantic information is bundled. Within Head-driven Phrase

4

Structure Grammar (HPSG), such feature-structures are called signs, a terminology which we will
follow here.

At present, the grammar makes use of 15 different types of sign, where each type roughly
corresponds to a different category in traditional linguistic terminology. For each type of sign, a
number of features are defined. For example, for the type NP, the features AGR, NFORM, CASE,
and SEM are defined. These features are used to encode the agreement properties of an NP, (mor-
phological) form, case and semantics, respectively. A more detailed presentation of these features
follows below.

There are a number of features which occur in most types of sign, and which play a special role
in the grammar. The feature SC (SUBCATEGORISATION) (present on signs of type v, sbar, det, a, n
and p), for instance, is a feature whose value is a list of signs. It represents the subcategorisation
properties of a given sign. As will be explained below, it is used to implement rules which
perform functor-argument application (as in Categorial Grammar).

The feature SLASH is present on v, ques and sbar. Its value is a list of signs. It is used to
implement a (restricted) version of the account of nonlocal dependencies proposed in Pollard
and Sag (1994) and Sag (1997). The value of SLASH is the list of signs which are ‘missing’ from
a given constituent. Such a ‘missing’ element is typically connected to a preposed element in
a topicalisation sentence or WH-question. The same mechanism can also be used for relative
clauses.

The feature VSLASH is similar to SLASH in that it records the presence of a missing element, a
verb in this case. It is used to implement an account of Dutch main clauses, based on the idea that
main clauses are structurally similar to subordinate clauses, except for the fact that the finite verb
occurs as first or second constituent within the clause and the clause final position where finite
verbs occur in subordinate clauses is occupied by an empty verbal sign (i.e. an element which is
not visible in the phonological or orthographic representation of the sentence).

The feature SEM is present on all signs. It is used to encode the semantics of a word or phrase,
encoded as a quasi logical form (Alshawi, 1992). The feature MOD is present on the types a, pp,
p, adv, sbar and modifier. It is used to account for the semantics of modifiers. Its value is a list
of quasi-logical forms. In the sections below on syntax, we only give an informal impression of
the semantics. The details of the semantic construction rules and principles are dealt with in
section 2.5.

An important restriction imposed by the grammar-parser interface is that each rule must spec-
ify the category of its mother and daughters. A consequence of this requirement is that general
rule-schemata, as used in Categorial Grammar and HPSG cannot be used in the OVIS2 grammar.
A rule which specifies that a head daughter may combine with a complement daughter, if this
complement unifies with the first element on SC of the head (i.e. a version of the categorial rule
for functor-argument application) cannot be implemented directly, as it leaves the categories of
the daughters and mother unspecified. Nevertheless, generalisations of this type do play a role
in the grammar. We adopt an architecture for grammar rules similar to that of HPSG, in which
individual rules are classified in various structures, which are in turn defined in terms of general
principles.

Rules normally introduce a structure in which one of the daughters can be identified as the
head. The head daughter either subcategorises for the other (complement) daughters or else is
modified by the other (modifier) daughters.

The two most common structures are the head-complement and head-modifier structure.1 In
figure 1 we list the definitions for these structures and the principles they refer to, except for the
filler principle, which is presented in the section on topicalisation.

Head-complement and head-modifier structures are instances of headed structures. The definition
of headed structure refers to the HEAD-FEATURE, VALENCE, and FILLER principles, and further-
more fixes the semantic head of a phrase. Note that the definition of hd-struct has a number
of parameters. The idea is that a headed structure will generally consist of a head daughter, and

1Other structures are the main-clause and head-filler structure. These are discussed in the sections on main-clause syntax
and topicalisation.

5

hd_comp_struct(Head,Complements,Mother) :-

hd_struct(Head,Complements,Head,Mother).

hd_mod_struct(Head,Modifier,Mother) :-

hd_struct(Head,[],Modifier,Mother),

Head:sem <=> HeadSem,

Modifier:mod <=> [HeadSem].

hd_struct(Head,Complements,SemanticHead,Mother) :-

head_feature_principle(Head,Mother),

valence_principle(Head,Complements,Mother),

filler_principle(Head,[],Mother),

SemanticHead:sem <=> Mother:sem.

head_feature_principle(Head,Mother) :-

unify_ifdef(Head,Mother,vform),

unify_ifdef(Head,Mother,agr),

unify_ifdef(Head,Mother,case),

unify_ifdef(Head,Mother,mod),

unify_ifdef(Head,Mother,pform),

unify_ifdef(Head,Mother,aform),

unify_ifdef(Head,Mother,vslash),

unify_ifdef(Head,Mother,subj).

valence_principle(Head,Complements,Mother) :-

ifdef(sc,Head,HeadSc,[]),

ifdef(sc,Mother,MotherSc,[]),

append(Complements,MotherSc,HeadSc)

Figure 1: Structures and Principles

6

furthermore of zero or more complement daughters and possibly a modifier. Head-complement
and head-modifier structures differ from each other only in that the first introduces complements,
but no modifiers, whereas the second introduces no complements, but a modifier. Moreover, the
syntactic head is also the semantic head in head-complement structures, but not in a head-modifier
structure. In head-modifier structures, the semantic contribution of the head to the meaning of the
phrase as a whole is handled by unifying the head semantics with the value of (the first element
of) MOD on the modifier.

The HEAD FEATURE PRINCIPLE states for a number of features (the head-features) that their
value on the head daughter and mother must be unified. As this principle generalises over vari-
ous types of sign, its definition requires the predicate unify ifdef.

The VALENCE PRINCIPLE determines the value of the valence feature SC. The value of SC on the
head daughter of a rule is the concatenation (append) of the list of complement daughters and
the value of SC on the mother. Another way to put this is that the value of SC on the mother is the
value of SC on the head daughter minus the elements on SC that correspond to the complement
daughters. Note that the formulation of the VALENCE PRINCIPLE is complicated by the fact that
SC (or SUBJ) may sometimes not be defined on the mother. In that case, it is assumed that the value
of SC on the head daughter must correspond exactly to the list of complement daughters. The
constraint ifdef(sc,Mother,MotherSc,[]) states that the value of SC on Mother unifies
with MotherSc, if SC is defined for the type of Mother. Otherwise, MotherSc is assigned the
value [] (i.e. the empty list).

The structures defined in figure 1 are used in the definition of grammar rules. The np-det-n
rule introduces a head-complement structure in which (following the traditional semantic analysis)
the determiner is the head, and the noun the complement:

rule(np_det_n, NP, [Det, N]) :-

NP => np, Det => det, N => n,

NP:nform => norm, hd_comp_struct(Det,[N],NP).

(6)

The n-adj-n rules introduces a head-modifier structure where the adjective is the modifier:

rule(n_adj_n, N1, [AdjP, N0]) :-

N1 => n, AdjP => a, N0 => n,

AdjP:agr <=> N0:agr, hd_mod_struct(N0,AdjP,N1).

(7)

Note that for a given rule, the types of the mother and daughters must be specified, and
furthermore, the number of complements is always specified. This implies that the constraints
in the principles in figure 1 can be reduced to a number of basic constraints on the values of
particular features defined for the signs in the rule. The previous two rules can be depicted in
matrix notation as (where 〈〉 denotes the empty list):

np det n:

np
agr 1

nform norm
sem 2

→

det

sc
〈

3

〉

agr 1

sem 2

3 n(8)

n adj n:

n
sc 1

agr 2

sem 3

→

a
sc 〈〉

agr 2

sem 3

mod
〈

4

〉

n
sc 1

agr 2

sem 4

(9)

An overview of all grammar rules defined in the fragment at the moment, together with the
structures and principles from which they inherit, is given in figure 2.

The classification of rules into structures, which are in turn defined in terms of principles,
allows us to state complicated rules succinctly and to express a number of generalizations. Nev-
ertheless, it is also clear that the rules could have been more general, if rule schemata (in which

7

np_det_n
pp_p_np
vp_arg_v
vp_v_arg
v_part_v

v_v_v
sbar1
sbar2

n_adj_n
n_n_pp

vp_mod_v
vp_v_mod
mod_topic

topicalization vfirst subject_firstmod_adv mod_pp hd_mod hd_comp

hd hd_filler main_clause

head_feature fillervalence mod_np vgap

Figure 2: The Rule Hierarchy (with PRINCIPLES shown in boxes, structures in ovals, and rules

without frame). Note that the mod np rule (a unary rule which transforms temporal NPs into
verbal modifiers) and the vgap rule (a rule which introduces verbal gaps) are exceptional in that
they do not inherit from general principles.

the type of the daughters, or even the number of daughters is not necessarily specified) had been
allowed. Given this restriction, one may even wonder whether the VALENCE PRINCIPLE (and
the feature SC that comes with it) cannot be eliminated in favour of more specific rules. Va-
lence features are particularly important for grammars employing rule schemata, but they are
much less crucial for more traditional types of grammar. Although eliminating valence features
is not impossible in principle, we believe that the present set-up still has advantages, although
these are less apparent than in grammars which make use of rule schemata. Expressing valence
information lexically, instead of using more detailed syntactic rules, has the advantage that id-
iosyncratic subcategorization requirements (such as the restriction that denken (to think) requires
a PP-complement headed by aan (about), or the fact that komen (to come) may combine with the
particle aan (the combination of which means to arrive)) need not be stated in the rules. Similarly,
all constraints having to do with case marking and agreement can be expressed lexically, as well
as the semantic relation between a head and its dependents.

2.3 The lexicon

The lexicon is a list of clauses lex(Word,Sign), associating a word (or sequence of words) with
a specific sign.

Constraint-based grammars in general, and lexicalist constraint-based grammars in particu-
lar, tend to store lots of grammatical information in the lexicon. This is also true for the OVIS2
grammar. A lexical entry for a transitive verb, for instance, not only contains information about
the morphological form of this verb, but also contains the features SC and SUBJ for which quite
detailed constraints may be defined. Furthermore, for all lexical signs it is the case that their se-
mantics is represented by means of a feature-structure. This structure can also be quite complex.
To avoid massive reduplication of identical information in the lexicon, the use of inheritance is
therefore essential.

In figure 3, we illustrate the use of inheritance in the lexicon. All lexical entries for verbs have
a number of properties in common, such as the fact that they are of type v, and take a normal
(non-locative and non-temporal) NP as subject. This is expressed by the template v(V). Intran-

8

intransitive(Pred,Sign) :- iv(Sign), iv_sem(Sign,Pred).

transitive(Pred,Sign) :- tv(Sign), tv_sem(Sign,Pred).

v(V) :- V => v, V:lex => basic,

V:vslash => [], V:subj <=> [Subj],

Subj => np, Subj:nform => norm.

iv(V) :- v(V), V:sc <=> [].

tv(V) :- v(V), V:sc <=> [Obj],

Obj => np, Obj:nform => norm, Obj:case => acc.

weather_v(V) :- iv(IV), unify_except(IV,V,subj:h:nform),

V:subj:h:nform => it.

Figure 3: Fragment of the lexical hierarchy

sitive verbs (iv(V)) can now be characterised syntactically as verbs which do not subcategorise
for any (non-subject) complements. Transitive verbs (tv(V)) subcategorise for an NP with ac-
cusative case. The templates intransitive(Pred,Sign) and transitive(Pred,Sign),
finally, combine the syntactic and semantic properties of intransitive and transitive verbs. The
variable Pred is used in the semantics to fix the value of the predicate defined by a particu-
lar verb. A limited form of non-monotonic inheritance is supported (see Carpenter (1992) and
Bouma (1992) for more general approaches). For instance, ‘weather’ verbs require the dummy
pronoun het (it) as subject, but behave otherwise as intransitive verbs. This can be expressed by
letting weather v inherit from iv, with the exception of the value of the NFORM attribute of
(head of the list containing) the subject, which is assigned an exceptional value. The attribute-
value matrices for the templates iv(V) and tv(V) are:

iv(

v
lex basic
sc 〈〉

subj

〈[

np
nform norm

]〉

vslash 〈〉

). tv(

v
lex basic

sc

〈

np
nform norm
case acc

〉

subj

〈[

np
nform norm

]〉

vslash 〈〉

).(10)

The lexicon itself (i.e. the predicate lex/2) is defined in terms of the predicates entry,
inflection and lexical rules:

lex(Word,Sign) :-

entry(Root,Sign0),

inflection(Root,Word,Sign0,Sign1),

lexical_rules(Sign1,Sign).

(11)

The definition of entry(Root, Sign) defines for each root form what its associated sign is.
For instance, for verbs we must typically distinguish a first person singular form, a second and
third person singular form, and a plural form (which is also the form of the infinitive). The pred-
icate inflection defines how inflected forms are derived. For example, there is an inflection
rule which adds a t to the base form of a verb, and specifies that its agreement features are third
person singular, and its VFORM value is fin. Lexical rules can be used to transform the sign as-
sociated with a lexical entry. For instance, the account of nonlocal dependencies sketched below

9

makes use of a lexical rule which removes a sign from SC and places it on SLASH. A more de-
tailed account of this lexical rule is given in the section on nonlocal dependencies. As an example,
assume the stem arriveer (to arrive) is defined as an intransitive:

entry(arriveer,Sign):-

intransitive(arriveren,Sign).

(12)

Such a definition will give rise to a number of lexical entries. One of these will be the third person
singular finite form:

lex(arriveert,

v
lex basic
vform fin
sc 〈〉

subj

〈

np
nform norm
agr sg ∧ thi

〉

vslash 〈〉

).(13)

2.4 Syntactic Coverage

Below, we describe the syntactic coverage of the grammar. The grammar is not intended as a
general, wide-coverage, grammar for Dutch. This implies not only that coverage in the lexical
domain is limited, but also that several grammatical constructions are not taken into consider-
ation (e.g. passives) or accounted for only to a certain extent (e.g. the grammar of Dutch verb
clusters). The coverage of the grammar is quite satisfactory for the OVIS application, however.
For instance, when evaluating the grammar on a corpus of 1000 transcribed test-sentences, we
obtained a semantic concept accuracy of 95% (see section 4.2 for discussion).

2.4.1 Noun phrases

The four types which are relevant in the syntax of noun phrases are np (noun phrase), det (deter-
miner), a (adjective) and n (noun). Each type has the attributes AGR and SEM. Furthermore, det
and n have an attribute SC. The np type has three further attributes: CASE, NFORM and PFORM.
Finally, a is also specified for MOD.

The features AGR (agreement), CASE, and NFORM (noun form) are used to encode agreement
properties (encoded as a boolean combination of person, number, determiner and definiteness), the
case value and the form of an item. Their possible values are listed in (14). Note that AGR

contains the information needed for subject-verb agreement, as well as for NP-internal agreement
(between determiner, adjective, and noun). The agreement types de and het (the two forms of the
definite article) distinguish between neuter and nonneuter nouns. CASE and NFORM are relevant
for full NPs only.

Agr (fir ∨ sec ∨ thi) ∧ (sg ∨ plu) ∧ (de ∨ het) ∧ (def ∨ indef)
Case nom ∨ acc
Nform norm ∨ loc ∨ temp ∨ num

(14)

Full NPs never take complements, so they do not have a feature SC. Adjectives may modify a
noun, therefore the feature MOD is defined for type a.

The two rules we presented in (6) and (7) (section 2.4) are used to form NPs consisting of
a determiner and a (possibly complex) noun, and Ns consisting of an adjective followed by a
(possibly complex) noun. The derivation of the NP de volgende intercity (the next intercity) is
shown in figure 4.

10

np
agr 1 sg ∧ thi ∧ de ∧ def
nform norm
sem de(volgende(intercity))

det
agr 1

sc 2

sem de(volgende(intercity))

de

2

n
agr 1

sem volgende(intercity)

a
agr 1

sem volgende(intercity)

mod
〈

intercity
〉

volgende

n
agr 1

sem intercity

intercity

Figure 4: de volgende intercity (the next intercity)

2.4.2 Prepositional phrases

Prepositional phrases are of type pp and are headed by prepositions, i.e. elements of type p.
Prepositions subcategorize (usually) for an NP, so the value of SC on P will be a list of length
one, containing the NP-complement. The feature PFORM takes as value the specific form of the
preposition heading the PP (i.e. van, op, naar, . . .). This information can be used to let a verb select
a PP headed by a specific preposition.

Full PPs can modify nouns or verb phrases. Therefore, PP has a feature MOD. MOD has to be
present on P as well, as the relation between the semantics of the preposition and the element it
modifies is encoded as part of the lexical entry of a preposition. Here, we give the rule which
forms PPs and the rule which lets a PP combine as a modifier with a noun.

pp p np:

pp
pform 1

sem 2

mod 3

→

p
pform 1

sc
〈

4

〉

sem 2

mod 3

4 np(15)

n n pp:

n
sc 1

agr 2

sem 3

→

n
sc 1

agr 2

sem 4

pp
sem 3

mod
〈

4

〉

(16)

Using these rules, we can derive the phrase intercity uit Goes (intercity from Goes) as illustrated
in figure 5.

It should be noted that since adjectives precede the nouns they modify and PPs follow them,
an expression such as volgende intercity uit Groningen (next intercity from Groningen) will receive
two parses. This appears to be a case of spurious ambiguity. There are intensional adjectives,
such as zogenaamde (alleged), which need to be able to take scope over a complex noun, but it
seems that modifying PPs never need to take scope over a adjective + noun combination. It is not
easy to rule out the latter type of derivation, however, without introducing additional features.

11

n
agr 1 sg ∧ thi ∧ de
sem intercity(x) ∧ uit(goes,x)

n
agr 1

sc 2

sem intercity(x)

intercity

2

pp
pform uit
sem intercity(x) ∧ uit(goes,x)

mod 1

〈

intercity(x)
〉

p
pform uit
sem intercity(x) ∧ uit(goes,x)
mod 1

uit

[

np
sem goes

]

goes

Figure 5: intercity uit Goes (intercity from Goes)

2.4.3 Verb phrases

Both verbs and verb phrases are of type v:

v
lex ylex ∨ nlex
null null ∨ nonnull
vform fin ∨ inf ∨ te ∨ psp
sc listof(Sign)
subj listof(Sign)
sem Qlf
slash listof(Sign)
vslash Vslash

(17)

The features LEX, NULL, and VFORM are specific for v. The feature VFORM is used to distin-
guish finite, infinitive, te-infinitive and past participle verbs (and verb phrases headed by such
verbs). The feature LEX is used to distinguish lexical verbs (ylex) from verbal phrases that are not
lexical (nlex). The feature ylex subsumes two further subtypes basic ∨ complex, to distinguish
basic and complex lexical verbs. The latter are combinations of a verb and a separable prefix
(aan+komen, arrive) or combinations of a modal verb and a main verb (wil vertrekken, want to
leave). The feature NULL is used to distinguish verbal traces (i.e. verbal signs without phono-
logical content) from other verbal signs. The features SUBJ, SLASH, and VSLASH and NULL are
discussed in the section below on sentential syntax.

There are a number of similar rules for combining a verb or a verbal projection with one of
its complements. One rule combines a noun phrase complement with a verbal head (een kaartje

12

kopen, buy a ticket):

vp np v:

v
lex nlex
sc 1

vform 2

slash 3

vslash 4

→ 6 np

v

sc
〈

6 | 1
〉

vform 2

slash 3

vslash 4

(18)

Since PPs may either precede or follow the head (vanuit Leiden vertrekken, vertrekken vanuit Leiden,
depart from Leiden), there are two rules to combine such a PP and a verbal head. Finally, there is
a rule which combines a verbal head with a te-infinitive (weigeren naar Groningen te komen, refuse
to come to Groningen). The result of combining a verb (or verbal projection) with its complement
is a phrase (i.e. the value of LEX on the mother is nlex).

A verbal modifier can be either an adverb, a PP, or a temporal NP. There are unary rules
rewriting signs of type modifier into each of these categories. One such rule is the following:

mod adv:

[

modifier

mod 1

〈 〉

]

→

[

adv
mod 1

]

(19)

At the moment, we allow all modifiers to precede or follow the verb (ik moet morgen in Assen
zijn/ in Assen zijn morgen/ morgen zijn in Assen, I must be in Assen tomorrow, ik moet tien uur in
Assen zijn/?in Assen zijn tien uur, I must be in Assen at ten o’clock). Therefore, there are two
similar rules, vp v mod and vp mod v, in which a verb combines with a modifier. The first is
illustrated here:

vp mod v:

v
lex nlex
sc 1

vform 2

slash 3

vslash 4

→

[

modifier

mod
〈

5

〉

]

v
sc 1

vform 2

slash 3

vslash 4

sem 5

(20)

A special type modifier (with SEM and MOD as only attributes) in combination with three unary
rules is used to introduce the various types of verbal modifier. A sample derivation is given in
figure 6 (the value of the features SLASH and VSLASH is not shown, but is 〈 〉 on all verbal signs
in this derivation).

Finally, there are two VP-rules that give rise to ‘complex’ lexical expressions, instead of
phrases. Firstly, consider the v v v rule:

v v v:

v
lex complex
sc 1

vform 2

slash 3

vslash 4

sem 5

→

v
lex basic

sc
〈

6 | 1

〉

vform 2

slash 3

vslash 4

sem 5

6

v
lex ylex
vslash 〈〉

(21)

The v v v rule is used to derive phrases in which a modal verb precedes its infinitival comple-
ment ((dat ik om tien uur) wil vertrekken, that I want to leave at ten o’clock). We adopt an analysis
of such constructions in which modals inherit the arguments on SC of the infinitival verb with
which they combine. This is illustrated for the root wil (want) in (22).

13

v
lex nlex
sc 〈〉

subj 4

vform fin
sem 1 missen(e,subj,trein) ∧ in(goes,e)

modifier
sem 1

mod
〈

2

〉

pp
pform in
sem 1

mod
〈

2

〉

in Goes

v
lex nlex
sc 〈〉

subj 4

vform fin
sem 2 missen(e,subj,trein)

3

np
agr sg ∧ ...
case acc
nform norm
sem trein

de trein

v
lex basic

sc
〈

3

〉

subj 4

vform fin
sem 2

mist

Figure 6: (dat Rob) in Goes de trein mist (that Rob misses the train in Goes)

14

v
lex nlex
sc 〈〉
subj 4

vform fin
sem 1 willen(subj,kopen(subj,kaartje))

2

[

np
sem kaartje

]

een kaartje

v
lex complex

sc
〈

2

〉

subj 4

vform fin
sem 1

v
lex basic

sc
〈

3 , 2

〉

subj 4

vform fin
sem 1

wil

3

v
lex basic

sc
〈

2

〉

vform inf
sem kopen(subj,kaartje)

kopen

Figure 7: (dat ik) een kaartje wil kopen (that I want to buy a ticket)

(22) wil 7→

v
lex basic

sc

〈

v
lex ylex
sc 1

vform inf

| 1

〉

This allows us to derive phrases such as (dat ik) een kaartje wil kopen (that I want to buy a ticket)
where the finite modal verb combines with the infinitival verb before combining with the object
of kopen (figure 7). Note that it is essential that the modal verb selects a [LEX ylex] argument in this
case, as this excludes the derivation of ungrammatical expressions such as (dat ik) wil een kaartje
kopen. The result of combining a modal with an infinitival verb is [LEX complex] (i.e. subsumed
by [LEX ylex]). This implies that such combinations can be selected by another modal verb (i.e.
(dat ik) een kaartje zou willen kopen, that I would like to buy a ticket).

15

Next, consider the v part v rule:

v part v:

v
lex complex
sc 1

vform 2

slash 3

vslash 4

sem 5

→ 6 part

v
lex ylex

sc
〈

6 | 1

〉

vform 2

slash 3

vslash 4

sem 5

(23)

The rule v part v is used to account for constructions such as (dat ik voor tien uur) aan wil komen
(that I want to arrive before ten o’clock). The prefix (or particle) aan of the verb aankomen (arrive)
is separated from the root komen in this case. As the root komen specifies that it selects such a
particle on its SC-list, the modal verb inherits this specification. The rule v part v allows us to
combine a verb or verbal complex with a particle. There are two reasons for not using an analogue
of the vp np v-rule in this case. First, modifiers may not appear in between a particle and the
verbal complex selecting this particle (∗ (dat ik) aan om tien uur wil komen). This is accounted for
by requiring that the head in the rule for particles must be [LEX ylex] (and combinations of a
modifier and a verbal head are always [LEX nlex]). Second, particles may appear ‘inside’ a verb
cluster ((dat ik voor tien uur) zou aan willen komen, that I would like to arrive before ten o’clock).
This implies that the result of combining a particle with a verb cluster must be [LEX ylex], instead
of [LEX nlex] as specified on the vp np v-rule.

It should be obvious that these two rules, and the limited form of argument inheritance we
allow (i.e. structure sharing of SC-lists only, and no concatenation of SC-lists), is not sufficient
to account for the full range of verb clustering data in Dutch. For one thing, the grammar as
it stands cannot handle ‘inverted’ word orders ((dat ik de trein) halen moet, that I must catch the
train), where the infinitive precedes the modal verb. It is rather straightforward to include rules
for inverted word orders. A potentially more problematic omission is the fact that perception
verbs (horen, zien) and causative laten, which also introduce verb clusters ((dat ik) Rob een kaartje
laat kopen, that I let Rob buy a ticket), cannot be accounted for. The analysis of this construction in
van Noord and Bouma (1997a) is based on the notion ‘argument inheritance’. This presupposes
the possibility of recursive constraints in syntax (to concatenate SC-lists) as well as rules with an
indefinite number of daughters. Both are excluded within the present formalism.

2.4.4 Subordinate clauses

Subordinate clauses containing a VP headed by a finite verb are of type sbar (the name sbar stems
from X-bar grammar, where clauses introduced by a complementizer are (barred) projections of
S). As finite subordinate clauses are always introduced by a complementizer, we assume that this
complementizer is the head of the clause and that it subcategorises for a subject NP and a (finite)
VP. The lexical entry for the complementizer dat (that), for instance, is:

(24) dat 7→

comp

sc

〈

1

[

np
case nom

]

,

v
vform fin
sc 〈〉

subj
〈

1

〉

sem 2

slash 3

〉

sem 2

mod 〈〉
slash 3

The complementizer unifies the NP on its SC with the subject of the VP. This implies that the
NP is interpreted as subject of the VP. Furthermore, the complementizer has no independent

16

sbar
sem 1 gaan(e,markjan) ∧ naar(amsterdam,e)
mod 〈〉

comp

sc
〈

2 , 3

〉

sem 1

mod 〈〉

dat

2

np
agr sg ∧ ...
case nom
sem markjan

Mark-Jan

3

s
sc 〈〉

subj
〈

2

〉

vform fin
sem 1

naar Amsterdam gaat

Figure 8: dat Mark-Jan naar Amsterdam gaat (that Mark-Jan is going to Amsterdam)

semantics, but simply passes on the semantics of the VP. Since dat clauses cannot be modifiers,
its MOD feature is empty. Other complementizers such as omdat (because) will have a non-empty
value for this attribute to indicate that subordinate sentences headed by such complementizers
can occur as modifier.

The rule constructing subordinate clauses is defined as follows:2

sbar
slash 1

sem 2

mod 3

→

comp

sc
〈

4 , 5

〉

slash 1

sem 2

mod 3

4

[

np
case nom

]

5

v
sc 〈〉

subj
〈

4

〉

vform fin
slash 1

vslash 〈〉

(25)

A sample derivation is given in figure 8.

2.4.5 Main clauses

Main clauses with a finite verb in initial position (as in yes/no-questions) are of type ques. Main
clauses in which the finite verb appears in second position (as in declarative sentences or WH-
questions) are of type root. The attributes associated with these types are:

ques
subj listof(Sign)
sem Qlf
slash listof(Sign)

[

root
sem Qlf

]

(26)

Dutch main clauses differ from subordinate clauses in that the finite verb in main clauses
appears in first or second position. There is a tradition, both in transformational and non-
transformational grammar, to account for this fact by postulating a dependency between the
finite verb and the position where finite verbs occur in subordinate clauses. The advantage of
postulating such a dependency is that the grammar rules used for subordinate clauses are also

2There is an additional rule, for constructing subordinate clauses with a missing (‘extracted’) subject. This rule (sbar2)
could be used in an account of nonlocal dependencies which allows for extraction out of subordinate clauses as well.

17

vgap:

v
lex basic
null null
vform fin
sc 1

subj 〈〉

slash 〈〉

vslash

vslash
vsc 1

vsem 2

sem 2

→ ǫ

Figure 9: Verbal Gap

applicable in main clauses. In transformational grammar, a dependency of this type can be es-
tablished by means of a head-movement operation which moves the verb from its final position
to a position at the beginning of the sentence.

Within the framework of HPSG (Netter, 1992; Frank, 1994) we can obtain a similar dependency
by postulating a verbal trace, i.e. a verbal sign without phonological content, at the end of the
clause. Using this verbal trace as the head, we can use the VP rules discussed above to build up a
VP as usual.

The rule for introducing such a verbal trace is given in figure 9. Note that the sign for verbal
traces differs from that of an ordinary verb in that its subcategorisation list in not instantiated,
but made reentrant with VSLASH:VSC. Similarly, the semantics of the verbal gap is reentrant
with VSLASH:VSEM. Furthermore, a verbal gap is a basic (i.e. non-complex) lexical verb, with no
phonological content (i.e. [NULL null]). We can also safely assume that verbal traces are finite,
as main clauses are always headed by a finite verb. The value of SUBJ is the empty list, as VPs
headed by a verbal trace never combine with a subject directly (as will be shown below). Finally,
SLASH also can be assumed to be empty.3

There are two rules which combine a finite verb with a VP containing a verbal trace, and
which also introduce a subject (figure 10). Both rules are highly similar (they are therefore both
instances of a MAIN-CLAUSE-STRUCT). The only difference is the category of the mother, and the
order of the daughters. The vfirst-rule introduces phrases of the type ques, i.e. instances of verb-
first clauses, in which the subject follows the main verb. The subject-first-rule introduces phrases
of type root, in which the subject is first, and the main verb follows the subject. The constraints
imply, among others, that the VP must contain a verbal trace, that the SC-information of the main
verb is reentrant with VSLASH:VSC of the VP (and thus, indirectly, with the SC-value of the verbal
trace), and that the semantics of main verb is shared with the value of VSLASH:VSEM on the VP

(and thus, indirectly, with the semantics of the verbal trace). Note also that the VP acts as semantic
head of the construction. This is necessary in order to ensure that the effect of verbal modifiers
within the VP is properly taken into account. An example derivation of a subject first main clause
is given in figure 11.

2.4.6 Wh-questions and topicalisation

In the previous section, we have introduced a rule for verb-initial and subject-initial main clauses.
The first phrase in a main clause can also be a (non-subject) complement or a modifier. This is
typically the case for (non-subject) WH-questions. Sentences with a ‘fronted’ complement are
treated as instances of a non-local dependency construction (where the dependency is mediated

3 The lexical rule which moves complements from SC to SLASH does not apply to verbal traces. Instead, it can be
applied to the finite verb which ‘binds’ the trace. Also, if a verbal gap combines with a complement having a non-empty
SLASH, the relevant passing on of the SLASH value is handled by the finite verb which binds the trace. This is possible
because the SC-list of the verbal trace and the binder will be shared.

18

ques
slash 1

sem 2

 →

v
sc 3

subj
〈

4

〉

vform fin
lex basic
slash 1

vslash 〈〉

sem 5

4

[

np
case nom

]

v
sc 〈〉

subj 〈〉
vform fin
slash 〈〉

vslash

vslash
vsc 3

vsem 5

sem 2

[

root
sem 2

]

→ 4

[

np
case nom

]

v
sc 3

subj
〈

4

〉

vform fin
lex basic
slash 〈〉

vslash 〈〉
sem 5

v
sc 〈〉

subj 〈〉
vform fin
slash 〈〉

vslash

vslash
vsc 3

vsem 5

sem 2

Figure 10: Rules for verb-first and subject first main clauses (y/n questions and simple declarative
sentences)

through SLASH). In sentences with a fronted modifier, it is assumed that the first element modifies
the remainder of the clause, and thus a local treatment can be given.

Examples of sentences with a fronted complement are given in (27).

(27) a. Naar welk station wilt u reizen?
To which station do you want to travel

b. De laatste trein kunt u nog halen.
The last train, you can still catch

These examples are handled by means of a lexical COMPLEMENT-EXTRACTION rule applicable
to verbs, and a syntactic HEAD-FILLER-rule for combining the fronted element with a ques-phrase
containing a non-empty SLASH-value. The COMPLEMENT-EXTRACTION rule can apply in two
ways: First, it can take a complement from SC and put it on SLASH (28a). This implies that this
complement will not be found locally, but that it will be unified with an element in ‘fronted’
position. Second, it can make the SLASH value of a verb reentrant with the SLASH value of one
of its complements (28b). This implies that true non-local dependencies are possible, as the head
of a phrase can pass on information about missing elements from one of its dependents. If the
complement-extraction rule does not apply, the SLASH value of the verb, as well as the SLASH

value of all its complements, is set to 〈〉 (the empty list).

(28) a.

v

sc
〈

1 pp
〉

subj 2

vform 3

...

→

v
sc 〈〉
slash 1

subj 2

vform 3

...

19

[

root
sem 1 kopen(e,rob,geen-kaartje)

]

2

np
agr sg ∧ ...
case nom
sem rob

Rob

v
lex basic
vform fin
sc 3

subj
〈

2

〉

sem 1

koopt

v
lex nlex
vform fin
sc 〈〉

subj 〈〉

vslash

vslash
vsc 3

vsem 5

sem 1

4

np
case acc
sem geen-kaartje

geen kaartje

v
lex basic
vform fin
null null

sc 3

〈

4

〉

subj 〈〉

vslash

vslash
vsc 3

vsem 1

sem 1

epsilon

Figure 11: Rob koopt geen kaartje (Rob does not buy a ticket)

20

root

1 np

de laatste trein

[

ques

slash 2

〈

1

〉

]

v
sc 3

slash 2

kunt

np

u

[

v

vslash
[

vsc 3

]

]

v

sc 3

〈

4

〉

vslash
[

vsc 3

]

ǫ

4

v
sc 〈〉

slash 2

〈

1

〉

halen

Figure 12: De laatste trein kunt u halen

b.

v

sc
〈

v
〉

subj 2

vform 3

...

→

v

sc

〈[

v
slash 1

]〉

slash 1

subj 2

vform 3

...

An example of a derivation involving SLASH is given in figure 12. The COMPLEMENT EX-
TRACTION rule has applied to halen (to catch) to produce a verbal sign with an empty SC-list and
an np on SLASH. A verbal trace contains a reentrancy between its SC-list and its VSLASH:VSC-list.
When the verbal trace combines with halen, the information that halen has an np on SLASH will
therefore also be instantiated on VSLASH:VSC. This information is passed up to the resulting verb
phrase. The complement extraction rule also applies to the finite verb kunt (can), but in this case
it establishes a reentrancy between the SLASH value of the verb on the SC-list of kunt and the
SLASH-value of kunt itself. The VFIRST rule unifies the SC-list of kunt with the VSLASH:VSC-list
of the verb phrase halen ǫ, and thus, SLASH (of the verb on SC of kunt, and thus on kunt itself) is
instantiated as 〈np〉. This information is passed on to the resulting ques phrase, which can then
be combined with the initial np using the TOPICALISATION rule in 29.

[

root
sem 1

]

→ 2

ques
slash 2

sem 1

(29)

It should be noted that our account of non-local dependencies differs from earlier slash-based
accounts, such as those in Gazdar et al. (1985) and Pollard and Sag (1994) in that it does not make
use of a FOOT FEATURE principle. Instead, we adopt the approach of Sag (1997), who imposes
the canonical constraint that the SLASH-value of a head is the set-union of the SLASH-values of

21

its daughters. An EXTRACTION lexical rule can be used to remove an element from SC (COMPS)
and to add this element to the set of elements on SLASH. In our implementation, we have made
several simplifying assumptions. First, SLASH is not a set, but a list. Second, this list can contain
at most one element. This assumption (which has the effect of restricting the number of ‘missing’
elements from a phrase to at most one) is too restrictive for a highly limited number of cases
in English, but appears to be valid for Dutch. Third, instead of imposing a general constraint
that SLASH must be the concatenation on the SLASH values of all elements on SC, we allow the
COMPLEMENT EXTRACTION rule to unify the value of SLASH with one specific element on SC.
We have to make this assumption, as the more general alternative requires the use of delayed
evaluation, something which we wish to avoid in this grammar, or difference lists. While the latter
alternative is possible within the present formalism, it also introduces a number of complications
which are avoided in the present implementation. The fourth and final simplification is that
COMPLEMENT EXTRACTION and SLASH feature passing is only possible for verbs. This is certainly
too restrictive, as extraction out of subordinate clauses of type sbar (welke trein zegt Gertjan dat Rob
gemist heeft?, which train does Gertjan say that Rob has missed) and out of pps (Waar gaat deze
trein naar toe?, Where does this train go to), and a number of other types of phrase is possible as
well.

Sentences where the first phrase is a modifier are dealt with without appealing to SLASH.
Instead, it is assumed that in sentences such as (30), the fronted elements modify the following
ques phrase. This requires an additional (mod-topic) rule, given in (31).

(30) a. Hoe laat gaat de volgende trein naar Zwolle?
When does the next train to Zwolle leave?

b. Woensdag moet ik om tien uur in Zwolle zijn.
Wednesday, I must be in Zwolle by ten o’clock.

[

root
sem 1

]

→

modifier
sem 1

mod
〈

2

〉

ques
slash 〈〉
sem 2

(31)

Of course, this account rests on the assumption that modifiers of embedded verbs or phrases
cannot be fronted, an assumption which is almost certainly false in general (see Hukari and
Levine (1995), for instance), but which appears to be rather unproblematic for present purposes.

2.4.7 Special grammar rules

The domain which has been selected for OVIS (information dialogues concerning public trans-
portation) and the fact that OVIS deals with spoken language, imply that it is crucial that a
number of grammatical phenomena are described in a robust manner. In particular, temporal
expressions, locative expressions (names of cities and stations), and a number of typical spoken
language constructions, such as greetings, occur frequently in such dialogues.

The grammar rules and lexical entries for these phenomena make use of the OVIS2 grammar
formalism, but are not organised according to the linguistic principles discussed above. This is
true not only for the syntax, but also for semantics. The reason for dealing with these phenomena
by means of a set of more or less ad hoc rules and lexical entries is that the constructions discussed
below are often extremely idiosyncratic. At the same time, describing the regularities that can be
observed does not seem to require the overhead of the grammar architecture we assume for the
rest of the grammar. The most economical and robust solution seemed therefore to encapsulate
the grammar for these constructions in relatively independent grammar modules.

2.5 Semantics

The output of the grammatical analysis is a semantic, linguistically motivated and domain-
independent, representation of the utterance, in the form of a Quasi Logical Form (QLF). The

22

QLF formalism was developed in the framework of the Core Language Engine (CLE, (Alshawi,
1992; Alshawi and Crouch, 1992)). Since then, the formalism was used and further developed in
projects such as the Spoken Language Translator (Agnäs et al., 1994), Clare (Alshawi et al., 1992),
in the Fracas-project (Cooper et al., 1994) and in Trace & Unification Grammar (Block, 1994). In
OVIS the QLF is translated into a domain-specific update expression, which is passed on to the
pragmatic interpretation module and dialogue manager for further processing. The dialogue
manager maintains an information state to keep track of the information provided by the user.
An update expression is an instruction for updating the information state (Veldhuijzen van Zan-
ten, 1996). Below, we motivate our choice for QLFs as semantic representation language and we
discuss how these QLFs are translated into updates.

2.5.1 The semantic representation language

Predicate logic, (sometimes extended with for example generalised quantifiers or discourse markers),
is often used to represent the meaning of sentences. Due to its long tradition in describing se-
mantics of natural languages it is now a well established and well understood technique. The
main advantage of artificial languages like predicate logic is that they are unambiguous. An
ambiguous natural language utterance will therefore correspond to more than one expression in
predicate logic, one for each reading of the utterance. The disadvantage of this approach is that
for very ambiguous inputs, expensive computations must be carried out to compute all read-
ings. The alternative adopted in formalisms based on the idea of monotonic semantic interpretation
((Cooper et al., 1994), see also (Nerbonne, 1992) and (Pinkal, 1995)) is to represent ambiguity by
means of under-specification and to postpone the computation of individual readings as long as
possible.

Representing ambiguity by under-specification, and postponing the computation of individ-
ual readings, has at least two computational advantages. First, parsing can benefit significantly
from the fact that ambiguities which are only semantic (i.e. do not have a syntactic counterpart)
are represented by a single derivation. Second, ambiguity resolution can often proceed without
enumerating all possible readings of an input separately. A striking example of the latter situa-
tion is the translation of QLF’s that are ambiguous with respect to quantifier-scope into a domain-
specific meaning representation as it is used by the dialogue manager of the OVIS-system. The
utterance in (32a), for instance, gives rise to a single QLF (32b), which could be resolved (ignoring
the existential quantification over events and the fact that it is a question) to either (32c) or (32d).
The domain-specific reading of (32a) (which corresponds to (32c)) is computed on the basis of
(32b) directly, and thus never needs to consider the two different readings of this QLF.

(32) a. Gaat er niet een latere (trein)?
Is there not a later train?

b.

pred not

args

〈

pred leave

args

〈

[

index e1
]

,

index 3

res λ 4 .later train(4)
q exist

〉

〉

c. not(∃x (later train(x) ∧ leave(e1, x)))

d. ∃x (later train(x) ∧ not(leave(e1, x)))

2.5.2 Quasi logical form

In figure 13 we give a QLF as it is produced by the OVIS-grammar. It is a typed feature-structure,
whose main components are predicative forms (p form), representing relations (which may also

23

be higher order, such as not and and), and terms. Generalised quantifiers are represented by term
expressions (t expr). The example in (13) contains two generalised quantifiers, corresponding to
the (existentially quantified) event-variables introduced by the two verbal predicates (Davidson,
1967). Note that these quantifiers appear as arguments of the predicates, and thus are unscoped
with respect to each other.

p form
pred want

args

〈

[

t expr
index e1

]

, 3 i,

p form
pred and

args

〈

p form
pred leave

args

〈[

t expr
index e2

]

, 3

〉

,

p form
pred at

args
〈

5 , hour(4)
〉

〉

〉

Figure 13: QLF for ’Ik wil om ongeveer vier uur vertrekken’ (I want to leave at about four o’clock)

Our implementation of QLF in the OVIS grammar follows roughly the presentation in (Cooper
et al., 1994), although some of the apparatus supplied for contextual resolution in that work
has been omitted. As the OVIS-grammar uses typed feature-structures, QLF’s are represented as
feature-structures below.

A QLF is either a qlf-term or a qlf-formula. A qlf-term is one of the following:

• a term index,4

• a constant term,

• an term-expression of type t expr and containing the features INDEX, RESTR and QUANT5

(see (13)), where INDEX is a variable, RESTR is an expression of predicate logic (possibly
with lambda-abstraction) and QUANT is a generalised quantifier.

A QLF formula is one of the following:6

• a predicate-argument formula of type p form, and with features PRED and ARGS (see (13)).
Predicates may be higher order, arguments may be formulas or terms,

• a formula of type v form with features VAR and FORM representing a formula with lambda-
abstraction (see(14b)). This is an auxiliary level of representation, introduced to facilitate
the interaction between grammar-rules and lexical entries,

• a formula of type s form (see(14b)), with features SCOPE and FORM. The value of SCOPE is
either a variable or a list of indices indicating the relative scope of term expressions (gener-
alised quantifiers) (see (14c)).

4In the original formalism indices and variables are distinguished. An index uniquely identifies a term expression. At
this moment indices and variables have the same function in our implementation. We may need to distinguish between
them later.

5 In chapter 5 of (Cooper et al., 1994) term expressions also contain a slot CAT for specifying information about the
lexical form and syntactic/semantic type of an expression (e.g. quantifier, pronoun, etc.) and a slot REF for specifying the
(contextual) referent of an expression. We do use CAT, but have omitted it from the presentation below. We currently do
not use REF.

6In chapter 5 of (Cooper et al., 1994) two more formula constructs are introduced. These are not used in the current
implementation.

24

a. Everybody two languages

qlf

t expr
index 1

restr λ 2 .person(2)
quant every

t expr
index 3

restr λ 4 .language(4)
quant two

pl ∀x.(person(x) →) two y.(language(y)→)

b. speaks

qlf

v form
var e1

form

s form
scope 5

form

p form
pred speak

args
〈

e1, 6 , 7

〉

pl speak(e1, ..., ...)

c. Everybody here speaks two languages

qlf

s form
scope 5

form

p form
pred speak

args

〈

e1,

t expr
index 1

restr λ 2 .person(2)
quant every

,

t expr
index 3

restr λ 4 .language(4)
quant two

〉

pl ∀x.(person(x) → (twoy.language(y)∧ speak(e1, x, y)))
twoy.(language(y)∧ ∀x.(person(x) → speak(e1, x, y)))

Figure 14: The relation between an expression in QLF and a fomula of predicate logic

25

a. lex(alle,

sc

〈[

n
sem 1

]〉

sem

t expr
restr 1

quant all

).

b. lex(trein,

n

sem

v form
var 1

form

s form

form

p form
pred train

args
〈

1

〉

).

c. lex(eerste,

a

sem

v form
var 1

form

s form
scope 2

form

p form
pred and

args

〈

p form
pred first

args
〈

1

〉

, 3

〉

mod

〈

v form
var 1

form

s form
scope 2

form 3

〉

).

Figure 15: Examples showing the semantics of determiners, nouns, and adjectives.

The definitions can best be illustrated with a simple example in which we compare a QLF

expression with its corresponding formula in predicate logic. In figure 14 the sentence Every-
body speaks two languages is given both a translation in QLF and in predicate logic. In the QLF-
translation of the full sentence the scope order (5) of the two quantifiers is left unspecified. Re-
solving scope order amounts to instantiating 5 to [1 , 3] (for everybody there are two languages
that s/he speaks) or to [3 , 1] (there are two languages that everybody speaks).

2.5.3 Construction of QLF’s

During grammatical analysis QLFs are constructed compositionally (see also (Alshawi and
Crouch, 1992)). In head complement structures the head daughter is the syntactic as well as the
semantic head of the structure. This means that the semantic content of the complement con-
stituents is combined with the semantic content of the head. The value of the SEM feature of the
head is passed up to the mother (see figure 1).

In head modifier structures the modifier is the semantic head. The semantics of the syntactic
head of the structure is plugged into the MOD feature of the modifier. Below we will show how
the semantics of the modifier is combined with the semantics of the constituent it modifies. The
value of the SEM feature of the modifier is passed up to the mother.

We now discuss the semantics of various linguistic categories. Determiners subcategorise for a
noun (see Figure 15(a.)). The semantics of the noun is unified with restriction of the determiner.

26

a. lex(vertrekken,

v

sem

v form
var e1

form

s form

form

p form
pred leave

args

〈[

t expr
index e1

]

, 3

〉

subj

〈[

np
sem 3

]〉

).

b. lex(willen,

v

sc

〈

v
sc 2

vform inf
sem 4

subj

〈[

np
sem 7

]〉

| 2

〉

sem

v form
var e3

form

s form

form

p form
pred want

args

〈[

t expr
index e3

]

, 6 , 4

〉

subj

〈

np

sem 6

[

t expr
index 7

]

〉

).

Figure 16: Verbal semantics.

Nouns introduce a v form (fig. 15(b.)) Note that it is also assumed that quantifiers may scope at
this point. Adjectives are modifiers (fig.15(c.)). They operate on structures whose semantic content
is of type v form. The lambda variables of the two formulas are unified and the semantic content
of the structure is the conjunction of the logical formula of the adjective and the logical formula
of the structure it modifies.

The semantics of verbs corresponds with a v form (see fig. 16a). The value of VAR is reentrant
with the INDEX of the event introduced by the verb. The semantics of the subject is unified
with the second element of the argument list of the verb. Intransitive verbs have two semantic
arguments, corresponding to the event and subject, respectively. Transitive verbs have three
arguments, where the third argument is unified with the semantics of the single element on SC.

Modal verb are subject-control verbs. This means that the subject of the VP-complement is con-
trolled by the subject of the modal verb. Semantically, this means that the INDEX of the subject
must be unified with the semantics of the subject of the VP-complement. Note also that we as-
sume that assume that the SC-list of a modal verb may contain complements introduced by the
VP-complement (as explained in section 2.4.3). These are not relevant for the semantics of the
modal verb.

The semantics of adverbial phrases resembles that of adjectives. In figure (17) the semantics
of prepositions heading a PP which acts as a verbal modifier is given. PP-modifiers introduce
a conjunction, with the verbal semantics as first argument, and the prepositional semantics as

27

lex(op,

p

sc

〈[

np
sem 1

]〉

sem

v form
var 2

form

s form
scope 3

pred and

args

〈

4 ,

p form
pred on

args
〈

2 , 1
〉

〉

mod

〈

v form
var 2

form

s form
scope 3

form 4

〉

).

Figure 17: Adverbial semantics for prepositions.

second. The INDEX of the VP is the first argument of the predicate introduced by the preposition,
the semantics of the NP-object of the preposition corresponds to the second argument.

In Dutch, temporal NP’s can act as verbal modifiers:

(33) a Ik wil zondag vertrekken
I want to leave on Sunday

b Ik wil drie januari naar Amsterdam
I want to go to Amsterdam on the third of January

c Ik wil er uiterlijk drie uur zijn
I want to arrive at the latest at three o’clock

As NPs normally do not have a modifier semantics, there is a unary rule that transforms
temporal NPs into modifiers (figure 18). The structure that is modified is specified in the MOD

feature. The semantic content of the modifier is constructed as if it was a PP with P FORM om (at).
The semantic content of the (temporal) NP daughter is plugged into the second position of the
argument list of the preposition.

2.6 Constructing updates from QLFs

The dialogue manager keeps track of the information provided by the user by maintaining an
information state or form (Veldhuijzen van Zanten, 1996). This form is a hierarchical structure,
with slots and values for the origin and destination of a connection, for the time at which the
user wants to arrive or depart, etc. An example is given in (34a). Each user utterance leads to an
update of the information state. An update is an instruction for updating the information in an
information state. Updating can mean that new information is added or that given information
is confirmed, retracted or corrected. For example, given the information state in (34a), the update
in (34b) (which might be the translation of No, I do not want to travel to Leiden but to Abcoude!) leads
to the information state in (34c). The # -operator in (34b) indicates that the information within its
scope (indicated by square brackets) is to be retracted, and the ’!’-operator indicates a correction.

28

modifier

sem

v form
var 1

form

s form
scope 2

form

p form
pred and

args

〈

3 ,

p form
pred at

args
〈

1 , 4
〉

〉

mod

〈

v form
var 1

form

s form
scope 2

form 3

〉

→

np
nform temp
sem 4

Figure 18: Rule mod np to treat temporal noun phrases as modifiers.

(34) a.

travel

origin

place
[

town groningen
]

moment
[

at
[

time
[

clock hour 3
]

]]

destination
[

place
[

town leiden
]

]

b. travel.destination. ([# place.town.leiden]; [! place.town.abcoude])

c.

travel

origin

place
[

town groningen
]

moment
[

at
[

time
[

clock hour 3
]

]]

destination
[

place
[

town abcoude
]

]

The result of parsing is a QLF, a linguistically motivated and domain-independent represen-
tation of the meaning of a sentence. The translation of a QLF into a domain-specific update is
done by applying translation-rules to the individual parts of a QLF. These translation rules may
be context-sensitive. In particular, some parts of the QLF provide the context which determines
how other parts are to be translated. For example, the QLF in (35) (corresponding to the phrase
leave at four o’clock contains two p forms, one for the predicate leave and one for four o’clock. The
second gives rise to an update expression moment.at.time.clock hour.4. The first pro-
vides the contextual information that the moment referred to is a departure-time. The translation
can therefore be extended to origin.moment.at.time.clock hour.4. There is no linguistic
information which indicates that a special update-operator has to be used. In such cases, it is
assumed that the information is new, and thus the assert-operator (’=’) can be used, giving rise
to the translation for the full phrase: origin.moment.at.[= time.clock hour.4].

(35)

p form
pred and

args

〈

p form
pred leave

args

〈[

t expr
index e1

]

, 3

〉

,

p form
pred at

args
〈

e1, hour(4)
〉

〉

Contextual translation is a powerful technique. For instance, the utterance Groningen Amster-
dam gives rise to a conjunctive QLF, containing two term expressions for locations. Translating

29

each of the conjuncts individually would make it impossible to decide whether an origin or des-
tination location is being specified. By translating the conjunction in one step (and assuming that
the order of conjuncts corresponds to the order in the utterance), we can resolve the first locative
to origin and the second to destination. As another example, the adverb graag is ignored in the
translation from QLF to update if it occurs as part of a full sentence (ik wil graag naar Amsterdam,
‘I would like to go to Amsterdam’), but is translated as ‘yes’ (i.e. a confirmation of information
provided by the system) if it occurs in isolation. Such a translation is motivated by dialogues of
the following type:

(36) [system:] Dus U wilt van Amsterdam naar Groningen reizen?
So you want to travel from Amsterdam to Groningen?

[user:] Graag.
Please.

Similarly, the translation of the negations nee (no) and niet (not) depends on context. If the
two occur in isolation, they indicate a denial of information provided by the system. However,
if nee is followed by another phrase, say a locative, it signals a correction (37a), whereas if niet is
followed by another phrase, it signals a denial (37b).

(37) a. ’Nee, naar Assen’ (No, to Assen)
destination.[!place.assen]

b. ’Niet naar Assen’ (Not to Assen)
destination.[#place.assen]

It should be noted that the translation of QLF’s to updates uses primarily the information pro-
vided by NP’s, PP’s and adverbs. Verbs typically provide the context for translating other parts of
the QLF. Also, as quantification plays no role in updates, the scope of generalised quantifiers can
be largely ignored. Thus, we are able to translate QLF’s into domain-specific meanings without
resolving quantifier scope.

3 Robust parsing of word-graphs

3.1 Word-graphs

The input to the NLP module consists of word-graphs produced by the speech recogniser (Oerder
and Ney, 1993). A word-graph is a compact representation for all sequences of words that the
speech recogniser hypothesises for a spoken utterance. The states of the graph represent points in
time, and a transition between two states represents a word that may have been uttered between
the corresponding points in time. Each transition is associated with an acoustic score representing
a measure of confidence that the word perceived there was actually uttered. These scores are
negative logarithms of probabilities and therefore require addition as opposed to multiplication
when two scores are combined. An example of a typical word-graph is given as the first graph in
figure 19.

At an early stage, the word-graph is normalised to eliminate the pause transitions. Such tran-
sitions represent periods of time for which the speech recogniser hypothesises that no words are
uttered. After this optimisation, the word-graph contains exactly one start state and one or more
final states, associated with a score, representing a measure of confidence that the utterance ends
at that point. The word-graphs in figure 19 provide an example.

From now on, we will assume word-graphs are normalised in this sense. Below, we refer to
transitions in the word-graph using the notation trans(vi, vj , w, a) for a transition from state vi to
vj with symbol w and acoustic score a. Let final(vi, a) refer to a final state vi with acoustic score a.

30

1 2
#/8222

3
zondag/19128

4

#/1143

5

#/2374

6

#/5851

twee/5636

7

#/7008

tussen/6752

8
drie/14474

9

precies/17831

de/5594

dertien/16768

veertien/16869

#/4402

10

vier/13338

vier/12208

12vierde/15619

uur/4570

#/1217

11#/3535

#/2330

13

februari/27792

februari/26622
14

#/31816

1 3
zondag/27350

6
twee/5636

7

de/6737

tussen/6752

8

drie/14474

9

dertien/17911

precies/17831

veertien/18012

10

vier/18984

12

vierde/22395

vier/13338

vier/12208

vierde/15619

uur/4570

13

februari/31327

februari/30122

februari/26622

318160

Figure 19: Word-graph and normalized word-graph for the utterance Zondag vier februari (Sunday Februari fourth). The special label # in the first
graph indicates a pause transition. These transitions are eliminated in the second graph.

3
1

3.2 Parsing word-graphs

The normalized word-graph is parsed by an appropriate parser. Parsing algorithms for strings
can be generalized to parse such word-graphs (for some examples cf. van Noord (1995)). In
the ideal case, the parser will find a path in the word-graph that can be assigned an analysis
according to the grammar, such that the path covers the complete time span of the utterance,
i.e. the path leads from the start state to a final state. The analysis gives rise to an update of the
dialogue state, which is then passed on to the dialogue manager.

However, often no such paths can be found in the word-graph, due to:

• errors made by the speech recognizer,

• linguistic constructions not covered in the grammar, and

• irregularities in the spoken utterance.

Even if no full analysis of the word-graph is possible, it is usually the case that useful infor-
mation can be extracted from the word-graph. Consider for example the utterance:

(38) Ik wil van van Assen naar Amsterdam
I want from from Assen to Amsterdam

The grammar will not assign an analysis to this utterance due to the repeated preposition. How-
ever, it would be useful if the parser would discover the prepositional phrases van Assen and
naar Amsterdam since in that case the important information contained in the utterance can still
be recovered. Thus, in cases where no full analysis is possible we would like to fall back on an
approach reminiscent of concept spotting. The following proposal implements this idea.

Firstly, the grammar is defined in such a way that each maximal projection such as S, NP, PP,
etc., can be analysed as a top category. This is well-motivated because utterances very often
consist of a single NP or PP (section 3.3).

Often, the task of the parser is to discover all instances of the top category from the start
state of the word-graph to a final state. But in our case, we require that the parser discovers all
instances of the top category anywhere in the word-graph, i.e. for all partial paths in the word-
graph. This has the desired effect for example (38): both PPs will be found by the parser.

Thus we require that the parser finds all major categories anywhere in the word-graph. If
a bottom-up chart parser is used, then we might use the inactive chart items for this purpose.
However, since we do not want to be forced to a particular parsing strategy, we have chosen to
adopt a different approach. In section 3.4 we show that in a logic programming setting the use
of underspecification of the state names associated with the top-most goal obtains the desired
effect, without loss of efficiency.

Therefore, after the parser has finished, we have a word-graph annotated with a number of
instances of top categories. For each of these categories we are interested in the word-graph state
where this category starts (vi), the word-graph state where this category ends (vj), the sequence
of symbols associated with this category (x), the accumulated acoustic score (a), and the qlf (q).
Let parsed(vi, vj , x, a, q) refer to such categories.

We are interested in paths from the start state to the final state consisting of a number of
categories and transitions in the word-graph (the latter are called skips). The problem consists
in finding the optimal path, according to a number of criteria. This problem is formalized by
defining the annotated word-graph as a directed acyclic graph (section 3.5). The vertices of this
graph are the states of the word-graph; the edges are the transitions of the word-graph and the
categories found by the parser.

The criteria which are used to favor some paths over other paths are expressed as a weight
function on the edges of the graph. The criteria we might take into account are discussed in
section 3.6. For instance, a typical criterion will favor paths consisting of a small number of
categories, and a small number of skips. The case in which the parser found a full analysis from
the start state of the word-graph to a final state then reduces to a special case: the analysis solely
consisting of that category will be favored over sequences of partial analyses.

32

Obviously, it is not a good idea to generate all possible sequences of categories and skips, and
then to select the best path from this set: in typical word-graphs there are simply too many dif-
ferent paths. If a certain uniformity requirement on weights is met, however, then efficient graph
search algorithms are applicable. The particular algorithm implemented in OVIS2, namely a vari-
ant of the DAG-SHORTEST-PATH algorithm (Cormen, Leiserson, and Rivest, 1990) is discussed in
section 3.7.

The criteria used to determine the best path may also include Ngram statistics. It turns out
that in those cases some complications arise in the definition of the annotated word-graph. This
is explained in section 3.8.

In a previous implementation (Nederhof et al., 1997) we used a version of Dijkstra’s algorithm.
A comparison is presented in section 3.9. Finally, section 3.10 discusses methods in which the
parser is applied only to a single path of the word-graph.

3.3 Grammar

We require that grammatical analysis finds all maximal projections anywhere in the input word-
graph. This implies that the top category of the grammar should be defined in such a way that it
derives each of these maximal projections. For this reason, the grammar contains the declaration:

top_category(X) :- X => start.(39)

Furthermore, there are unary rules rewriting this start category into each of the relevant max-
imal projections. One such rule is:

rule(start_np,Start,[Np]) :-

Start => start, Np => np,

Start:sem <=> Np:sem.

(40)

Similar rules are defined for pp, sbar, root, advp, etc.

3.4 Parser

Five different parsing algorithms were implemented and compared (a bottom-up Earley parser,
an inactive chart parser, an LR parser, a left-corner parser and a head-corner parser). The most
efficient parser (both in terms of CPU-time and memory usage) for this application turned out
to be a head-corner parser implemented with goal-weakening and selective memoization. The
head-corner parser is presented in detail in van Noord (1997a).

In order to apply this (or any of the other) parser(s) for robust processing, we use underspec-
ification of the state names for the input parse goal in order to parse the start category anywhere
in the word-graph. Normally the parser will be called using a goal such as the following:

?- parse(start(Sem),q0,q16).(41)

indicating that we want to find a path from state q0 to q16 which can be analysed as a category
start(Sem) (a sentence with a semantic representation that is yet to be discovered). If we want
to recognize top categories at all positions in the input, then we can simply generalize the parse
goal to:

?- parse(start(Sem),_,_).(42)

Now it may seem that such an underspecified goal will dramatically slow down the parser,
but this turns out to be a false expectation, at least for the head-corner and left-corner parsers. In
fact we have experienced no such decrease in efficiency. This can only be understood in the light
of the use of memoization: even though we now have a much more general goal, the number of
different goals that we need to solve is much smaller.

33

3.5 Annotated word-graph

An annotated word-graph is a word-graph annotated with the results of the parser. Such an
annotated word-graph is defined with respect to an input word-graph (given by the functions
trans and final) and with respect to the results of parsing (given by the function parsed).

The annotated word-graph is a directed acyclic graph (V,E) where

• V is the set of vertices consisting of the states of the word-graph v0 . . . vn, and a new vertex
vn+1. v0 is the start state. vn+1 is the final state.

• E is the set of edges consisting of:

1. skip edges. For all trans(vi, vj , w, a) there are edges (vi, vj , w, a, ǫ).

2. category edges. For all parsed(vi, vj , x, a, q) there are edges (vi, vj , x, a, q).

3. stopping edges. For all final(vi, a) there are edges (vi, vn+1, ǫ, a, ǫ).

3.6 Weights

The weights that are associated with the edges of the graph can be sensitive to the following
factors.

• Acoustic score. Obviously, the acoustic score present in the word-graph is an important
factor. The acoustic scores are derived from probabilities by taking the negative logarithm.
For this reason we aim to minimize this score. If edges are combined, then we have to sum
the corresponding acoustic scores.

• Number of ‘skips’. We want to minimize the number of skips, in order to obtain a prefer-
ence for the maximal projections found by the parser. Each time we select a skip edge, the
number of skips is increased by 1.

• Number of maximal projections. We want to minimize the number of such maximal pro-
jections, in order to obtain a preference for more extended linguistic analyses over a series
of smaller ones. Each time we select a category edge, this number is increased by 1.

• Quality of the QLF in relation to the context. We are experimenting with evaluating the qual-
ity of a given QLF in relation to the dialogue context, in particular the question previously
asked by the system (Koeling, 1997).

• Ngram statistics. We have experimented with bigrams and trigrams. Ngram scores are ex-
pressed as negative logarithms of probabilities. This implies that combining Ngram scores
requires addition, and that lower scores imply higher probability.

The only requirement we make to ensure that efficient graph searching algorithms are ap-
plicable is that weights are uniform. This means that a weight for an edge leaving a vertex vi is
independent of how state vi was reached.

In order to be able to compute with such multidimensional weights, we express weights as
tuples 〈c1, . . . , ck〉. For each cost component ci we specify an initial weight, and we need to
specify for each edge the weight of each cost component. To specify how weights are updated if
a path is extended, we use the function uw that maps a pair of a multidimensional weight and an
edge a to multidimensional weight. 7 Moreover, we need to define an ordering on such tuples.
In order to experiment with different implementations of this idea we refer to such a collection of
specifications as a method. Summarizing, such a weight method is a triple W = 〈ini, uw,≺〉 where

7We do not define a weight function on edges, but we specify how weights are updated if a path is extended, for
generality. This approach allows e.g. for the possibility that different cost components employ different operations for
combining weights. For example, some cost components may use addition (e.g. for weights which are expressed as
negative logarithms derived from probabilities), whereas other cost components may require multiplication (e.g. for
probabilities).

34

1. ini is the initial weight;

2. uw is the update weight function;

3. ≺ is an ordering on weights

Example: speech method. As a trivial example of such a method, consider the problem of
finding the best path through the word-graph ignoring all aspects but the acoustic scores present

in the word-graph. In order to implement a method W speech to solve this problem, we define
weights using a unary tuple 〈c〉. The initial weight is ini = 〈0〉 and uw is defined as follows:

uw(〈c〉, (vi, vj , w, a, q)) =

〈c+ a〉 for skip edges
〈∞〉 for category edges

〈c+ a〉 for stopping edges
(43)

Note that we specify an infinite weight for category edges because we want to ignore such
edges for this simple method (i.e. we are simply ignoring the results of the parser). We define an
ordering ≺ on such tuples, simply by stating that 〈w〉 ≺ 〈w′〉 iff w < w′.

Example: nlp speech method. A more interesting example is provided by the following
method which not only takes into account acoustic scores, but also the number of skip edges
and category edges. Weights are expressed as 〈c1, c2, c3〉, where c1 is the number of skips, c2 is
the number of categories, and c3 is the acoustic score.

We define ini = 〈0, 0, 0〉 and uw is defined as follows.

uw(〈c1, c2, c3〉, (vi, vj , w, a, q)) :

〈c1 + 1, c2, c3 + a〉 for skip edges
〈c1, c2 + 1, c3 + a〉 for category edges
〈c1, c2, c3 + a〉 for stopping edges

(44)

Finally, we define the ordering on such tuples:

〈c1, c2, c3〉 ≺ 〈c′1, c
′

2, c
′

3〉 iff :

c1 < c′1 or
c1 = c′1 and c2 < c′2 or
c1 = c′1 and c2 = c′2 and c3 < c′3

(45)

3.7 Search algorithm

The robustness component can be characterised as a search in the annotated word-graph. The
goal of the search is the best path from v0 to vn+1. This search reduces to a well-known graph
search problem, namely the problem of finding the shortest path in a directed acyclic graph with
uniform weights.

We use a variant of the DAG-SHORTEST-PATH algorithm (Cormen, Leiserson, and Rivest,
1990). This algorithm finds shortest paths for uniformly weighted directed acyclic graphs. The
first step of the algorithm is a topological sort of the vertices of the graph. It turns out that the
state names of the word-graph that we obtain from the speech recogniser are already topologi-
cally sorted: state names are integers, and edges always connect to larger integers. The second
step of the algorithm maintains an array A which records for each state vk the weight associated
with the best path known from v0 to vk. A similar array, P , is used to represent for each state the
history of this best path, as a sequence of QLFs (since that is what we want to obtain eventually).

The first step of the algorithm initialises these arrays such that for each state vi(i 6= 0)A[vi] =
∞, and P [vi] = NIL. For v0 we specify A[v0] = ini and P [v0] = ǫ. After this initialisation phase

35

the algorithm treats each edge of the graph in topologically sorted order of the source vertex, as
follows:

foreach state vi (in topologically sorted order)

do

foreach edge (vi, vj , w, a, q)
do

relax (vi, vj , w, a, q)

(46)

The function relax is defined on edges and updates the arrays if a better path to a vertex has
been found:

function relax (vi, vj , w, a, q)
if uw(A[vi], (vi, vj , w, a, q)) ≺ A[vj]
then A[vj] =: uw(A[vi], (vi, vj , w, a, q))

P [vj] =: P [vi].q

(47)

When the algorithm finishes, P [vn+1] constitutes the sequence of QLFs associated with the best
path found. The weight of this path is given by A[vn+1]. This algorithm is efficient. Its running
time is O(V + E), where V is the number of vertices and E is the number of edges. Therefore, it
can be expected that this part of processing should not decrease parsing efficiency too much, since
the number of edges is O(V 2).8 For a more detailed account of the correctness and complexity of
this algorithm, see Cormen, Leiserson, and Rivest (1990). 9

A simple generalisation of the algorithm has been implemented in order to obtain the N best
solutions. In this case we maintain in the algorithm for each vertex the N best paths found so far.
Such a generalisation increases the worst-case complexity by only a constant factor, and is very
useful for development work.

3.8 Complications for Ngrams

In this section we want to extend the nlp speech method to take into account Ngram probabilities.
Obviously, we can extend the weight tuple with a further argument which expresses the accu-
mulated weight according to the Ngram probabilities. However, a potential problem arises. If
we extend a given path by using the transition labeled w, then we want to take into account the
probability of reading this word w given the previous N − 1 words. However note that in the
definition of the annotated word-graph given above these words are not readily available. Even
if we make sure that each path is associated with the last words seen so far, we must be careful
that weights remain uniform.

The solution to this problem is to alter the definition of the graph, in such a way that the
relevant N − 1 words are part of the vertex. If we want to take into account Ngram probabilities
(N = 2, 3, . . .), then the vertices of the graph will be tuples (v, w1 . . . wN−1) where v is a state of
the word-graph as before, and w1 . . . wN−1 are the previous N−1 words. For example, in the case
of bigrams (N = 2), vertices are pairs consisting of a word-graph state and a word (the previous
word). A number of special symbols yN−1 . . . y1 is introduced as beginning-of-sentence markers.
The start vertex is now (v0, yN−1 . . . y1). The notation x : k is used to refer to the last k elements
of x.

The annotated word-graph for Ngrams is a weighted graph (V,E) and some fixed N , such that:

• V is a set of pairs (v, w1 . . . wN−1) where v is a word-graph state and wi are labels in the
word-graph. The start vertex is (v0, yN−1 . . . y1); the final vertex is (vn+1, ǫ).

• E is the set of edges consisting of:

8This compares well with the O(V 3) complexity which can be obtained for most parsers.
9Note that the algorithm is different from the Viterbi algorithm. The latter algorithm finds the best path through a

possibly cyclic weighted graph, for a given sequence of observed outputs. In the current application we require an algorithm
to find the best path in an acyclic weighted graph (without an additional observed output sequence).

36

1. skip edges. For all trans(vi, vj , w, a), and all vertices Vi = (vi, x) and Vj = (vj , xw :
N − 1), there are edges (Vi, Vj , w, a, ǫ).

2. category edges. For all parsed(vi, vj , x2, a, q), and for all vertices Vi = (vi, x1) and Vj =
(vj , x1x2 : N − 1), there are edges (Vi, Vj , x2, a, q).

3. stopping edges. For all final(vi, a) and for all vertices Vi = (vi, x) there are edges
(Vi, (vn+1, ǫ), ǫ, a, ǫ).

Example: nlp speech trigram method. The start state of the graph search now is the vertex
(v0, y2y1). Weights are expressed as 4-tuples by extending the triples of the nlp speech method
with a fourth component expressing trigram weights. These trigram weights are expressed using
negative logarithms of (estimates of) probabilities. Let tri be the function which returns for a
given sequence of three words this number. Moreover, the definition of this function is extended
for longer sequences of words in the obvious way by defining tri(w0w1w2x) = tri(w0w1w2) +
tri(w1w2x).

The initial weight is defined as ini = 〈0, 0, 0, 0〉. Weights are updated as follows:

uw(〈c1, c2, c3, c4〉, ((vi, w0w1), (vj , y), x, a, q)) =

〈c1 + 1, c2, c3 + a, c4 + tri(w0w1x)〉 for skip edges
〈c1, c2 + 1, c3 + a, c4 + tri(w0w1x)〉 for category edges

〈c1, c2, c3 + a, c4〉 for stopping edges

(48)

Finally, we define an ordering on such tuples. The function total is defined on tuples as fol-
lows. Here knlp and kwg are constants.

total(〈c1, c2, c3, c4〉) = c4 + knlp ∗ (c1 + c2) + kwg ∗ c3.(49)

We then define the ordering as:

〈c1, c2, c3, c4〉 ≺ 〈c′1, c
′

2, c
′

3, c
′

4〉 iff total(〈c1, c2, c3, c4〉) < total(〈c′1, c
′

2, c
′

3, c
′

4〉).(50)

3.9 Comparison with Dijkstra’s algorithm

In a previous version of the implementation we used a generalised version of DIJKSTRA’s al-
gorithm (Dijkstra, 1959), (Nilsson, 1971), (Cormen, Leiserson, and Rivest, 1990), instead of the
DAG-SHORTEST-PATH presented above. Dijkstra’s algorithm is more general in that it is not re-
stricted to acyclic graphs. On the other hand, however, Dijkstra’s algorithm requires that weights
on edges are positive (paths can only get worse if they are extended). A potential advantage of
Dijkstra’s algorithm for our purposes is that the algorithm often does not have to investigate all
edges. If edges are relatively expensive to compute, then Dijkstra’s algorithm might turn out to
be faster.

For instance, we can obtain a modest increase in efficiency by exploiting Dijkstra’s algorithm
if we delay some of the work the parser has to do for some category q, until the robustness
component actually has a need for that category q. Since Dijkstra’s algorithm will not visit every
q, the amount of work is reduced. We exploited this in our implementation as follows. The
parser works in two phases. In the first phase (recognition) no semantic constraints are taken
into account (in order to pack all ambiguities). In the second phase semantic constraints are
applied. This second phase can then be delayed for some category q until Dijkstra’s algorithm
uses an edge based on q. For a number of categories, therefore, this second phase can be skipped
completely.

However, we had three reasons for preferring the DAG-SHORTEST-PATH algorithm given
above. Firstly, this algorithm is simpler than Dijkstra’s algorithm. Secondly, negative weights
do show up in a number of circumstances. And thirdly, the expected efficiency gain was not
observed in practice.

37

An example where negative weights may show up is the following. Suppose we define a
method which takes into account Ngram scores but nothing else, i.e. all other sources of infor-
mation such as acoustic scores are ignored. It turns out that a straightforward implementation of
such a method is non-optimal since it will favour paths in the word-graph consisting of a small
number of long words over paths (of the same duration) consisting of a larger number of smaller
words, only because more scores have to be added. A simple and effective way to eliminate this
effect, is to subtract a constant from each score. However, this subtraction may yield negative
numbers.

3.10 Best-first methods

Rather than integrating parsing and disambiguation of the word-graph as a single procedure, as
we proposed above, it is also possible to try to disambiguate the word-graph first, and then use
the parser to parse the resulting path in the word-graph.

We have implemented two versions of this approach. Both versions use the search algorithm
discussed above, by applying a method which takes into account the acoustic scores and Ngram
scores. One version uses N = 2, the other version uses N = 3. In section 4 we refer to these two
methods as best 1 bigram and best 1 trigram respectively.

We have experimented with such methods in order to evaluate the contribution of gram-
matical analysis to speech recognition. If, for instance, the integrated method nlp speech trigram
performs significantly better than best 1 trigram then we can conclude that grammatical analysis
improves speech recognition. The results below, however, do not permit this conclusion.

4 Evaluation

We present a number of results to indicate how well the NLP component currently performs. In
the NWO Priority Programme, two alternative natural language processing modules are devel-
oped in parallel: the ‘grammar-based’ module described here, and a ‘data-oriented’ (statistical,
probabilistic, DOP) module. Both of these modules fit into the system architecture of OVIS. The
DOP approach is documented in a number of publications (Scha, 1990; Bonnema, Bod, and Scha,
1997; Bod and Scha, 1997).

In order to compare both NLP modules, a formal evaluation has been carried out on 1000 new,
unseen, representative word graphs (obtained using the latest version of the speech recognizer).
Full details on the evaluation procedure, and all evaluation results, are described elsewhere (van
Noord, 1997b; Bonnema, van Noord, and van Zanten, 1998). For these word graphs, annotations
were provided by our project partners consisting of the actual sentences (’test sentences’), and
updates (’test updates’).

The Ngram models used by our implementation were constructed on the basis of a corpus of
almost 60K user utterances (almost 200K words).

Some indication of the difficulty of the test-set of 1000 word-graphs is presented in table 1,
both for the input word-graphs and for the normalised word-graphs. The table lists the number
of transitions, the number of words of the actual utterances, the average number of transitions per
word, the average number of words per graph, the average number of transitions per graph, and
finally the maximum number of transitions per graph. The number of transitions per word in the
normalized word-graph is an indication of the additional ambiguity that the parser encounters
in comparison with parsing of ordinary strings.

A further indication of the difficulty of this set of word-graphs is obtained if we look at the
word and sentence accuracy obtained by a number of simple methods. The string comparison
on which sentence accuracy and word accuracy are based is defined by the minimal number
of substitutions, deletions and insertions that is required to turn the first string into the second
(Levenshtein distance d). Word accuracy is defined as 1 − d

n
where n is the length of the actual

utterance.

38

Table 1: Characterization of test set (1).

graphs transitions words t/w w/g t/g max(t/g)
input 1000 48215 3229 14.9 3.2 48.2 793

normalized 1000 73502 3229 22.8 3.2 73.5 2943

Table 2: Characterization of test set (2).

method WA SA
speech 69.8 56.0

possible 90.4 83.7
bigram 69.0 57.4
trigram 73.1 61.8

speech bigram 81.1 73.6
speech trigram 83.9 76.2

The method speech only takes into account the acoustic scores found in the word-graph. The
method possible assumes that there is an oracle which chooses a path such that it turns out to
be the best possible path. This method can be seen as a natural upper bound on what can be
achieved. The methods bigram (trigram) report on a method which only uses a bigram (trigram)
language model. The methods speech bigram (speech trigram) use a combination of bigram (tri-
gram) statistics and the speech score.

4.1 Efficiency

Table 3 reports on the efficiency of the NLP components for the set of 1000 wordgraphs and test
utterances. The first two rows present the results for sentences; the remaining rows provide the
results for word-graphs. Listed are respectively the average number of milliseconds per input;
the maximum number of milliseconds; and the maximum space requirements (per word-graph,
in Kbytes).

For most word-graphs we used the nlp speech trigram method as described above. For large
word-graphs (more than 100 transitions), we first selected the best path in the word-graph based
on acoustic scores and N-gram scores only. The resulting path was then used as input for the
parser. In the case of these large word-graphs, N=2 indicates that bigram scores were used, for
N=3 trigram scores were used.

CPU-time includes tokenizing the word-graph, removal of pause transitions, lexical lookup,
parsing, the robustness/disambiguation component, and the production of an update expres-
sion. 10

For word-graphs the average CPU-times are actually quite misleading because CPU-times
vary enormously for different word-graphs. For this reason, we present in table 4 the proportion
of word-graphs (in %) that can be treated by the NLP component within a given amount of CPU-
time (in milliseconds).

4.2 Accuracy

The results for word accuracy given above provide a measure for the extent to which linguistic
processing contributes to speech recognition. However, since the main task of the linguistic com-

10For the grammar-based methods, CPU-time was measured on a HP 9000/780 machine running HP-UX 10.20, with
SICStus Prolog 3 patch level 3. The statistics for the data-oriented module were obtained on a Silicon Graphics Indigo
with a MIPS R10000 processor, running IRIX 6.2.

39

Table 3: Efficiency (1).

input method mean msec max msec max Kbytes
test sentence data-oriented 91 8632 14064
test sentence grammar-based 28 610 524
word graphs data-oriented 7011 648671 619504
word graphs grammar-based N=2 298 15880 7143
word graphs grammar-based N=3 1614 690800 34341

Table 4: Efficiency (2).

method 100 500 1000 5000 10000
data-oriented 52.7 70.8 76.6 90.6 94.2
grammar-based N=2 58.6 87.0 94.6 99.5 99.8
grammar-based N=3 58.5 78.9 87.3 96.7 98.7

ponent is to analyze utterances semantically, an equally important measure is concept accuracy,
i.e. the extent to which semantic analysis corresponds with the meaning of the utterance that was
actually produced by the user.

For determining concept accuracy, we have used a semantically annotated corpus of 10K user
responses. Each user response was annotated with an update representing the meaning of the
utterance that was actually spoken. The annotations were made by our project partners in Ams-
terdam, in accordance with the existing guidelines (Veldhuijzen van Zanten, 1996).

Updates take the form described in section 2.5. An update is a logical formula which can
be evaluated against an information state and which gives rise to a new, updated information
state. The most straightforward method for evaluating concept accuracy in this setting is to
compare (the normal form of) the update produced by the grammar with (the normal form of) the
annotated update. A major obstacle for this approach, however, is the fact that very fine-grained
semantic distinctions can be made in the update-language. While these distinctions are relevant
semantically (i.e. in certain cases they may lead to slightly different updates of an information
state), they can often be ignored by a dialogue manager. For instance, the two updates below are
semantically not equivalent, as the ground-focus distinction is slightly different.

user.wants.destination.place.([# town.leiden];[! town.abcoude])

user.wants.destination.([# place.town.leiden];[! place.town.abcoude])

(51)

However, the dialogue manager will decide in both cases that this is a correction of the destina-
tion town.

Since semantic analysis is the input for the dialogue manager, we have measured concept
accuracy in terms of a simplified version of the update language. Inspired by a similar proposal
in Boros et al. (1996), we translate each update into a set of semantic units, where a unit in our
case is a triple 〈CommunicativeFunction, Slot, Value〉. For instance, the two examples
above both translate as
〈 denial, destination town, leiden 〉
〈 correction, destination town, abcoude 〉
Both the updates in the annotated corpus and the updates produced by the system were trans-
lated into semantic units.

Semantic accuracy is given in table 5 according to four different definitions. Firstly, we list the
proportion of utterances for which the corresponding semantic units exactly match the semantic
units of the annotation (match). Furthermore we calculate precision (the number of correct seman-
tic units divided by the number of semantic units which were produced) and recall (the number

40

Table 5: Accuracy.

Input Method String accuracy Semantic accuracy
WA SA match precision recall CA

test sentence data-oriented N/A N/A 93.0 94.0 92.5 91.6
test sentence grammar-based N/A N/A 95.7 95.7 96.4 95.0
word-graph data-oriented 76.8 69.3 74.9 80.1 78.8 75.5
word-graph grammar-based N=2 82.3 75.8 80.9 83.6 84.8 80.9
word-graph grammar-based N=3 84.2 76.6 82.0 85.0 86.0 82.6

of correct semantic units divided by the number of semantic units of the annotation). Finally,
following Boros et al. (1996), we also present concept accuracy as

CA = 100

(

1−
SUS + SUI + SUD

SU

)

%

where SU is the total number of semantic units in the translated corpus annotation, and SUS ,
SUI , and SUD are the number of substitutions, insertions, and deletions that are necessary to
make the translated grammar update equivalent to the translation of the corpus update.

We achieve the results listed in table 5 for the test-set of 1000 word-graphs. String accuracy is
presented in terms of word-accuracy (WA) and sentence accuracy (SA).

Conclusion

The results given above lead to the following conclusions.

• Sophisticated grammatical analysis is fast enough for practical spoken dialogue systems.

• Moreover, grammatical analysis is effective for the purposes of the present application. Al-
most all user utterances can be analysed correctly. This is somewhat surprising. Typically,
linguistic ambiguities are a major obstacle for practical NLP systems. The current appli-
cation is very simple in the sense that such linguistic ambiguities do not seem to play a
significant role. The ambiguities introduced by the speech recognizer (as multiple paths in
the word-graph) are a far more important problem.

• Grammatical analysis does not seem to help much to solve the problem of disambiguating
the word-graph. The best method incorporating grammatical analysis performs about as
well as a method which solely uses N-gram statistics and acoustic scores for disambiguation
of the word-graph. However, in the latter case grammatical analysis of the type proposed
here is useful in providing a robust analysis of the best path.

We have argued in this paper that sophisticated grammatical analysis in combination with a
robust parser can be applied successfully as an ingredient of a spoken dialogue system. Gram-
matical analysis is thereby shown to be a viable alternative to techniques such as concept spotting.
We showed that for a state-of-the-art application (public transport information system) grammat-
ical analysis can be applied efficiently and effectively. It is expected that the use of sophisticated
grammatical analysis will allow for easier construction of linguistically more complex spoken
dialogue systems.

41

Acknowledgements

This research was carried out within the framework of the Priority Programme Language and
Speech Technology (TST). The TST-Programme is sponsored by NWO (Dutch Organization for
Scientific Research).

References

[Agnäs et al.1994] Agnäs, M-S., H. Alshawi, I. Bretan, D. Carter, K. Ceder, M. Collins, R. Crouch,
V. Digalakis, B. Ekholm, B. Gambäck, J. Kaja, J. Karlgren, B. Lyberg, P. Price, S. Pulman,
M. Rayner, C. Samuelsson, and T. Svensson. 1994. Spoken Language Translator: First-year
report. Technical report, SICS and SRI Cambridge, Cambridge Computer Research Centre.
Available as crc043/paper.ps.Z from http://www.cam.sri.com/tr/.

[Allen et al.1996] Allen, J.F., B.W. Miller, E.K. Ringger, and T. Sikorski. 1996. A robust system for
natural spoken dialogue. In 34th Annual Meeting of the Association for Computational Linguistics,
pages 62–70, University of California, Santa Cruz.

[Alshawi1992] Alshawi, Hiyan, editor. 1992. The Core Language Engine. ACL-MIT press, Cam-
bridge Mass.

[Alshawi et al.1992] Alshawi, Hiyan, David Carter, Richard Crouch, Steve Pulman, Manny
Rayner, and Arnold Smith. 1992. CLARE: A contextual reasoning and cooperative response
framework for the Core Language Engine. Technical report, SRI International, Cambridge
Computer Research Centre. Available as cmp-lg/9411002 from http://xxx.lanl.gov/cmp-lg.

[Alshawi and Crouch1992] Alshawi, Hiyan and Richard Crouch. 1992. Monotonic semantic in-
terpretation. In 30th Annual Meeting of the Association for Computational Linguistics, pages 32–
39, Newark, Delaware.

[Aust et al.1995] Aust, H., M. Oerder, F. Seide, and V. Steinbiss. 1995. The Philips automatic train
timetable information system. Speech Communication, 17:249–262.

[Block1994] Block, Hans Ulrich. 1994. Compiling trace & unification grammar. In Tomek Strza-
lkowski, editor, Reversible Grammar in Natural Language Processing. Kluwer Academic Publish-
ers, Dordrecht, pages 155–174.

[Bod and Scha1997] Bod, Rens and Remko Scha. 1997. Data-oriented language processing: An
overview. Technical Report 38, NWO Priority Programme Language and Speech Technology.

[Bonnema, Bod, and Scha1997] Bonnema, Remko, Rens Bod, and Remko Scha. 1997. A DOP
model for semantic interpretation. In 35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguis-
tics, Madrid.

[Bonnema, van Noord, and van Zanten1998] Bonnema, Remko, Gertjan van Noord, and
Gert Veldhuizen van Zanten. 1998. Evaluation results NLP components OVIS2. Tech-
nical Report 57, NWO Priority Programme Language and Speech Technology.

[Boros et al.1996] Boros, M., W. Eckert, F. Gallwitz, G. Görz, G. Hanrieder, and H. Niemann. 1996.
Towards understanding spontaneous speech: Word accuracy vs. concept accuracy. In Proceed-
ings of the Fourth International Conference on Spoken Language Processing (ICSLP 96), Philadel-
phia.

[Bouma1992] Bouma, Gosse. 1992. Feature structures and nonmonotonicity. Computational Lin-
guistics, 18(2).

42

[Briscoe and Carroll1993] Briscoe, Ted and John Carroll. 1993. Generalised probabilistic lr parsing
of natural language (corpora) with unification-based grammars. Computational Linguistics,
19(1):25–60.

[Briscoe et al.1987] Briscoe, Ted, Claire Grover, Bran Boguraev, and John Carroll. 1987. A formal-
ism and environment for the development of a large grammar of english. In Proceedings of the
10th International Joint Conference on Artificial Intelligence, pages 703–708, Milan.

[Carpenter1992] Carpenter, Bob. 1992. Skeptical and creduluous default unification with appli-
cations to templates and inheritance. In Ted Briscoe, Anne Copestake, and Valerie de Paiva,
editors, Default Inheritance within Unification-Based Approaches to the Lexicon. Cambridge Uni-
versity Press, Cambridge.

[Carroll1993] Carroll, John. 1993. Practical unification-based parsing of natural language. Ph.D. the-
sis, Cambridge University.

[Cooper et al.1994] Cooper, Robin, Richard Crouch, Jan van Eijck, Chris Fox, Josef van Genabith,
Jan Jaspars, Hans Kamp, Manfred Pinkal, Massimo Poesio, and Stephen Pulman. 1994. Fracas
deliverable d8: Describing the approaches. Technical report, Centre For Cognitive Science,
Edinburgh. Available by ftp from ftp.cogsci.ed.ac.uk, pub/FRACAS/.

[Cormen, Leiserson, and Rivest1990] Cormen, Leiserson, and Rivest. 1990. Introduction to Algo-
rithms. MIT Press, Cambridge Mass.

[Davidson1967] Davidson, Donald. 1967. The logical form of action sentences. In Nicholas
Rescher, editor, The Logic of Decision and Action. University of Pittsburgh Press.

[Dijkstra1959] Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271.

[Frank1994] Frank, Annette. 1994. Verb second by lexical rule or by underspecification. Technical
report, Institute for Computational Linguistics, Stuttgart.

[Gazdar et al.1985] Gazdar, Gerald, Ewan Klein, Geoffrey Pullum, and Ivan Sag. 1985. Generalized
Phrase Structure Grammar. Blackwell.

[Hukari and Levine1995] Hukari, Thomas E. and Robert D. Levine. 1995. Adjunct extraction.
Journal of Linguistics, 31(2):195–226.

[Jackson et al.1991] Jackson, E., D. Appelt, J. Bear, R. Moore, and A. Podlozny. 1991. A template
matcher for robust NL interpretation. In Speech and Natural Language Workshop, pages 190–194,
Pacific Grove, California, February.

[Johnson and Dörre1995] Johnson, Mark and Jochen Dörre. 1995. Memoization of coroutined
constraints. In 33th Annual Meeting of the Association for Computational Linguistics, pages 100–
107, Boston.

[Koeling1997] Koeling, Rob. 1997. Moving on the dialogue game board. In Second Tbilisi Simpo-
sium Language, Logic and Computation, Tbilisi State University.

[Mellish1988] Mellish, C.S. 1988. Implementing systemic classification by unification. Computa-
tional Linguistics, 14(1):40–51.

[Moore, Pereira, and Murveit1989] Moore, R., F. Pereira, and H. Murveit. 1989. Integrating
speech and natural-language processing. In Speech and Natural Language Workshop, pages 243–
247, Philadelphia, Pennsylvania, February.

[Nederhof et al.1997] Nederhof, Mark-Jan, Gosse Bouma, Rob Koeling, and Gertjan van No-
ord. 1997. Grammatical analysis in the ovis spoken-dialogue system. In Proceedings of the
ACL/EACL Workshop on Spoken Dialog Systems, pages 66–73, Madrid, Spain.

43

[Nerbonne1992] Nerbonne, John. 1992. Constraint-based semantics. In P. Dekker and M. Stokhof,
editors, Proceedings of the Eight Amsterdam Colloquium, pages 425–44, ITLI Amsterdam.

[Netter1992] Netter, Klaus. 1992. On non-head non-movement. In G. Görz, editor, KONVENS 92.
Springer-Verlag.

[Nilsson1971] Nilsson, Nils. 1971. Problem Solving Methods in Artificial Intelligence. McGraw-Hill.

[van Noord1995] van Noord, Gertjan. 1995. The intersection of finite state automata and definite
clause grammars. In 33th Annual Meeting of the Association for Computational Linguistics, pages
159–165, MIT Cambridge Mass. Available from http://www.let.rug.nl/˜vannoord/papers/.

[van Noord1997a] van Noord, Gertjan. 1997a. An efficient implementation of the head corner
parser. Computational Linguistics, 23(3):425–456.

[van Noord1997b] van Noord, Gertjan. 1997b. Evaluation of OVIS2 NLP components. Technical
Report 46, NWO Priority Programme Language and Speech Technology.

[van Noord and Bouma1994] van Noord, Gertjan and Gosse Bouma. 1994. Adjuncts
and the processing of lexical rules. In Proceedings of the 15th International Confer-
ence on Computational Linguistics (COLING), pages 250–256, Kyoto. Available from
http://www.let.rug.nl/˜vannoord/papers/.

[van Noord and Bouma1997a] van Noord, Gertjan and Gosse Bouma. 1997a. Dutch verb clus-
tering without verb clusters. In Patrick Blackburn and Maarten de Rijke, editors, Specifying
Syntactic Structures. CSLI Publications / Folli, Stanford, pages 123–153.

[van Noord and Bouma1997b] van Noord, Gertjan and Gosse Bouma. 1997b. Hdrug, a flexible
and extendible development environment for natural language processing. In Proceedings of
the EACL/ACL workshop on Environments for Grammar Development, Madrid.

[Oerder and Ney1993] Oerder, Martin and Hermann Ney. 1993. Word graphs: An efficient inter-
face between continuous-speech recognition and language understanding. In ICASSP Volume
2, pages 119–122.

[Pereira and Warren1980] Pereira, Fernando C.N. and David Warren. 1980. Definite clause gram-
mars for language analysis — a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13.

[Pinkal1995] Pinkal, Manfred. 1995. Logic and Lexicon. Kluwer.

[Pollard and Sag1994] Pollard, Carl and Ivan Sag. 1994. Head-driven Phrase Structure Grammar.
University of Chicago / CSLI.

[Pulman1996] Pulman, Steve. 1996. Unification encodings of grammatical notations. Computa-
tional Linguistics, 22(3):295–328.

[Sag1997] Sag, Ivan. 1997. English relative clause constructions. Journal of Linguistics. to appear.

[Scha1990] Scha, Remko. 1990. Taaltheorie en taaltechnologie; competence en performance. In
Computertoepassingen in de Neerlandistiek. Landelijke Vereniging van Neerlandici (LVVN Jaar-
boek), Almere.

[Veldhuijzen van Zanten1996] Veldhuijzen van Zanten, Gert. 1996. Semantics of update expres-
sions. Technical Report 24, NWO Priority Programme Language and Speech Technology.
http://odur.let.rug.nl:4321/.

[Ward1989] Ward, W. 1989. Understanding spontaneous speech. In Speech and Natural Language
Workshop, pages 137–141, Philadelphia, Pennsylvania, February.

44

