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Abstract

Thousands of anthropogenic chemicals are released into the environment each year, posing

potential hazards to human and environmental health. Toxic chemicals may cause a variety of

adverse health effects, triggering immediate symptoms or delayed effects over longer periods

of time. It is thus crucial to develop methods that can rapidly screen and predict the toxicity of

chemicals, to limit the potential harmful impacts of chemical pollutants. Computational meth-

ods are being increasingly used in toxicity predictions. Here, the method of molecular docking

is assessed for screening potential toxicity of a variety of xenobiotic compounds, including

pesticides, pharmaceuticals, pollutants and toxins deriving from the chemical industry. The

method predicts the binding energy of the pollutants to a set of carefully selected receptors,

under the assumption that toxicity in many cases is related to interference with biochemi-

cal pathways. The strength of the applied method lies in its rapid generation of interaction

maps between potential toxins and the targeted enzymes, which could quickly yield molecular-

level information and insight into potential perturbation pathways, aiding in the prioritisation

1



of chemicals for further tests. Two scoring functions are compared, Autodock Vina and the

machine-learning scoring function RF-Score-VS. The results are promising, though hampered

by the accuracy of the scoring functions. The strengths and weaknesses of the docking pro-

tocol are discussed, as well as future directions for improving the accuracy for the purpose of

toxicity predictions.

Introduction

Environmental pollution and ecotoxic stress through habitat-destruction, further exacerbated by

climate change, have led to the onset of the sixth great mass-extinction event.1 Pollution affects

all organisms in the environment including humans, through a range of mechanisms, from chronic

toxicity via the respiratory function and the gastrointestinal channel to dermatological uptake. This

may trigger the detoxification pathways of the body in an attempt to eliminate toxic compounds

from the system.2,3 At continuous low-dose exposure, pollutants may also incur long-termed ef-

fects.4,5 There is, however, limited or no available toxicity data for tens of thousands of compounds

to which organisms in the environment, including humans, are exposed, due to the high cost and

laborious nature of traditional toxicity testing.6,7 This underscores the need for approaches that can

rapidly screen and predict the toxicity of chemicals and prevent them from being released in the

environment.

In 2007, the National Research Council, Committee on Toxicity Testing and Assessment of

Environmental Agents (U.S.A.), proposed a new framework, emphasising the importance of inte-

grating in vitro-based and computational methods for evaluating toxicity.8 In response, a series

of programs have been initiated in the last decade, aimed at identifying assays relevant to toxicity

and screening the biological activity of large numbers of candidate pollutants in a cost-efficient

and timely manner. In particular, the Toxicity Forecasting (ToxCast) project of the Environmental

Protection Agency (U.S.A.) has been instrumental in setting the stage for in vitro high-throughput

assays9,10 In a significant effort, over 900 chemicals were employed in over 300 concentration-

response assays to produce a large matrix with estimates of the chemical potency, in terms of
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the AC50 parameter.10 The launch of Phase III further broadened the chemical and assay space

of ToxCast. Although the measured AC50 values have no direct toxicological interpretation and

estimated values may have large standard errors,11 high-throughput screening (HTS) nevertheless

offers an important benchmark and a means of comparing chemical activities. Other ongoing pro-

grams for predicting the hazardous character of pollutants rely on computational measurements

and properties of the chemical structures under consideration.12–20 The most common approach is

the Quantitative Structure Activity Relationship (QSAR) method, which is based on the chemical

similarity principle. Although these algorithms present good predictions for various compounds,

they give no information on the mechanism of action of pollutants, which often requires structural

and molecular biology methods of study.

Several factors affect the toxicity of a given chemical, including its dose and route, frequency

and duration of exposure. Many modes of molecular toxicity may be generalised as the binding

between a chemical and a biomolecular target. The ability of a chemical to interact with a protein

has, for a long time, been modelled within the pharmaceutical industry using the molecular docking

formalism. By yielding a prediction of the binding affinity of chemicals to targets, putatively

related to toxicity, docking could provide molecular-level information and insight into relevant

interactions. Since the targets culpable for the underlying adverse effects remain unknown for

most environmental chemicals, docking could provide information on the most likely targets. This

could, for example, aid in designing in vitro HTS bioassays. A multiple-target approach which

considers all possible combinations of receptors and ligands could also yield a more complete

picture of potential toxicity and the potential perturbation pathways. Furthermore, the docking

output could also be combined with other computational approaches, for example to derive QSAR

models to predict toxicity.21–23

The main result of this paper is a computational ecotoxicity assay (CETOXA), containing 65

prepared protein targets belonging to various protein families. The methods for developing this

computational study have been investigated in a previous paper published by our group on an

ecotoxicological case study on vitamin B deficiency in moose.24 Here, we explore the feasibility
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of applying a popular classical scoring function, Autodock Vina, and one of the most promising

of the newer generation of machine-learning scoring functions, the Random Forest-based scoring

function RF-Score-VS, for toxicity screening. The output from docking is a matrix with docking

scores, representing an estimate of the binding energies, for all possible combinations of receptors

and ligands. Of the two scoring functions considered, Vina shows promising results as it on average

predicts higher affinities for active chemicals than for inactive ones. Furthermore, we also show

that compound similarity is a strong predictor of binding affinity and that similar chemicals tend

to show highest affinity for the same binding site of a given protein. Ultimately, the results may be

integrated with existing toxicity and bioassay data to compare chemical profiles, to extract binding

patterns and associations that may be key steps in triggering an adverse biological effect.

Methods

A flow-chart for the entire method of deriving the computational ecotoxicity assay is given in

Fig. 1. The different steps in the flowchart are detailed below.

Data preparation

Receptors

Based on the assays present in Phases I & II of the ToxCast program,10 65 receptors were selected

for which experimental structures are available in the Protein Data Bank (PDB). A complete list

of the proteins can be found in Table S1 in the Supporting Information (SI), and the list includes

kinases (22), phosphatases (5), proteases (6), G-protein-coupled receptors (9), nuclear receptors

(11), and cytochromes P450 (4). These proteins represent a broad range of cellular functions that

are critical for the survival and proliferation of cells.

PDB structures were chosen based on the availability of high-quality crystal structures. Only

deposits with a resolution better than 2.85 Å were included. The protein structure quality was

assessed using MolProbity.25 Structures with an overall MolProbity score (representing a log-
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Figure 1: Flow-chart describing how the computational ecotoxicity assay is derived. See text for details.

weighted combination of the clashscore, rotamer, and Ramachandran evaluations) lower than the

crystallographic resolution were kept. In many cases, better scores were found for the correspond-

ing structure in the PDB-REDO databank, which contains re-refined and rebuilt PDB entries.26–28

Chains were removed as necessary, to ensure that each structure corresponds to the reported

biologically-relevant assembly. Ligands, cofactors, and co-crystallised lysozyme molecules were

also removed as needed (see Table S1). Zinc ions were kept, given their functional role in proteins,

although they are not taken into account during docking. Common structural problems were cor-

rected using Dock Prep29 through the Chimera software. Missing non-terminal backbone residues

were modelled using Modeller30 and a local energy minimization was performed with the Amber
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ff14SB force field31 through Chimera to relieve potential atomic clashes.

Pollutants

The ligands in the ToxCast chemical library can be broadly separated into four chemical use

groups: phthalates and alternative plasticizers, pesticides, pharmaceuticals (both marketed and

failed), and other consumer use chemicals (such as food additives, soaps, and shampoos), all to-

gether comprising a structurally diverse chemical space. Ligands in reference 10 are denoted by

PubChem codes and were downloaded using a script. About 1/3 of the compounds were available

only as 2D chemical coordinates and a semi-automated procedure to make 3D coordinates was per-

formed, using the obgen tool in OpenBabel32 followed by manual curation of all the structures.

Compounds with unsupported atoms, including metals and, e.g., boron were removed, leaving 957

environmentally relevant compounds.

Both ligands and receptors were treated by scripts from AutodockTools33 to prepare them for

docking.

Identification of Binding Sites

Blind docking was employed to explore the protein surface for prospective binding sites.34,35 For

each potential chemical-target complex, a blind docking calculation was performed using QVina-

W (an extension of QVina2, see below, specifically designed for blind docking),36 with 64 inde-

pendent runs per docking. Nine results were stored per complex, producing 9 x 957 bound ligand

poses per target.

Common binding sites were identified by clustering the 9 x 957 centres of mass of the bound

ligands using the OPTICS algorithm,37 a density-based clustering algorithm similar to DBSCAN,

available in the Python machine learning library scikit-learn.38 To reduce errors associated with

inappropriate choice of binding site, multiple binding sites were considered. For each receptor,

the centres of mass of up to four of the most populated clusters were stored. In most cases, fewer

than four clusters were found by the algorithm (see SI, Table S1). An example of the procedure is

6



shown in Fig. 2. In this manner, blind docking is used as a method for pocket search.39

The receptors, with 1-4 binding sites each, define the computational ecotoxicity assay that can

be used for in silico scoring of new and existing compounds.

(a)

(b)

Figure 2: Example of receptor (PDB ID 1HFC) binding site classification, illustrating a) the centres of mass
of the blind-docked chemicals and their corresponding Vina score and b) clustering performed by OPTICS.
In this example, two clusters were identified, coloured green-blue (population 6708) and yellow (population
922), with the remainder of the (more spread-out) purple points unassigned.

Molecular Docking

AutoDock Vina40 (or Vina) has been a popular choice for high-throughput screening, due to its

efficiency and relatively high accuracy. Here, we use a revised version, Quick-Vina2 (or QVina2),

which has improved on the local search algorithm, achieving significant speed-up in computation

time without compromising accuracy.41

Re-docking co-crystallised ligands

In order to evaluate the docking protocol, preliminary docking simulations were performed in

which each of the co-crystallised ligands was re-docked into the active site of its cognate pro-

tein target. The coordinates for the ligands were extracted from the PDB files, randomised using
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obconformer in OpenBabel, and prepared for docking using AutodockTools. The search box

dimension was set as in ref. 40. Re-docking was performed with QVina2, with an exhaustiveness

level of 8, producing up to nine possible poses for each run. The symmetry-corrected RMSD was

calculated using DockRMSD.42

Targeted Docking and Scoring

Using the computational ecotoxicity assay, targeted docking of the pollutants was performed on the

identified binding sites for each receptor. A total of 160,776 targeted dockings and scorings were

performed, using the same settings as during re-docking. The lowest score, corresponding to the

strongest binding, of the 1-4 binding sites for each complex was kept, producing a cross-docking

matrix of binding free energy predictions for 62,205 complexes, for all possible combinations of

receptors and ligands.

Binding affinity prediction

For our purposes, the ability to accurately predict the binding pose is not as important as the ability

to accurately rank chemicals based on the binding affinity. Enhancing the accuracy of scoring

functions for predicting binding affinities or biological activity remains a challenge. It has been

noted that most classical scoring functions suffer from limitations and are unable to accurately

predict biological activities.43 In order to move beyond the limitations of docking codes solvent

effects may have to be included,44–46 at a substantial additional computational cost.

Among the classical scoring functions currently available, Vina has one of the best scoring

powers.47 In recent years, however, a new class of scoring functions have emerged that use a non-

parametric machine learning approach instead of imposing a predetermined functional form. Such

machine–learning (ML) scoring functions have been found to show improvements over classical

scoring functions, in terms of ranking compounds by binding affinity.48–51 It should be noted that

while there is at least one ML scoring function specifically designed to perform well at experimen-

tal pose prediction,52 other ML scoring functions do not necessarily improve success rates.48,53 For
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the application of binding affinity predictions, however, the Random Forest-based scoring function

RF-Score developed by Ballester et al.54 has shown promising results, outperforming classical

scoring functions such as the one used by Vina.55 In particular, RF-Score-VS was adapted to vir-

tual screening by training also on negative data (i.e., known inactive ligands), although the im-

provement in performance appears to be less substantial when applied to new targets not included

in the training set.51

Having generated an ensemble of viable docking poses with Vina, the top scored poses were

rescored using the standalone version of RF-Score-VS. The Vina predicted binding affinities will

be reported in terms of ∆Gbind and the result of RF-Score-VS rescoring in terms of pKd.

Results and discussion

Assessment of the docking protocol

Re-docking co-crystallised ligands

In order to assess the quality and reliability of the docking protocol, the co-crystallised ligands

were redocked and the resulting pose compared to the experimental one. Pose generation error is

commonly assessed by measuring the root mean square deviation (RMSD) of the predicted pose

from the experimental binding orientation. The cumulative frequency curve of the RMSD between

the native and predicted conformation is shown in Fig. 3.

With 2 Å as a commonly accepted RMSD cutoff value, the success rate (i.e., fraction of pre-

dicted poses with an RMSD ≤ 2.0 Å) for the top pose of Vina is 50.0%. For comparison, a

benchmark study by Wang et al.47 found the average success rate for the top scored pose among

academic docking programs to be 47.4%, with second best performance achieved by Vina (with a

success rate of 49.0%). Our results are thus within the expected accuracy of the docking method.

Considering instead the best of the nine output poses (i.e., the pose with the lowest RMSD),

the success rate increases to 67.2 % (with 80% falling below 3.0 Å, see Fig. 3). In other words,
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Figure 3: Cumulative frequency curve for the root mean square deviation (RMSD) between the native and
predicted conformation of co-crystallised ligands, using the top scored pose and the best among all nine
output poses from Vina (i.e., the pose with lowest RMSD), as well as the RMSD for the predicted top pose
after rescoring the nine output poses of Vina with RF-Score-VS.

Vina manages to find a pose close to the experimental binding orientation, but may fail to rank

it as the best-scoring pose, consistent with previous studies.39,47,56 It should be noted that a large

pose generation error does not by default imply inaccurate binding affinity predictions. A study by

Li et al. found that there is a low correlation between pose generation error and binding affinity

prediction error.50 For our purposes, the latter is the more relevant quantity.

Rescoring with RF-Score-VS

The nine output poses of Vina were rescored using RF-Score-VS, giving a new top pose. This

leads to a drop in success rate to 30.1% (Fig. 3). Note that it is known that machine-learning

scoring functions do not necessarily outperform classical scoring functions in regards to pose pre-

diction.48,53

Considering instead the reliability of the scoring functions in predicting binding affinities, a

comparison of different docking programs using the PDBbind benchmark dataset57,58 found that
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Vina had the best Pearson correlation coefficient and Spearman ranking coefficient between the

docked scores and experimental binding affinities, with values of 0.564 and 0.580, respectively.47

In comparison, using the DUD-E database,59 Vina had an effective Pearson correlation of 0.18

while RF-Score-VS had a correlation of 0.56 when both training and test sets contained data from

all targets, and a more modest correlation of 0.2 when the training and test data were created

independently.51

The performance of the scoring functions may also be judged by their ability to predict high

scores for known binders. The crystal structure of the complexes were scored (i.e., without dock-

ing) using Vina and RF-Score-VS. For a direct comparison between the two functions, the Vina

score was converted to pKd units by using pKd= − log(e)/RT ·∆G (where R is the gas constant

and T = 298.15 K),60 see Fig. 4. Values of pKd < 4 would suggest weakly bound compounds,

while values above 10 would indicate tightly bound compounds.61 As the activity cutoff, the value

of pKd = 6 has previously been used to distinguish between active and inactive chemicals.51 Vina

Figure 4: Correlation between RF-Score-VS estimated binding energies following rescoring and predictions
from Vina scores converted to pKd units.

predicts the majority (75%) of ligands to have a predicted binding affinity pKd > 5.2 (alt. < -7.1

kcal/mol), with a mean binding affinity of pKd = 6.2 (alt. -8.4 kcal/mol ). A number of the co-

crystallised ligands are predicted to be weakly bound and some outliers even fall below pKd 4.
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Among the latter, relatively poor binding affinities were predicted for a ligand involving halogen-

bonding interactions (3W2S), which is not accounted for in most classical scoring functions, and

three ligands involving metal-coordination (1HFC, 4G9L, and 4H3X). In comparison, none of the

known binders are predicted to be weakly binding by RF-Score-VS. Yet, none are predicted to be

particularly potent either, generally falling below pKd 6.6.

Evaluating the linear and monotonic relationship of the two scoring functions, the Pearson’s

correlation coefficient and Spearman’s ranking coefficient are 0.23 and 0.26, respectively. It can be

noted that chemicals with high scores from RF-Score-VS also tend to have high Vina scores while

no correlation is found for more weakly binding chemicals.

Identification of active chemicals

The pollutants from the ToxCast chemical library were docked to the 1-4 binding sites of each

target, identified as shown in Fig. 2, and the Vina score for each complex was stored. The top

poses were further rescored with RF-Score-VS.

For toxicity screening, the goal is to minimise the number of false negatives, meaning that

no harmful chemicals should be classified as inactive. This poses a particular challenge since

environmental chemicals can also elicit adverse effects from weak interactions.

To be able to make predictions on potential activity based solely on the scoring function, it

would be necessary to identify a target-specific threshold score which could successfully delineate

active chemicals from inactive ones while minimising the number of false negatives. Ideally, the

active and inactive sets should be separated to such a degree to enable predictions by simply choos-

ing an appropriate threshold value. Some promising results were found in one toxicity screening

of environmentally pertinent chemicals, where two different molecular docking software (eHiTS

and FRED) were compared and found to have the capacity to identify weakly active chemicals

from inactive chemicals binding to rat estrogen receptors.62 For the dataset investigated here, how-

ever, the two sets show significant overlap. As an example, Fig. 5 shows the sets of active and

inactive chemicals binding to CYP 2C9, as determined by the recorded activities in the ToxCast
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HTS, as a function of the Vina docking score (Fig. 5(a)) and the RF-Score-VS rescored potencies

(Fig. 5(b)). It can be seen that neither the classical Vina scoring function nor the machine-learning

scoring function RF-Score-VS are capable of distinguishing chemicals based on activity, making

it impossible to use the docking score alone to separate likely active and inactive chemicals.

(a) (b)

Figure 5: For a set of active and inactive chemicals binding to CYP 2C9, distribution of the (a) Vina and
(b) RF-Score-VS predicted binding affinities for each complex.

The application of molecular docking for toxicity screening is an intriguing method, however,

the results indicate the limitations of using current scoring functions to predict chemical activity.

Possible routes for improving the performance could be to investigate complexation in a more

detailed fashion through, e.g., molecular dynamics methods. Although implicit-solvent models

remain popular, there is quite some evidence that they do not give sufficiently accurate results for

predicting binding free energies.63–66 Therefore, free energy calculations using explicit solvent will

likely be required to get accurate estimates of binding energies.67 In some cases, quantum-chemical

estimates of binding-strength for toxin-receptor models68,69 may yield additional insights as well.

Finally, whereas the purpose of drug discovery is to increase the enrichment factor, focusing only

on the best ranking compounds, toxicity screening using molecular docking should also consider

weakly binding chemicals, as these may still elicit adverse biological effects. This requires addi-

tional considerations and places new requirements on scoring functions.70

Although a critical score cannot be set, Vina on average predicts better scores for active chem-
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icals, illustrated as follows. The average binding affinity for active and inactive chemicals to

each target which had at least 5 active chemicals was calculated and the set values subtracted,

〈∆Gbind,act〉 − 〈∆Gbind,inact〉. The difference is plotted in Fig. 6 and can be seen to be mostly

negative. These are encouraging results as Vina would appear to somewhat consistently predict

stronger binding affinities for active chemicals than for inactive ones. A similar trend can be seen

for RF-Score-VS, although showing a poorer performance, at best producing a difference of -0.27

kcal/mol.

Figure 6: The difference in target-averaged predicted binding affinities for active and inactive chemicals,
for targets with at least 5 active chemicals. The solid line shows the kernel density estimation by Seaborn,
an estimate of the probability distribution from which the data is drawn.

Chemical similarity of ligands

It is generally assumed that structurally similar molecules exhibit similar biological activities.71

This notion is, for example, used in drug discovery to search chemical libraries for matching com-

pounds72,73 and to generate information about common receptors.74 Toxicological data gaps may

also be filled by read-across, in which chemicals with known toxicity are used to predict the tox-

icity of untested chemicals, based on their chemical similarity.75–77 It should be noted, however,

that structurally similar compounds may in some cases show large differences in potency, due to

14



so-called activity cliffs.78,79

In this context, reproducibility of docking results may be evaluated by testing whether the

docking program can reproduce the same binding pattern for structurally similar chemicals (see

SI for details). The Tanimoto coefficient for pairs of chemicals was computed and the generated

similarity matrix hierarchically clustered, see Fig. 7. A value of zero implies no shared chemical

fragments and a value of one represents identity. The dendrogram in Fig. 7 is labeled by the four

chemical categories used in ToxCast. Some degree of clustering may be seen within the chemi-

cal class groups, notably among pesticides and pharmaceuticals. Overall, however, the chemical

library is structurally diverse with only few chemicals classified as highly similar.

Figure 7: Hierarchically clustered chemical-chemical similarity matrix with the dendrogram showing the
four chemical categories. A Tanimoto coefficient approaching 1.0 (yellow) indicates a high degree of simi-
larity between the chemical pair whereas zero (dark purple) indicates no shared fragments.

Binding patterns were assessed for each pair of chemicals by computing the mean absolute

deviation (MAD) in binding affinity to the various targets. A low MAD value would suggest
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similar binding behaviour to the different targets and vice versa. These were correlated to the

Tanimoto coefficient by colour-encoding the clustered similarity matrix with the MAD values (Fig.

8). A qualitative comparison of the two matrices reveals that clusters along the diagonal in Fig.
M
A
D

Figure 8: Clustered chemical-chemical similarity matrix colour-encoded by the mean absolute deviation in
Vina-predicted binding affinities. Note that the errors range between 0.0-7.7 kcal/mol, however, the upper
limit of the colormap has for clarity been anchored to 1.0.

7, corresponding to blocks of chemicals with shared fragments, also interact with similar binding

affinities with the different protein targets, as indicated by their lower MAD values in Fig. 8. Low

MAD values are also observed for pairs of highly dissimilar chemicals, notably for a group of

consumer use chemicals and pesticides. These would appear to be chemicals which bind weakly

to all targets, typically with an average Vina score > -6.0 kcal/mol.

A more rigorous approach was employed for a quantitative comparison, by looking at the

spread in binding affinities among similar compounds. For each query compound in the pollutant

library, a subset of Nsim similar chemicals was stored, selected based on the corresponding Tan-
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imoto threshold (see SI). If Nsim > 3, the standard deviation in binding affinity for this subset,

std(∆Gbind), was calculated (Fig. 9). For comparison, a subset of least similar chemicals as well

as randomly chosen chemicals was also stored. As reference, the target-based standard deviation

of all chemicals and the overall standard deviation among all docked complexes (vertical line in

Fig. 9) are shown. It can be seen that compound similarity is generally a strong predictor of

Figure 9: Distribution of standard deviations in binding affinities for subsets of chemicals identified as
highly similar to each query molecule. As reference, the plot includes the distribution for subsets of highly
dissimilar and randomly chosen chemicals, as well as the standard deviation of all chemicals docked to
each target and overall standard deviation of all complexes (vertical dashed line). The solid lines show the
corresponding kernel density estimations.

binding affinity, with Vina predicting more tightly packed scores for the most similar compounds.

Conversely, the chemicals least similar to the query molecule also have a wider spread in affinities

compared to the query. It should be noted that the latter subset may still contain chemicals that are

similar to one another.

Having compared patterns in binding affinity, it is also of interest to investigate whether similar

chemicals show highest affinity for the same binding site of a given protein. At the onset, each

protein was assigned up to 4 docking sites. Using the same subsets as above, for each protein

with at least 2 docking sites and each query molecule binding with the lowest Vina score to site

A, the fraction pA = Nsim,A/Nsim of similar chemicals also binding best to A was calculated.
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The value was normalized by the number of hits on each binding site, i.e., pAtot = Ntot,A/Ntot,

to remove any potential bias for a more promiscuous binding site. The histogram of pA/pAtot is

shown in Fig. 10, where a value greater than 1 indicates that the compounds are more likely to bind

to the same site. It can be seen that Vina predicts structurally similar chemicals to preferentially

bind to the same site compared to randomly chosen chemicals, with a distribution skewed towards

larger pA/pAtot values, whereas the least similar ones, which may be significantly different in

terms of size and functional groups present, have a distribution distinctly skewed towards zero,

i.e., dissimilar chemicals prefer to bind to an alternative site.

Figure 10: Histogram of the normalized fraction of chemicals binding to the same site as a given query
molecule, for molecules identified as similar or dissimilar, and for randomly chosen chemicals. The solid
lines show the corresponding kernel density estimations. Note that values greater than 3.0 in the distribution
were set to the limit, for clarity.

The fact that binding is in general largely correlated with structural similarity motivates the use

of chemical similarity in predicting toxicity, as mentioned earlier. Based on available toxicity data,

this would allow us to identify protein-ligand associations and predict a set of chemical fragments

likely to contribute to the toxicity of a given molecule, which could be highly relevant in drug

design. An example of the implementation is shown in SI.
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Hierarchical clustering of binding affinities

Hierarchical clustering was performed using the Seaborn package in Python, with Euclidean dis-

tance as the similarity metric and Ward variance minimization algorithm as the linkage method.

Figure 11 shows the clustered matrix of binding affinities (heatmap) as predicted by Vina, il-

lustrating sectors ranging from low to high scores. The corresponding heatmap rescored using

RF-Score-VS is shown in SI. Similar to what was seen above for re-docking, RF-Score-VS when

applied to an independent dataset appears to underestimate the binding affinities of tightly binding

ligands and overestimate the affinities of weakly binding ligands.

Figure 11: Hierarchical clustering of 957 chemicals by 65 receptors, based on the Vina predicted binding
free energies. Left bar indicates clusters of seven protein families and top bars indicate clusters of four
chemical use groups, following the ToxCast classification.

Some prominent protein family clusters can be seen, particularly homogeneous clusters of NR,

Kinase, and GPCR. Among the various protein families, CYP and GPCR are predicted to be the

most affected, with over half the chemicals binding with an affinity < -8 kcal/mol to CYP 1A1,
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CYP 1A2, and the muscarinic acetylcholine receptors. Comparing chemicals in the different chem-

ical use categories, consumer use chemicals and phthalates and alternative plasticisers tend to have

low predicted binding affinities while pesticides and pharmaceuticals show a broader distribution

of Vina scores. This can be seen more clearly in Fig. 12, which shows the binding free energy,

averaged over all receptors, for pollutants within each chemical use group.

Figure 12: Histogram of predicted ligand binding free energies for each chemical averaged over all re-
ceptors, shown separately for each chemical class (phthalates and alternative plasticizers, consumer use,
pharmaceuticals, and pesticides). Solid lines show the kernel density estimates.

A wide band of pesticides, pharmaceuticals, and consumer use products in Fig. 11, corre-

sponding to 10% of all chemicals considered, have low binding affinities (∆Gbind > -6 kcal/mol)

to all protein targets. Among the chemicals that show specificity by binding to only a few tar-

gets with higher affinities are Mirex, a persistent organic pollutant, binding to the farnesoid X

receptor α (∆Gbind = -8.4 kcal/mol) and PI3K α (∆Gbind = -7.7 kcal/mol); Pentachlorophenol, a

pesticide and disinfectant, binding to CYP 1A1 and 1A2 (∆Gbind = -7.6 and -7.7 kcal/mol, respec-

tively); Lindane, an insecticide, pediculicide, and scabicide, binding to CYP 1A2 (∆Gbind = -7.5

kcal/mol). Interestingly, Mirex has been found to inhibit particularly Adenosine triphosphatase,
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a protein which is central for liver function.80 This enzyme shares structural motifs with Phos-

phoinositide 3-kinase, which binds Mirex as calculated by CETOXA with a free energy of -7.7

kcal/mol. The common features between these two proteins suggest that the docking procedure

detects structural similarities of particular enzyme motifs, even though these two proteins pertain

quite different 3D structures. The second important finding is the docking result associated with

the Farnesoid receptor. Indeed, this receptor is critical for liver function and has a central role in

the detoxification mechanism in hepatocytes. This protein is also related to carcinogenesis and its

inhibition causes considerable liver and gallbladder complications.80–82 The result that Mirex binds

to the Farnesoid receptor is thus relevant for the biochemistry of this receptor, as it is for the case

of Adenosine triphosphatase. Another interesting finding is that pentachlorophenol binds strongly

to CYP1A1 and -1A2. Both these enzymes use O-deethylation to oxidize phenolic substances and

both are expressed in the liver and perform detoxification in the liver microsomes of pyrimidine-

like and phenolic xenobiotics such as caffeine, alpha-napthoflavone and 7-ethoxyocourmarine and

phenacetin.83 The results also indicate that lindane may be destined for detoxification by CYP1A2.

Interestingly, lindane is a hexa-chlorinated compound that binds particularly well to CYP1A2, as

CYP1A2 has a 30% higher affinity towards halogenated compounds compared to CYP1A1. This

indicates that the docking procedure in this case has the potential to distinguish enzymes with very

similar specificity with however a 30% preference difference towards halogenated aromatics.83

Among the plasticizers, one phthalate (butyl benzyl phthalate) and three alternative plasticiz-

ers (dipropylene glycol dibenzoate, pentane-1,5-diyl dibenzoate, and hexane-1,6-diyl dibenzoate)

showed promiscuous behaviour, targeting over 1/3 of the receptors with ∆Gbind < -8 kcal/mol.

Among the consumer use chemicals identified as potentially highly promiscuous are the surfactants

perfluorodecanoic acid and perfluoroundecanoic acid, as well as the widely used synthetic food

dyes allura red and FD&C Blue no. 1. Among the pesticides targetting multiple targets with high

binding affinities are Famoxadone, Novaluron, and Prosulfon. The interactions of Famoxadone

with multiple protein targets has been confirmed in the literature. In a study by ,84 Famoxadone

was found to inhibit both mitochondrial enzymes as well as the cytochrome system (particularly
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CYPBc185).

The heatmap notably contains a cluster of about 28 pharmaceuticals with high Vina scores,

binding to multiple targets. These include failed or terminated drugs, such as the thiazolidine-

dione based and non-thiazolidinedione based antihyperglycemic agents Troglitazone and Fargli-

tazar, which are specific ligands for peroxisome proliferator-activated receptors (PPAR). Troglita-

zone has been found to have hepatotoxic effects,86 while Farglitazar did not reach past phase III

clinical trials. Zamifenacin in this list was also identified to have highly promiscuous biological

activity in the ToxCast HTS.10 Although drugs are typically designed to interact with a specific tar-

get, unintended drug-target interactions are one of the major challenges in drug design, associated

with side-effects and high failure rates.87,88

Assessment of Vina high scores

The highest binding affinity per chemical in the heat map was extracted and the top 20 chemical-

target pairs are shown in Table 1.

Table 1: Top 20 Vina scores.

Target Chemical ∆Gbind

(kcal/mol)

CYP 1A2 7,12-Dimethylbenz[a]anthracene -15.6

CYP 1A2 Benzo[b]fluoranthene -15.2

CYP 1A2 Benz[a]anthracene -14.2

CYP 1A1 PharmaGSID 47330 -13.4

CYP 1A2 Fluroanthene -12.9

CYP 1A2 Pyrene -12.9

CYP 1A2 1-Hydroxypyrene -12.9

COX2 SB236057A pharma -12.9

CYP 2C9 GSK163929B -12.8

AT1 Milbemycin A3 -12.7

Sirt2 SB243213A pharma -12.6
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COX2 sodium 3-(4-{[1-(3-ethoxyphenyl)-2-(4-methyl phenyl)-1H-imidazol-

4-yl]carbonyl}piperazin-1-yl)naphthalene-1-carboxylate (pharma)

-12.5

ADRB2 Farglitazar -12.4

mGluR1 SB413217A -12.4

COX2 FD&C Blue no. 1 -12.4

CYP 1A2 C.I. Solvent yellow 14 -12.2

mGluR1 3-pyridinecarboxamide, 2-(2,1,3-benzoxadiazol-5-yloxy)-N-[[4-(1-

hydroxy-1-methylethyl)phenyl]methyl]- (pharma)

-12.2

mGluR1 3-({(3R,4R)-6-[(5-fluoro-1,3-benzothiazol-2-yl)methoxy]-4-hydroxy-

3,4-dihydro-2H-chromen-3-yl}methyl)benzoic acid, CP-85958

-12.2

AurA 1-[(3S)-4-[{[3,5-bis(trifluoromethyl)phenyl]

carbonyl}(methyl)amino]-3-(3,4-dichlorophenyl)butyl]-4-cyclohexyl-

1-azoniabicyclo[2.2.2]octane methanesulfonate

-12.2

COX2 SB413217A -12.2

This table contains the polycyclic aromatic hydrocarbons (PAH) 7,12-Dimethylbenz[a]anthracene,

Benzo[b]fluoranthene, Benz[a]anthracene, Fluroanthene, Pyrene, and 1-Hydroxypyrene in com-

plex with cytochrome P450 1A1 and 1A2. PAHs are among the most ubiquitous environmental

carcinogens and known to be potent P450 inhibitors.89–91 7,12-Dimethylbenz[a]anthracene and

benz[a]anthracene are two short and linear PAHs, which both exert genotoxicity and toxicity by

the triple arrangement of their aromatic rings. They expose their lateral electrons for oxidation

by detoxification enzymes and are then converted to their diol-epoxide forms which react with

DNA.92,93 These compounds are ranked as a top compound to target CYP1A2 (Table 1), which

reflects well with empirical studies94 showing a high preference of CYP1A2 towards ethoxyre-

sorufin. Ethoxyresorufin is geometrically similar to these compounds, suggesting the docking

system recognizes the conserved molecular volume and geometry. There are no studies on fluroan-

thene and benzo[b]fluoranthene which could confirm their interaction with CYP1A2, however,

by their elongated geometries, it is highly feasible that CYP1A2 is the detoxification enzyme
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for these two compounds, as both are known to be genotoxic.95,96 A further study showed that

CYP1A2 is activated by benzo[b]fluroanthene, however the expression of CYP1A2 was not con-

firmed.96 In the prediction, the docking procedure indicated that CYP1A2 was the preferred tar-

get for benzo[b]fluroanthene, which indicates that physiological responses may be different than

cellular responses when considered on a cohort of individuals exposed to the compound via air-

particulate matter.

The potentially genotoxic and carcinogenic97 food dye C.I. Solvent yellow 14 is predicted to

bind strongly to both P450 1A1 and 1A2, with an affinity of -11.7 kcal/mol and -12.2 kcal/mol,

respectively. Although 1A1 and 1A2 are highly homologous, CYP1A1 is considered to be most

efficient in metabolizing C.I. Solvent yellow 14, whereas other CYPs, including CYP1A2, were

previously found to be almost ineffective.98 The discontinued PPAR agonist Farglitazar is pre-

dicted to bind strongly to the beta-2 adrenergic receptor, although it was developed to treat type 2

diabetes.99 It has a predicted binding affinity to PPAR α and PPAR γ of -9.4 kcal/mol and -11.3

kcal/mol, respectively. In other words, many of the Vina high scores can be correlated with known

toxic compounds.

Assessment of known interactions

Based on literature data and as considered in the ToxCast publications,9,10 we assessed whether

Vina succeeds to predict high scores for chemicals that are known to interact with certain proteins.

Some of these known complexes and their predicted binding affinities are listed in Table 2.

Bisphenol A100 and 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloro ethane,101 a metabolite of the

pesticide methoxychlor, are known estrogen receptor agonists. Perfluorooctanoic acid (PFOA)

and perfluorooctane sulfonic acid (PFOS) are chemicals with widespread use and with multiple re-

ported toxicities, generally thought to be triggered by activating PPAR α.102,103 In the HTS screen-

ing in ref. 9, both were active for PPAR γ, but only PFOA was active for PPAR α. In our case, the

predicted binding affinity is relatively high also for PPAR γ. It should be noted that one in vivo

study found that neither compound activates PPAR γ,104 illustrating potential risks in extrapolat-
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ing in vitro or in silico results to in vivo. The pesticide lactofen105 is also an expected PPAR

activator found to be positive for PPAR assays in ToxCast.9 The pharmaceuticals CP-471358 and

CP-544439 are known inhibitors of matrix metalloproteinases MMP2, MMP9, and MMP13,106,107

and these complexes all have high Vina scores. However, relatively low predicted binding affini-

ties are found for the complexes involving the androgen receptor (AR). The pesticides linuron,

prochloraz, and vinclozolin are known to cause toxicity by interacting with AR as antagonists.108

Binding to the ligand binding domain of nuclear receptors is known to cause structural and dy-

namic changes in the protein.109 For example, one study used computer simulations to follow the

long-time scale conformational fluctuations of AR interacting with different ligands and found that

agonists and antagonists induce distinct conformational changes.110 Since the androgen receptor

used for docking here corresponds to an agonist complex,111 with an associated redocking score of

-8.9 kcal/mol, the low binding affinities of the (antagonist) pesticides may be due to the shortcom-

ings of neglecting protein flexibility. This issue can be addressed in the future by expanding the

computational ecotoxicity assay to include multiple protein structures for the same receptor, with

both agonist and antagonist co-crystallised conformations to account for multiple binding modes.

The HTS screening in ref. 10 in some cases missed known active compounds. Zamifenacin is

a muscarinic antagonist112 that did not show activity for the M1 assay. 5,5-diphenylhydantoin is

a known substrate and inhibitor for many CYPs,113 but was not found to inhibit any of the CYPs

in the HTS screening. These chemicals show high predicted binding affinities to their respective

targets. Additional chemical-target interactions that were considered, including estrogenic and

nonestrogenic compounds within the EPA’s Endocrine Disruptor Program, can be found in SI

Tables S2 and S3.

Table 2: Known chemical-protein complexes, based on literature data (see text), and their corresponding
binding affinities as predicted by Vina.

Target Chemical ∆Gbind (kcal/mol)

Estrogen receptor Bisphenol A -8.7

2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane -9.3
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PPAR α Perfluorooctanoic acid (PFOA) -9.4

Perfluorooctane sulfonic acid (PFOS) -10.3

Lactofen -8.9

PPAR γ Perfluorooctanoic acid (PFOA) -8.5

Perfluorooctane sulfonic acid (PFOS) -8.8

Lactofen -9.3

MMP3 Perfluorooctane sulfonic acid (PFOS) -9.0

MMP13 Perfluorooctane sulfonic acid (PFOS) -9.2

Androgen receptor Linuron -7.2

Prochloraz -6.7

Vinclozolin -6.2

MMP9 CP-471358 pharma -9.5

CP-544439 pharma -10.2

MMP13 CP-471358 pharma -9.1

CP-544439 pharma -9.9

M1 muscarinic receptor Zamifenacin -10.5

M2 muscarinic receptor -8.6

M4 muscarinic receptor -10.8

CYP 1A1 5,5-diphenylhydantoin -9.0

CYP 1A2 -9.0

CYP 2C9 -8.9

CYP 2D6 -9.5

Assessment of Vina low scores

Considering potentially missed interactions and weakly binding active chemicals, the 20 least

promiscuous chemicals in the docking simulations were checked for measured activity in the HTS

assays. Of these 1300 complexes with low predicted binding affinities, only 8 were reported as

active in ToxCast. These assays include a number of nuclear receptors which, as noted above, may

undergo conformational changes upon ligand binding. In one case, sodium nitrite in complex with
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monoamine oxidase A (MAO), the low predicted binding affinity may be due to the mechanism

of inhibition, as nitrates would appear to inhibit MAO through oxidation of the SH-groups,114 a

mechanism not captured in current docking methods.

Potential refinement of the protocol

In this work, we assessed the strengths and weaknesses in employing molecular docking for screen-

ing potential toxicity of xenobiotic compounds. This approach allows the generation of interaction

maps between potential toxins and targets linked to perturbation pathways in a a cost-efficient

and timely manner, yielding molecular-level information. While neither the classical Vina scoring

function nor the machine-learning scoring function RF-Score-VS considered here were capable of

distinguishing active chemicals, Vina on average predicted higher affinities for active chemicals

and succeeded in identifying several interactions that could be confirmed in the literature. To be

able to achieve higher docking accuracy with fewer false negatives, the method can be further

developed by considering, for example, protein side-chain conformational changes, covalent inter-

actions, charge redistribution, and bio-transformation products. A further refinement could be to

consider multiple structures per target to take into account multiple binding modes. More exact

methods may be required to distinguish binders from non-binders and the obvious challenge there

remains to balance computational cost and accuracy. Finally, current scoring functions are limited

in their ability to predict biological activity, underscoring the need to consider other properties

of the ligand or to explore new scoring functions optimised on minimising the number of false

negatives.
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(51) Wójcik, M.; Ballester, P. J.; Siedlecki, P. Performance of machine-learning scoring functions

in structure-based virtual screening. Scientific Reports 2017, 7, 46710.

(52) Wang, W.; He, W.; Zhou, X.; Chen, X. Optimization of molecular docking scores with

support vector rank regression. Proteins 2013, 81, 1386–1398.

33



(53) Gabel, J.; Desaphy, J.; Rognan, D. Beware of machine learning-based scoring functions –

on the danger of developing black boxes. J. Chem. Inf. Model 2014, 54, 2807–2815.

(54) Ballester, P. J.; Mitchell, J. B. O. A machine learning approach to predicting protein?ligand

binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169–

1175.

(55) Li, H.; Leung, K. S.; Wong, M. H.; Ballester, P. J. The use of random forest to predict

binding affinity in docking. In: Ortuño F., Rojas I. (eds) Bioinformatics and Biomedical

Engineering. IWBBIO 2015; Springer International Publishing, Cham., 2015.

(56) Ramirez, D.; Caballero, J. Is it Reliable to take the molecular docking top scoring position

as the best solution without considering available structural data? Molecules 2018, 23, 1038.

(57) Liu, Y.; Li, L.; Han, J.; Li, J.; Liu, Z.; Zhao, W.; Nie, Y.; Liu,; Wang, R. PDB-wide collection

of binding data: current status of the PDBbind database. Bioinformatics 2015, 31, 405–412.

(58) Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind database: collection of binding affinities

for protein-ligand complexes with known three-dimensional structures. J. Med. Chem. 2004,

47, 2977–2980.

(59) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of eseful decoys,

enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 2012,

55, 6582–6594.

(60) Hongjian, L.; Leung, K.-S.; Ballester, P. J.; Wong, M.-H. istar: a web platform for large-

scale protein-ligand docking. PLOS ONE 2014, 9, e85678.

(61) Li, H.; Peng, J.; Sidorov, P.; Leung, Y.; Leung, K.-S.; Wong, M.-H.; Lu, G.; Ballester, P. J.

Classical scoring functions for docking are unable to exploit large volumes of structural and

interaction data. Bioinformatics 2019, 35, 3989–3995.

34



(62) Rabinowitz, J. R.; Little, S. B.; Laws, S. C.; Goldsmith, M.-R. Molecular modeling for

screening environmental chemicals for estrogenicity: use of the toxicant-target approach.

Chem. Res. Toxicol. 2009, 22, 1594–1602.

(63) Genheden, S.; Mikulskis, P.; Hu, L.; Kongsted, J.; Söderhjelm, P.; Ryde, U. Accurate pre-
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