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ABSTRACT: Proteins are allosteric machines that couple motions at distinct, often distant, sites to control biological func-
tion. Low-frequency structural vibrations are a mechanism of this long-distance connection and are often used computa-
tionally to predict correlations, but experimentally identifying the vibrations associated with specific motions has proved 
challenging. Spectroscopy is an ideal tool to explore these excitations, but measurements have been largely unable to iden-
tify important frequency bands. The result is at odds with some previous calculations and raises the question what methods 
could successfully characterize protein structural vibrations.  Here we show the lack of spectral structure arises in part from 
the variations in protein structure as the protein samples the energy landscape.  However, by averaging over the energy 
landscape as sampled using an aggregate 18.5μs of all-atom molecular dynamics simulation of hen egg white lysozyme and 
normal mode analyses, we find vibrations with large overlap with functional displacements are surprisingly concentrated 
in narrow frequency bands.  These bands are not apparent in either the ensemble averaged vibrational density of states or 
isotropic absorption.  However, in the case of the ensemble averaged anisotropic absorption, there is persistent spectral 
structure and overlap between this structure and the functional displacement frequency bands.   We systematically lay out 
heuristics for calculating the spectra robustly, including the need for statistical sampling of the protein and inclusion of 
adequate water in the spectral calculation. The results show the congested spectrum of these complex molecules obscures 
important frequency bands associated with function, and reveal a method to overcome this congestion by combining struc-
turally sensitive spectroscopy with robust normal mode ensemble analysis.   

      INTRODUCTION  
It has been speculated that long range protein vibrations 
can serve to actuate allosteric control by perturbing the 
configurations sampled by the vibrational atomic displace-
ments 1-4.  Elastic network models and all-atom calcula-
tions have shown that the structural changes necessary for 
protein function can be reproduced using the lowest fre-
quency vibrations, suggesting these motions are essential 
to biological outcomes 5-7.  This possibility is currently be-
ing explored as a mechanism for allosteric control where 
the agonist or inhibitor is designed to perturb the long-
range structural vibrations 8-9.  While some all-atom calcu-
lations have suggested that mutations change the direc-
tionality of motion and therefore enzyme promiscuity 10, 
there has been no direct experimental confirmation of the 
control via these vibrations.  In particular, standard optical 
techniques fail to even isolate specific structural vibra-
tions, a first step towards identifying those vibrations with 
biochemical impact.  

The lack of spectroscopic structure in optical measure-
ments has been confounding, as some computational in-
vestigations have suggested that narrow resonances should 
be present 11-13, allowing the monitoring of the vibrations 
with mutation and/or inhibitor binding to establish dy-
namical hot spots and reveal the design strategies that lead 
to robust and efficient biochemistry.  Often calculations 
predicting spectroscopic fingerprints in isotropic absorp-
tion measurements is the use of a single starting structure 
and normal mode analysis.  Here we show that this ap-

proach is insufficient and prone to significant error be-
cause it does not account for the time and ensemble aver-
aging as the macromolecule samples the energy landscape.  
To address this we developed Normal Mode Ensemble 
Analysis (NMEA).  After establishing a protocol which in-
cludes sufficient water and vibrations to accurately calcu-
late an individual spectrum, we use NMEA to calculate ex-
perimentally accessible spectra: vibrational density of 
states; isotropic absorption; and anisotropic absorption.  
For these studies we use the benchmark protein chicken 
egg white lysozyme (CEWL), for which there are extensive 
measurements of picosecond dynamics using a wide vari-
ety of techniques and whose results are representative of 
other proteins.  Neutron scattering, Raman, Optical Kerr 
and isotropic terahertz spectroscopy have found broad vi-
brational density of states and isotropic absorbance, with 
only slight changes in this absorbance with functional state 
14-15.  However, recent terahertz anisotropic absorption 
studies on CEWL find narrow band resonances that are 
sensitive to inhibitor binding 16-17.  By rigorously averaging 
spectra calculated from structures sampled from microsec-
ond-scale all-atom trajectories, we find that indeed the av-
eraged isotropic spectra do not have narrow resonances, 
and resemble the smooth absorbance seen experimentally.  
On the other hand, resonant bands are present in the av-
erage anisotropic absorbance spectra. We compare the 
spectra of CEWL with and without inhibitor to examine 
spectral sensitivity and find that only the anisotropic ab-
sorption shows a statistically significant change with in-
hibitor binding.  We then examine if spectral changes can 
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be assigned to specific structural motions, by projecting 
the massive data set onto known functional motions. The 
analysis of the full dynamical ensemble identifies several 
low frequency narrow spectral bands that overlap the re-
gions of change in the anisotropic absorption.     

      MATERIALS AND METHODS  
Figure 1 shows a schematic of the overall computational 
strategy.  Multiple replica trajectories are simulated.  NMA 
starting structures are sampled from these trajectories, and 
the VDOS, isotropic absorption and anisotropic absorp-
tion are then calculated and averaged; this averaging is es-
sential to identify robust features that could in principle be 
observed experimentally.  A projection analysis of the full 
data set is then used to perform a simple distillation of the 
large data set for the prevalence of vibrations overlapping 
displacements for substrate binding.   

Molecular dynamics simulations 

The apo and inhibitor-bound simulations at 300K were 
constructed from their respective X-ray structures (Apo: 
1BWH, Inhibitor: 1HEW, containing 1 4C1 beta-D-glucose 
molecule), then inserted into a thermalized cubic box con-
taining 8682 waters with 8 chlorides to produce an electri-
cally neutral system using the OptimalMembraneGenera-
tor solvate tool from LOOS18-19; 10 replicas were built, using 
the same protein coordinates but different placements of 
water and ions. We then performed 1000 steps of minimi-
zation with the alpha carbons fixed in space, followed by 
1000 steps with the alpha carbons harmonically restrained 
using a force constant of 20 kcal/mol-Å2. The temperature 
was gradually increased from 30K to 300K by running 20 ps 
simulations followed by 30K temperature increments. We 
then ran 200 ps of unrestrained dynamics before beginning 
production simulations. 

All simulations were performed using NAMD20 version 2.11 
on the Blue Gene/Q supercomputer at the University of 
Rochester’s Center for Integrated Research Computing.  
Simulations were performed using a 2 fs timestep, with 
bonds to hydrogen constrained to their equilibrium length 
using SETTLE and the tolerance set to 10-10. A target tem-
perature of 300K was maintained by using stochastic dy-
namics with collision frequency set to 2 ps-1, and no colli-
sions applied to the hydrogens. The pressure was set to 1 

atm via the Langevin-Piston algorithm21, with piston pe-
riod set to 200 ps, a piston temperature of 300K, and a pis-
ton decay of 100 ps.  Repulsion-dispersion interactions 
were cut off using force-switching between 9 and 10 Å, and 
long-range electrostatics computed using Ewald summa-
tion22 on a 72 x 72 x 72 grid (roughly 1 Å /grid point).  The 
CHARMM36 force field23 was used, in combination with 
the CHARMM version of TIP3P water.  Parameters for tri 
acetyl glucosamine (3NAG) were obtained from Niessen, et 
al.16 

Computing spectra from simulations 

The vibrational density of states (VDOS) for a given struc-
ture is computed using normal mode analysis (NMA), as 
implemented in CHARMM v39. We compute the first 6000 
vibrational modes rather than the full spectrum, to reduce 
the cost of computation and storage required by 
CHARMM, and to reduce time required to post-process 
the resulting modes into absorbance spectra (see supple-
mental information). The same normal mode analysis is 
used to compute the absolute isotropic absorbance:  
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Here, 𝜔 is the output frequency, 𝜔௜  is the frequency of the 

ith mode, డ௣⃗

డ௤೔
 is the dipole derivative associated with the ith 

mode, and γ = 4 cm-1 is the linewidth. N is the number of 
atoms included in the normal mode calculation, generally 
the protein plus a number of surrounding water molecules, 
so 3N is the resulting number of modes. The 6 lowest fre-
quency modes are discarded as they are due to rigid body 
translation and rotation. 

The anisotropic absorbance measures the absorption de-
pendence of an aligned sample on the light polarization di-
rection given by the angle of the polarization with respect 
to a reference direction. It is computed in an analogous 
manner: 
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Here, 𝑅ఫ
ሬ⃖ሬ⃗  is the rotation matrix for the crystal and 𝜆መ is the 

light polarization vector associated with the rotation angle 
𝜃, and other terms are the same as in Equation 1. In this 
work, we computed spectra appropriate for a tetragonal 
crystal with 8 protein chains in the unit cell, oriented as 
was found experimentally24.  The equivalent spectra for 
other crystal forms could be computed from the same sim-
ulations by using 𝑅ఫ

ሬ⃖ሬ⃗  matrices appropriate to the contents 
of the unit cell and space group.  To emphasize the varia-
tion with orientation, we subtract the spectrum at 𝜃 =0 
from all values and this is referred to as Absani. The 
polarization vector is 𝜆መ = (

ଵ
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lays in the plane of the (1,1,0) facet of the crystal. 

As part of this work, we systematically determined how 
much water must be included in the normal mode calcula-
tions to correctly represent the protein dynamics, as well 

 
Figure 1. Schematic of the computational approach for Normal 
Mode Ensemble Analysis.  Spectra are computed for individual 
structures to produce an average anisotropic spectrum. 
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as the number of modes one must calculate to produce re-
liable spectra over the typical experimental frequency 
range.  In the supplemental information, we show that the 
spectral calculations require a water shell of at least 8-10 Å 
to converge for the spectral frequency 0 - 100 cm-1. With 
this water thickness, at least 6000 modes are needed for a 
single structure NMA to adequately cover the range of 0-
100 cm-1. The mode number cutoff depends on the size of 
the system, so it is necessary to tune the number of modes 
included based on the specific system contents and the fre-
quency range of interest.  We did not systematically test 
the relative value of running a small number of long trajec-
tories vs. an ensemble of relatively short ones. This is an 
active area of research, 25-26 and the optimal bang for the 
buck is almost certainly dependent on the specifics of the 
system (including the temperature), as well as the compu-
tational resources available. 

Table 1. Summary of simulations performed.  “Dura-
tion/traj” denotes the range of trajectory lengths, rounded 
off. “Aggregate” denotes the total simulation time of all 
simulations. 

Ligand Replicas Duration/traj (ns) Aggregate (ns) 

Apo 10 940 9426 

Inhibitor 10 755-985 9608 

 
     DATA SHARING AND REPRODUCIBILITY 
The scripts to perform the MD simulations, generate the 
modes in CHARMM, and compute the isotropic and aniso-
tropic spectra are available from GitHub at 
https://github.com/GrossfieldLab/NMEA-paper.  

 
    RESULTS 
Figure 2 shows the calculated vibrational density of states 
(VDOS) and isotropic absorbance for the apo protein at 

300 K, using one of the replicate simulations. Each gray 
curves represent the spectra calculated from single snap-
shots, while the thicker red lines represent the average; the 
blue lines represent the spectrum computed using the 
starting structure from the simulation. In panel a), the 
VDOS shows a single broad peak centered at ca. 63 cm-1, 
followed by a broad plateau.   The steep drop in amplitude 
after ~250 cm-1 is due to the truncation of the eigendecom-
position at 6000 modes (see Supplemental Information for 
further discussion).  While there is some snapshot-to-
snapshot variation, overall the VDOS is not sensitive to 
starting structure. The peak and plateau are consistent 
with Raman and neutron scattering measurements how-
ever the measured peak is ca. 80 cm-1 27-28.  Velocity auto-
correlation calculations of the CEWL VDOS from Lerbret 
et al. are in better agreement with the frequency of the 
peak, and this may be due to the SPC/E water model used.  
The NMEA calculations capture the overall VDOS struc-
ture and can be used to assign structural motions to spec-
tral peaks, which is not possible with autocorrelation func-
tions. 

Figure 2b) shows the isotropic absorption spectrum from 
the same trajectory calculated using equation 1. In the con-
trast to the VDOS, the spectra from individual frames vary 
significantly; each individual spectrum has rapid variations 
in the absorbance with frequency, often with a few promi-
nent narrow band resonances highlighted for a few of the 
spectra by arrows in the figure.  However, these features do 
not persist with averaging over the ensemble and only 
three broad bands remain at 52 cm-1, 177 cm-1 and 253 cm-1 
(thick red line).  As before, the signal drop beyond ~250 
cm-1 is an artifact due to truncation of the eigendecompo-
sition rather than any physical factors. CEWL measure-
ments have found even less structure, with only strong 
broad peaks at ca. 160 cm-1 and ca. 320 cm-1 29-30 .  We note 
that the spectrum computed using just the starting struc-
ture (blue curve) is fairly close to the ensemble average, 
but appears to contain fine structure not present in the av-
erage. Those features are not numerical noise, but rather 

 
Figure 2 Sensitivity of calculated VDOS and Isotropic Absorbance to specific structure.  The gray curves are spectra calcu-
lated by sampling structures from a representative trajectory.  Panel a shows the VDOS, while Panel b shows the isotropic 
absorbance. The average and starting structure spectra are shown in red and blue, respectively. The green and orange 
curves in Panel b were generated using two other random structures from the ensemble, to illustrate that finer features in 
the spectra from individual structures average away when considering the whole ensemble. 
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are due to structural details that vary as the protein moves; 
we believe they would be visible if it were possible to do a 
time-resolved single-molecule variant of the experiment. 
This demonstrates that spectra intended to be com-
pared to experiment cannot be computed reliably 
from a single structure; at a minimum it is necessary to 
run a reasonable-length MD simulation.    

NMEA anisotropic absorption spectra for the same config-
uration in those measurements for several different start-
ing structures is shown in Fig. 3a).  The heat maps of the 
absaniso)  vary dramatically for the different structures 
with no obvious common features among the spectra.  It 
would be reasonable to expect that averaging in this case 
will lead to a completely featureless spectrum, however as 
the data in Fig. 3 b) shows, this is not the case.  Distinct 
and relatively narrow spectral bands emerge as the absan-

iso()  is averaged over the landscape.  The specific bands 
that emerge are not obvious from any of the individual 
spectra, (see Supplemental information movie illustrating 
the emergence of the spectrum), indicating that it is the 
ensemble sampling of motions that has a net bias. The 
spectra are symmetric about 90° due to the symmetry of 
the tetragonal crystal used; other crystal forms will show 
more angular dependence. The symmetry of the tetragonal 
spectra makes it easier to understand the spectrum in 1-
dimensional form, by considering only the curve at a po-
larization of 90 degrees, shown with its standard error in 
Fig. 3c).  There is substantial structure in the averaged 
spectrum beyond the standard error, consistent with re-
cent experimental results.   

To examine if the different spectral methods can be used 
to follow changes in structural dynamics with functional 
significance, we computed spectra for the inhibitor-bound 
structure of lysozyme, in addition to the apo results dis-
cussed above. Figures 4a) and 4b) show that the VDOS and 
isotropic spectra are largely insensitive to the changes in 
structure and dynamics upon ligand binding; the ampli-
tude of the change is less than 1.5% of the total signal, sig-
nificantly smaller the statistical uncertainty. It is perhaps 
notable that the NMEA decrease in the VDOS with inhibi-
tor binding for frequencies less than 60 cm-1 is consistent 
with neutron scattering measurements16. 

By contrast there are clear differences between the NMEA 
anisotropic absorbance spectra for the apo and inhibitor-
bound ensembles, as shown in Figure 4c).  The difference 
between the Absanifor the apo and inhibitor-bound 
states, Absani , which we refer to as the double dif-
ference spectrum, has several sharp features, most notably 
the peak at 9 cm-1.   This feature is particularly intriguing 
in light of the projection results to be discussed next.  

To understand the relevance of Absaniand Ab-
sani to biological function requires connecting the 
spectral features to structural motions.  This is a question 
that is uniquely suited to the atomic resolution of the nor-
mal mode approach. We can analyze the large data set of 
vibrations robustly sampled over the landscape to see if 
specific displacements dominate, and further if they dom-
inate in distinct frequency ranges.  We can do this by pro-
jecting the eigenvectors for the full data set onto the dis-
placement vector of interest.  Previously this projection 
strategy was used to look for commonality in motions 
within a single data set 31.  Here we examine persistent mo-
tions throughout the energy landscape.   

To demonstrate this strategy, we consider the normalized 
C- displacement vector defined by the difference between 
the apo and inhibitor bound structures, Δ𝑥⃗௕௜௡ௗ௜௡௚.  For each 
of the 6000 modes computed for each structure (totaling > 
1.8 million vibrational modes in aggregate), we take the ab-
solute dot product between the normalized eigenvector 
and  Δ𝑥⃗௕௜௡ௗ௜௡௚.  An overlap of 1 would indicate that the 
atomic displacements for a vibration are identical to 
Δ𝑥⃗௕௜௡ௗ௜௡௚, while zero indicates orthogonality. We plot the 
results with the amplitude of this projection along the y-
axis, and the frequency as the x-axis. The results are shown 
as Figure 5.  

Figure 5a) shows a grayscale heat map of the relative den-
sity of projections at a given frequency and projection 
value, with the average projection value indicated by the 
blue curve.  There are two sharp peaks at 6 cm-1 and 8.5 cm-

1 and a lesser peak at 15 cm-1.  The amplitudes of the first 
two peaks are both above 0.3; to put this in perspective, the 
overlap distribution for random unit vectors of the same 
dimension drops below 10-9 at a value of roughly 0.18 (see 
Supplemental Figure 6), making an average overlap of 0.3 

 
Figure 3 Sensitivity of anisotropic absorption to specific structure.  Panel a shows the anisotropic spectra for three individ-
ual structures. Panel b shows the average over 8000 spectra.  Panel c shows a slice of the average spectrum with polariza-
tion = 90°; the shaded region is the standard error. 
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for a particular band exceedingly unlikely to occur at ran-
dom.  Conventional wisdom would dismiss the idea that 
structural vibrations would have any bias towards func-
tional long-range motions.  However, with the present data 
set where the vibrations are robustly sampled, we find that 
in fact there is a predominance of vibrational displace-
ments corresponding to functional motions.    

These peaks in Figure 5b) are even more striking; here we 
focus the atomic displacements for the loop with highest 
displacements with substrate binding, residues 42-79, 
Δ𝑥⃗௟௢௢௣. These peaks are at 6 cm-1, 8 cm-1 and 14 cm-1, with 
the 8 cm-1 peak dominating.  The average overlap for the 8 
cm-1 is an astoundingly high 0.6, indicating some real spec-
ificity of displacements at this frequency; Supplemental 
Figure 6 shows that the probability distribution of the 
overlap for random vectors with this dimensionality drops 
below 10-9 by about 0.3; given that there are roughly 2 mil-
lion computed modes in in Figure 5, this suggests we 
wouldn’t expect to see even a single mode with that high 
an overlap at random, let alone a strong peak. This sharp 
band (and the 8.5 cm-1 band from the full protein spec-
trum) overlaps the 9 cm-1 peak in the Absanishown 
in Figure 4 c), allowing us for the first time to assign phys-
ical significance to a specific band in a terahertz absorb-
ance spectrum.  

It is striking that there are identifiable peaks in the func-
tional projection spectrum.  If proteins are optimized for 
function, it is not obvious why there should be any sharp 

features in the projection spectrum, especially in the case 
of lysozyme, where there is no apparent need for resonant 
energy exchange between enzyme and substrate.  We spec-
ulate that it is possible that the strong energy-dependence 
for functionally important motions is a general feature that 
may be highly useful for those systems where energy ex-
change is crucial, such as photo-active proteins.   

  

    DISCUSSION 
In this work, we examine if different spectral measure-
ments can isolate correlated structural displacements to-
wards understanding how such motions impact function.  
The normal mode approach provides both the vibrational 
energies and their displacement vectors.  It should be 
noted that the present normal mode method is distinct 
from approaches based on principal component analysis or 
quasiharmonic analysis. The modes obtained from princi-
pal component analysis capture the directions of the fluc-
tuations in the protein’s ensemble. By contrast, each set of 
normal modes is computed from a single structure, and re-
flects the instantaneous vibrational spectrum of the mole-
cule at that moment. Given the extreme roughness of a 
protein’s energy landscape, these instantaneous modes do 
not necessarily converge to those from principal compo-
nent analysis, even after computing their ensemble aver-
age. From a classical perspective, the interaction of a pho-
ton with the protein occurs instantaneously, so only the 
normal mode approach is appropriate to model absorption 

 
Figure 4. Anisotropic spectra detect signal due to inhibitor binding.  a) VDOS. b) Isotropic absorbance and difference 
spectra. c) Anisotropic absorption at polarization=90°. In each panel, the left y-axis shows the average spectra for the apo 
(yellow) and inhibitor-bound (green) states, while the right y-axis applies to the difference spectrum (red). The shaded 
regions are the standard error, computed treating each trajectory as a single measurement. 
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spectra. The ensemble averaging we discuss above is essen-
tially an average over the incident photons, each of which 
picks out 1 snapshot from within the ensemble; the exper-
iment is an average over a large number of photon absorp-
tion events.  

A common objection to the normal mode approach is that 
it effectively assumes zero temperature. The present ap-
proach addresses that by explicitly sampling at finite tem-
perature, such that the structures included in the calcula-
tion are representative of the ensemble under ambient 
conditions. We would argue that the weakness is relatively 
minor, considering that normal modes allow structural in-
terpretations not available from other arguably more rig-
orous approaches, such as those based the dipole autocor-
relations 32-34. We note that NMEA is distinct from in-
stantaneous normal modes which  was first introduced for 
modeling solvents and is focused on the rotational and 
translational motions of the individual solvent molecules 
35-36.  Instantaneous normal modes have been applied to 
protein dynamics 37 to investigate energy relaxation as op-
posed to describing the distinct vibrational spectra sam-
pled discussed here.   

One modest limitation of the current approach is the dif-
ference between the simulated system and that measured 
experimentally. The anisotropic measurements are per-
formed in a crystalline environment 16-17, 38, while the 
simulations contained a single protein molecule in solu-
tion. While it is in principle possible to simulate a protein 
crystal 39-41, these calculations are extremely challenging. 
Most space groups are not readily compatible with the 
Ewald-based electrostatics methods considered to be mo-
lecular dynamics best-practice, and beyond that the pres-
ence of the full unit cell would greatly increase the system 
size and thus the computational cost of the simulation. 
Moreover, protein crystals contain a relatively large 
amount of water, and other than specific crystal contacts 
the dynamics are expected to at least grossly resemble a 
solvated protein. 

The anisotropic absorbance has finer structure because the 
orientation variable selects motion in specific directions; 
essentially, the orientation vector gives another dimension 
to the signal, uncovering underlying structure in a manner 
analogous to 2D spectroscopic techniques.  One must then 
ask: Is there a way to know why those frequencies are dif-
ferent? Experimentally, it is possible through repeated ex-
periments with mutations or chemical constraints that 
eliminate specific motion; the effect on those spectral fea-
tures would begin to assign the motions.  This approach is 
labor intensive whereas simulations provide an effective 
and efficient avenue to identify structure significance of 
the frequency features.  Our present projection approach 
reveals that functional motions are concentrated in spe-
cific energy bands. In principle, we can extend this analysis 
to more general motional types, such as net torsional mo-
tions about the binding site. 

    CONCLUSION 

We present a new computational technique where normal 
mode analysis is applied to a protein ensemble to extract 
the VDOS, isotropic and anisotropic spectra, and for the 
first time to assign a frequency band to a specific change in 
structure associated with inhibitor binding. We find the 
ensemble cannot be ignored for accurately calculating the 
measurements and for revealing underlying vibrational 
sampling of functional motions.  NMEA finds a smooth 
VDOS with little sensitivity to the binding state. Isotropic 
spectra computed from individual structures often have 
fine features, but these average away over a thermal distri-
bution in agreement with the majority of measurements.  
Further we find large structure to structure variations in 
the anisotropic absorption spectra, however persistent 
bands emerge with averaging of these spectra, and these 
bands change with inhibitor binding.  A projection analysis 
of the thermal distribution of vibrations shows eigenvec-
tors corresponding to binding displacements are concen-
trated in specific frequency bands and at least one of these 
bands overlaps the spectral changes seen in the anisotropic 
absorption.  These bands would not have been obvious 

 
Figure 5. Vibrational displacement overlap with functional motions.  The projection of each computed mode onto the differ-
ence between the apo and inhibited structures is shown, using either the full protein (Panel a) or just the most-effected loop 
(Panel b). The grayscale heat map shows the relative density of projections at a given frequency and projection value.  The 
solid lines show the binned average projection value as a function of frequency. The inset in a) shows the apo CEWL 
structure in green and the inhibitor-bound in blue, with the inhibitor rendered in space-filling mode.  The inset in b) shows 
the apo CEWL in gray.  The green (red) region corresponds to residues 42-79 for the apo (bound) states. 
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from any of spectral measurements and only emerge when 
analyzing the massive computed data set. The congested 
vibrational spectrum obscures these underlying reso-
nances for standard spectroscopy. To measure the vibra-
tions that may impact biology, techniques must isolate 
those vibrations based on structural motions, such as tran-
sition dipole direction.  All-atom molecular dynamics can 
provide an unprecedented capability to identify functional 
motions that is unavailable using prior techniques. 

Testing the premise of evolutionarily optimized protein 
dynamics has remained an experimental challenge.  Most 
measurements fail to isolate specific structural motions.  
Our simulations show that the structural variation of a sin-
gle protein in time results in variation in the vibrations 
leading to the observed broad and featureless optical ab-
sorption.  However, when the thermal population of a pro-
tein’s configurations are considered, vibrations with func-
tional displacements are concentrated in specific fre-
quency bands.   These emergent dynamics are apparent in 
anisotropic optical absorbance, indicating an experimental 
avenue for measuring these motions and their impact on 
biological function.    

ASSOCIATED CONTENT  
Supporting Information. There are 6 supplemental figures, 
plus a movie of the average anisotropic spectrum showing the 
emergence of bands as spectra are averaged. This material is 
available free of charge via the Internet at http://pubs.acs.org.  
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