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Abstract

Many drug molecules contain biaryl fragments, resulting in a torsional barrier corre-

sponding to rotation around the bond linking the aryls. The potential energy surfaces

of these torsions vary significantly due to steric and electronic effects, ultimately af-

fecting the relative stability of the molecular conformations in the protein-bound and

solution states. Simulations of protein–ligand binding require accurate computational

models to represent the intramolecular interactions to provide accurate predictions of

the structure and dynamics of binding. In this paper, we compare four force fields

(Generalized AMBER Force Field (GAFF), Open Force Field (OpenFF), CHARMM

General Force Field (CGenFF), Optimized Potentials for Liquid Simulations (OPLS))

and two neural network potentials (ANI-2x, ANI-1ccx) in their ability to predict the

torsional potential energy surfaces of 88 biaryls extracted from drug fragments. The

root mean square deviation over the full PES (RMSD) and the mean absolute devi-

ation of the torsion rotational barrier height (MADB) relative to high-level ab initio
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reference data (CCSD(T1)*) was used as a measure of accuracy. Uncertainties in

these metrics due to the composition of the data-set were estimated using bootstrap

analysis. In comparison to high-level ab-initio data, ANI-1ccx was most accurate for

predicting the barrier height (RMSD: 0.5± 0.0 kcal/mol, MADB: 0.8± 0.1 kcal/mol),

followed closely by ANI-2x (RMSD: 0.5±0.0 kcal/mol, MADB: 1.0±0.2 kcal/mol), then

CGenFF (RMSD: 0.8±0.1 kcal/mol, MADB: 1.3±0.1 kcal/mol) and OpenFF (RMSD:

0.7±0.1 kcal/mol, MADB: 1.3±0.1 kcal/mol), then GAFF (RMSD: 1.2±0.2 kcal/mol,

MADB: 2.6 ± 0.5 kcal/mol), and finally OPLS (RMSD: 3.6 ± 0.3 kcal/mol, MADB:

3.6±0.3 kcal/mol). Significantly, the NNPs are systematically more accurate and more

reliable than any of the force fields. As a practical example, the neural network poten-

tial/molecular mechanics (NNP/MM) method was used to simulate the isomerization

of ozanimod, a drug used for multiple sclerosis. Multi-nanosecond molecular dynamics

(MD) simulations in an explicit aqueous solvent were performed, as well as umbrella

sampling and adaptive biasing force enhanced sampling techniques. These theories

predicted a rate of isomerization of 4.30 × 10−1 ns−1, which is consistent with direct

molecular dynamics simulations.

1 Introduction

Small-molecule ligands of biological molecules can hold a range of geometries, both in solution

and in their bound state. The loss of conformational freedom and distortion of molecules

in their bound state can result in a significant thermodynamic penalty opposing ligand

binding.1–3 Simulations of protein–ligand binding require accurate methods to calculate the

intramolecular interactions of these ligands to predict the relative stability of these confor-

mations.

Many natural products and drug molecules contain biaryl motifs. Rotation around the

bonds connecting them that introduces a torsional degree of freedom in these molecules. The

potential energy surface for the rotation around these bonds varies due to conjugation, steric

2



interactions, intramolecular hydrogen bonding, and electron repulsion. These effects deter-

mine the equilibrium conformations held by the molecules and the rates of conformational

isomerization. Accurate computational models for these torsional potential energy surfaces

are essential for modeling conformational dynamics and protein–ligand binding.

Although high-level ab initio methods (e.g., MP2 or CCSD) provide accurate predictions

of the stability of a molecular geometry, simulations of protein–ligand binding commonly

require the evaluation of millions or billions of configurations, making these methods im-

practical to be used directly. Instead, molecular mechanical (MM) force fields are defined

that approximate the intramolecular interactions in terms of simple mathematical func-

tions.4 Torsional potentials are generally defined as a sum of cosine functions with a variety

of periods, offsets, and amplitudes,

Vtorsion (θ) =
∑
i

ki (1 + cos (niθ + φi)) (1)

Additionally, intramolecular non-bonded interactions can significantly affect torsional

potential energy surfaces. Force fields treat these interactions in a variety of ways and

the simulation options must be carefully chosen to be appropriate for the force field used.

Intramolecular interactions between atoms separated by three bonds (i.e., 1,4 nonbonded

interactions) can have a large effect on the torsional potential energy surface. Some force

fields are designed to be used with the 1,4 Coulombic and Lennard-Jones interactions between

the atoms reduced, but there is significant variation in how this reduction is done. In the

GAFF force field, 1,4 electrostatic interactions are scaled by a factor of 0.833, while 1,4

Lennard-Jones interactions are scaled by a factor of 0.5.5 The OpenFF standard allows

these factors to be specified for given atomic pairs, but the default is for the scaling to

be the same as is used with GAFF.6 The CGenFF model does not scale 1,4 interactions

factors.7,8 The OPLS force field employs a scaling factor of 0.5 on both the Coulombic and

Lennard-Jones 1,4 interactions but also uses the geometric combination rule for Lennard-

Jones radii parameters, while the other force fields use the arithmetic mean.9 Intramolecular
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non-bonded interactions between atoms beyond the 1,4 interactions also significantly affect

torsional potential energy surfaces due to steric or electrostatic interactions.10

In conventional molecular mechanical force fields, the parameters for the torsional and

non-bonded potentials are defined by assigning each atom an “atom type” based on its

element and chemical environment.11 Appropriate parameters must then be defined for all

relevant permutations of atom types that define a torsional interaction. These present signif-

icant challenges because accurate descriptions of the full variety of chemical bonding motifs

present in drug-like molecules can require hundreds or thousands of parameters to be de-

fined.12

Innovations have been introduced to simplify this process. New methods have been de-

veloped to determine parameters for the possible permutations of atom types automatically.

Where a force field lacks a specific term, this parameter can be fit to an ab initio poten-

tial energy surface. The SMIRKS Native Open Force Field (SMIRNOFF) format assigns

force field parameters by searching for chemical substructures with SMIRKS format.13 These

methods still require the definition of extensive sets of parameters and follow most of the

standard approximations inherent to conventional force fields.

Recently, general-purpose neural network potentials (NNPs) have emerged as an alter-

native to molecular mechanical force fields.14 In these methods, neural networks are trained

to predict the potential energy for an arbitrary molecular geometry, with the promise of

providing ab initio quality results. The ANI neural network potentials developed by Smith,

Isayev, and Roitberg are notably successful NNPs.15–17 This model defines a set of “sym-

metry functions” for an atom that encodes its immediate chemical environment.18 A neural

network is trained to reproduce ab initio electronic energies for a training set of molecules

from these symmetry functions. The ANI-2x potential was trained to reproduce density

functional theory (DFT) calculated energies (ωB97X/6-31G*) of 5 million molecular geome-

tries for compounds containing elements C, N, O, H, F, S, and Cl.17 The ANI-1ccx NNP was

developed using transfer learning, where the inner layers of the ANI-1x NN were transferred
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to the ANI-1ccx NN, while the input and output layers were trained to CCSD(T)*/CBS

data, although it is limited to the elements C, N, O, and H.16 Importantly, these models

have shown remarkable transferability; they provide accurate predictions of molecules that

are not present in their training sets. Further, they avoid the standard force field approx-

imations where intramolecular interactions are cast into harmonic, cosine, Coulombic, and

Lennard-Jones potentials.

Replacing MM models with NNP models in simulations of protein–ligand interactions

could provide ab initio accuracy at a similar computational cost to MM models while avoid-

ing the parameterization of individual ligands. Our group recently showed that the ANI-1ccx

NNP is effective for representing the intramolecular terms of protein-bound ligands when em-

bedded into a conventional MM model.19 This method, termed NNP/MM (a.k.a., ML/MM),

allows NNPs to be used to represent the intramolecular terms of a ligand in protein–ligand

binding simulations where the solvent and protein are represented using a MM model. The

conformational components of the absolute binding energy calculated using the NNP/MM

model were significantly different from those calculated with a pure MM model, notably in

the case of erlotinib bound to the Epidermal Growth Factor Receptor, where the CGenFF

force field spuriously predicted a large Gibbs energy penalty for the ligand to adopt a bound

conformation. Rufa and coworkers later showed that relative protein–ligand binding energies

calculated using alchemical free energy perturbation were significantly more accurate using

a method that perturbed between ANI-2x/OpenFF NNP/MM models.20

NNP/MM has also served as a more effective ligand model in molecular dynamics flexible

fitting (MDFF) refinement of CryoEM structures.21 Similarly, a machine learning-based

intramolecular potential was used by Cole et al. to simulate the conformational dynamics of

3-(benzyloxy)pyridine-2-amine in protein-bound and solution states.22

Biaryl torsions present a challenging and important test of the force field and NNP mod-

els for the conformations of drug-like molecules. The π-systems of the aryl rings affect the

torsional potential energy surface in a non-local manner and there can be strong intramolec-
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ular non-bonded interactions. Jorgensen and coworkers published a test set of biaryls present

in drug molecules and drug candidates, which provides an extensive, diverse, and relevant

test set for assessing the accuracy of computational methods for predicting biaryl torsional

potential energy surfaces.23

In this paper, we compare the performance of four molecular mechanical models (CGenFF,

OpenFF¡ OPLS, and GAFF) and two NNPs (ANI-2x and ANI-1ccx) for the prediction

of biaryl torsional potential energy surfaces calculated using high-level ab initio method

(CCSD(T1*)/CBS).

2 Computational Methods

2.1 Test Set

The test set of biaryls used here is largely the same as the biaryl torsional test set developed

by Dahlgren et al.23 This test set was generated by extracting biaryl fragments from drug

and drug-like molecules. Because some of the methods used here are designed to be used

with neutral compounds only (e.g., the neural network potentials and the CGenFF param-

eterization server), all compounds were modeled in their neutral protonation state and the

one charged compound in this test set (1-phenylpyridazin-1-ium) was excluded in our study.

Also, 5-phenyl-1,2,4-oxadiazole, a fragment of the drug ozanimod, was added to our test set.

The structures of the molecules in the test set and their associated numbering are illustrated

in Figure 1. The structures, topology, and parameter files of this test set are available on

our GitHub repository.24

2.1.1 Molecular Mechanical Parameterization and Calculations

The CGenFF, GAFF, and OPLS potential energy surfaces were calculated using relaxed

scans using CHARMM (i.e., the torsional degree of freedom was restrained and the remain-

ing degrees of freedom were energy-minimized). These calculations were performed using
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Figure 1: Test set of biaryl fragments.
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CHARMM 41b2.25

CGenFF calculations employed the CGenFF force field version 2.2.0.7,8 The charge,

topology, and parameters were assigned using the CGenFF parameterization server. 1,4

non-bonded interactions calculated using the CGenFF force field were not scaled.26,27

The GAFF parameters were assigned using AmberTools.5 Atomic charges in the GAFF

model were calculated using the Restrained Electrostatic Potential method (RESP) using

Hartree–Fock (HF) with the 6-31G* basis set as the target quantum mechanical (QM) elec-

trostatic potential.28 1,4 nonbonded interactions in the GAFF force field calculations were

scaled by a factor of 0.833.

The OPLS29 topology and parameters were generated using the LigParGen server.30

The CM1A-LBCC charge model was used.31 1,4 nonbonded interactions in the OPLS force

field were scaled by a factor of 0.5. The geometric combination rule was used for the σ

Lennard-Jones parameters.

The OpenFF charges and parameters were generated using the SMIRNOFF Open Force

Field version 1.1.1 with the code name “Parsley”.6 The relaxed potential scans were per-

formed in OpenMM package version 7.4.132 with external harmonic restraint on the interest

dihedral angle. The harmonic strength was set to ensure the torsional angle variance was

less than 0.02◦.

2.2 ANI Potential Energy Surfaces

The potential energy surfaces for the ANI-2x17 and ANI-1ccx16 NNPs were calculated using

TorchANI33 interfaced with the External feature of Gaussian 0934 through a python script.

This script is available for download from our GitHub repository.35 Each surface was cal-

culated from complete scans in the forward and reverse directions for rotation around this

torsion, where the minimum of the energies from each scan was used to construct the PES.
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2.3 QM Potential Energy Surfaces

The QM potential energy surfaces were calculated using a relaxed scan of the biaryl torsional

degree of freedom using the RIMP2/def2-TZVP level of theory.36–38 ORCA 4.2.139 was used

to calculate the single point potential energy of these configurations using the composite

CCSD(T)*/CBS method described by Smith et al.16 The iterative triples method, DLNPO-

CCSD(T1),40 was used because the DLNPO-CCSD(T) torsional potential energy surfaces of

some molecules were discontinuous due to differences in the conventional triples correction

energy.

2.4 NNP/MM MD Simulations

An NNP/MM simulation was performed of ozanimod (5-[3-[(1S)-1-(2-hydroxyethylamino)-

2,3-dihydro-1H-inden-4-yl]-1,2,4-oxadiazol-5-yl]-2-propan-2-yloxybenzonitrile) in an explicit

aqueous solvent. In this method, the intramolecular potential energy of the ligand (VNNP (rNNP ))

is calculated using the ANI-1ccx NNP, while the potential energy of the solvent is represented

using a conventional molecular mechanical model (VMM (rMM)). The potential energy of the

system is the sum of these two components and an additional term corresponding to the in-

teraction of the NNP and MM atoms (VNNP/MM) (Eqn. 2).

V(r) = VMM (rMM) + VNNP (rNNP ) + VNNP/MM (r) (2)

The interactions between the atoms represented using the NNP and atoms represented

using MM are calculated using Lennard-Jones and Coulombic potentials (Eqn. 3).

VNNP/MM (r) =
MM∑
i

NNP∑
j

qiqj
4πεrij

+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(3)

where q is the molecular mechanical partial charge of an atom, σ is the Lennard-Jones

radius, and ε is the Lennard-Jones well-depth.

In these simulations, the solvent–solute Lennard-Jones parameters (σ and ε)5 were gen-

9



erated using the Lorentz–Berthelot combination rules using the GAFF parameters for the

solute and the TIP3P-FB parameters for the water molecules. The partial atomic charges

(q) of the solute were calculated using the RESP method.28

The simulations were performed using NAMD 2.1341 interfaced with TorchANI33 using

the NAMD-ANI interface script.35 The total number of water molecules was 2158. The

dimensions of the periodic simulation cell were 48.7 Å × 38.5Å × 34.8 Å. The ozanimod

molecule was represented using the ANI-1ccx NNP and the solvent was represented using the

TIP3P-FB water model.42 The GAFF Lennard-Jones parameters were used for the solute–

solvent non-bonded interactions.5 Intermolecular electrostatic interactions were calculated

based on RESP charges assigned to the atoms of the ozanimod.28 In the NNP/MM frame-

work, the intramolecular interactions of the ligand are calculated using only the NNP.19

A 2 fs time step was used. Bonds containing hydrogen atoms were constrained using the

SHAKE algorithm. In these simulations, the temperature was coupled to a 298.15 K bath

using a Lowe–Andersen thermostat.43

Calculation of the potential of mean force (PMF) for the rotation of the N-C-C-C

biaryl torsion was performed using the adaptive biasing force (ABF)44,45 and umbrella sam-

pling.46,47 Umbrella sampling simulations were performed on the N-C-C-C biaryl torsional

coordinate with a harmonic bias potential with a force constant of 0.25 kcal/mol/degree2

with windows at 5◦ spacings. Each window was simulated for 2 ns with a 200 ps equilibra-

tion. The PMF was constructed from the umbrella sampling time series using the Weighted

Histogram Analysis Method (WHAM).48–50 In these simulations, the temperature was reg-

ulated using a Langevin thermostat with a bath temperature of 298.15 K and a damping

coefficient of 1 ps−1.
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Figure 2: A: RMSD of the PES (Eq. 4) for each method. B: Mean absolute deviation of
the rotational barrier height of each method. The CCSD(T1*)/CBS profiles are used as the
reference. Distributions are calculated using bootstrap analysis. NNP methods (ANI-2x and
ANI-1ccx) are shaded.
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3 Results and Discussion

3.1 Overall Performance

Only general trends and some notable examples are discussed here, although the plots of

potential energy surfaces of all 88 torsional rotations are included in Supporting Informa-

tion. We define two metrics for the overall performance of each method. The root-mean-

squared-deviation (RMSD) of a method for a given torsion is calculated as the root-mean-

square of the potential energy calculated using a given method (Vi,method) relative to the

CCSD(T1)*/CBS//MP2/def2-TZVP reference value (Vi,CCSD), calculated at 5◦ increments

between 0◦ and 360◦,

RMSD =

√√√√ 1

n

n∑
j

1

Nbins

∑
i

(Vi,method − Vi,CCSD)2 (4)

whereNbins is the number of points calculated on the potential energy surface (Nbins = 72)

and n is the number of PESs in the test set (n = 88).

Our second metric is the mean absolute deviation of the torsion rotational barrier height

(MADB) for each method, relative to the CCSD(T1)*/CBS//MP2/def2-TZVP barrier height

(Eqn. 5).

MADB =
1

n

n∑
j

|∆V‡CCSD −∆V‡| (5)

where ∆V‡ is the barrier height of torsional rotation, defined as the difference between

the minimum and maximum energy point on the PES.

This analysis is sensitive to the composition of the test set. The arbitrary inclusion of

some of the potential energy surfaces could shift the results significantly if the performance of

one method is highly inaccurate for a small subset of surfaces. To estimate the uncertainty of

these rankings due to the composition of the test set, we have used bootstrap error analysis,

where an alternative set of 88 compounds were chosen randomly-with-replacement from the
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total set. This process was repeated 10,000 times and these sets were used to calculate a

distribution for each metric.

The bootstrap analysis of the averages of these metrics for the test set is presented in

Figure 2. Only profiles that were available for all methods were included in this analysis, so

the sulfur-containing compounds (4, 6, 14, 16, 24, 26, 55, 56, and 71) were not included

because the ANI-1ccx NNP is not defined for this element. The results for the sets including

sulfur-containing compounds generally follow the same trends, with ANI-2x performing as

well or better than the best force-field methods. These results are included in Supporting

Information. The difference of means for each pair of methods was calculated to quantify

the difference in performance and are presented in Table 1. The standard errors of these

differences were uniformly < 0.01 kcal/mol.

Table 1: Difference of means for the RMSD (top) and MADB (bottom) of the test set
(excluding sulfur-containing compounds). Positive values indicate that the first method
(column) agrees more closely with the CCSD(T1*) reference values than the second method
(row). Standard errors are omitted because they are all negligible ( < 0.01 kcal/mol).

GAFF OpenFF OPLS ANI-2x ANI-1ccx
CGenFF -0.44 0.07 -1.21 0.31 0.32
GAFF 0.50 -0.78 0.75 0.76

OpenFF -1.28 0.25 0.26
OPLS 1.52 1.53

ANI-2x 0.01

GAFF OpenFF OPLS ANI-2x ANI-1ccx
CGenFF 1.33 0.00 -2.29 0.31 0.51
GAFF 1.34 -0.96 1.64 1.84

OpenFF -2.29 0.31 0.50
OPLS 2.60 2.80

ANI-2x 0.20

For both metrics, the ANI-2x and ANI-1ccx methods outperform all four force fields. The

ANI-2x and ANI-1ccx NNPs have a similar level of performance on this test set, although

the ANI-1ccx barrier heights are more accurate than the ANI-2x by 0.2 kcal/mol on average.
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Notably, the ANI-1ccx MADB is only 0.7 kcal/mol, indicating that the goal of “sub-kcal”

accuracy has already been achieved for these PESs.

Of the force field methods, CGenFF and OpenFF have similar levels of accuracy and

are both significantly more accurate than the others. The mean signed error (MSE) in the

barrier height is positive for all the models except CGenFF, which tends to underestimate

barriers by 0.2 kcal/mol. Notably, GAFF has an MSE of 1.2 kcal/mol and OPLS has an

MSE of 2.5 kcal/mol, indicating a significant tendency to overestimate torsional barriers.

The distributions generated by bootstrap error analysis are narrow for ANI-2x, ANI-1ccx,

CGenFF, and OpenFF indicating a fairly consistent level of performance across the test set.

The distributions for OPLS and GAFF are much broader, indicating the performance of

these methods varies more depending on the surface being calculated.

The relative accuracy of these methods can also be quantified by ranking which method

provides the PES with the lowest RMSD or the most accurate barrier. These rankings are

presented in Figure 3 (top). By these measures, the ANI-1ccx NNP is most accurate. It

should be noted that in many of the cases where the ANI-1ccx method was most accurate,

the ANI-2x method was a close second.

Finally, we can also assess the methods according to the number of torsional PESs where

a method performs poorly. These rankings are presented in Figure 3 (bottom). For the

RMSD criteria, this is defined as a mean squared deviation (MSD) per point on the surface

that is greater than 1 kcal/mol and for the barrier height, a poorly performing method

is defined as one where the predicted barrier height is in error by 2 kcal/mol or more.

Based on these metrics for poor performance, the ANI-2x and ANI-1ccx NNP models are

also superior compared to the force field models, with the ANI-1ccx methods demonstrating

poor performance for only 10 PESs and 10 barriers lower than the best force field (CGenFF).

Among the force fields, the CGenFF performs poorly for the fewest torsions, followed by

GAFF, OpenFF, and OPLS.

This highlights a major advantage of the NNP methods - the number of cases where
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Figure 3: Top left: Number of torsional PESs where a given method has the lowest RMSD,
Top right: Number of torsional PESs where a given method has the lowest barrier height
deviation. The light blue color indicates the method is an NNP and dark blue indicates
the method is a conventional force field model. Bottom left: Number of torsions where a
method gives a high RMSD (i.e., on average, an RMSD greater than 1 kcal/mol in error at
each point on the PES). Bottom right: Number of torsional PESs where a method predicts
the barrier height inaccurately (i.e., more than 2 kcal/mol in error). To allow a comparison
of the ANI-1ccx NNP, S-containing compounds were not included (n = 79).
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they perform poorly is small. The strategy of training these potentials to reproduce molec-

ular energies in general rather than specific interactions results in methods that are robust

for PESs outside their training sets. It should be noted that none of these biaryl com-

pounds in this test set were part of the ANI-2x or ANI-1ccx training sets, so the success of

these methods shows that they are remarkably robust and provide accurate predictions for

molecules and bonding motifs that they were not explicitly trained to describe. This suc-

cess for molecules outside of their training set is a significant advantage for high-throughput

screening of protein–ligand binding, where the validation and possible reparameterization of

a force field is too time-consuming.

3.2 CGenFF
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Figure 4: The torsional potential energy surfaces of 20 and 39 are examples where the
CGenFF force field is an inaccurate model.

Overall, CGenFF performs as well or better than the other force fields; however, there are

some instances where the barriers are predicted to be much lower than the CCSD(T1)*. This

is apparent in N-rich heterocyclics, like 20 and 39, suggesting that the parameters for C-

CA-CA-NA and N-CA-NA-CA dihedrals have a maximum that is too small (Figure 4). For
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example, the OPLS force field predicts a torsional barrier of 20 more accurately (9 kcal/mol),

in part because it uses a C-N-C-N dihedral potential with a maximum of 3.6 kcal/mol instead

of the barrier maximum of 1.8 kcal/mol used by CGenFF. Adjustment of a handful of biaryl

dihedral terms would improve the accuracy of CGenFF even further.

3.3 OpenFF
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Figure 5: The torsional potential energy surfaces of 10, 12, and 29 are examples where the
OpenFF force field is an inaccurate model.

OpenFF is the “newest” of the force fields evaluated here and is designed to avoid dupli-

cate or unnecessary parameters. As a result, there are far fewer parameters in the current

version of OpenFF compared to the other force fields (i.e., 342 parameters in OpenFF vs

more than 6000 parameters for CGenFF). Nevertheless, based on the RMSD and barrier

height metrics, it generally performs better than GAFF and OPLS for this test set and per-

forms as well or better than CGenFF. Because relatively few “specific” torsional parameters
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are currently defined, much of its success is derived from the general biaryl potentials and

the 1,4 interactions resulting from Lennard-Jones and electrostatic terms. This strategy is

less successful for torsions containing aromatic nitrogen atoms in the ortho or ipso positions,

such as 10 and 12 (Figure 5). The torsional PESs of these N-containing aromatics are

influenced by complex hyper-conjugative and electron-repulsive interactions, which require

explicit parameterization for the force field to describe quantitatively. The OpenFF model

defines a systematic process for improving its description of torsional interactions through

fitting to QM surfaces, so subsequent revisions are likely to show even better performance

for these surfaces.

3.4 GAFF
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Figure 6: The torsional potential energy surfaces of 10 and 23 are examples where the
GAFF force field is an inaccurate model.

There are many surfaces where the GAFF model is inaccurate. Examples of this are

presented in Figure 6. An instance where the GAFF force field significantly deviates from the

reference PES is where the aryl linkage is through the nitrogen of a pyrrole group. Repulsion

between the pyrrole non-bonded pair and the pi system of the benzene ring destabilizes planar

18



conformations, but lone-pair–CH repulsion occurs when the rings are perpendicular, so the

minimum energy conformations occur at 30◦ deviations from planarity. In contrast to this,

the GAFF force field predicts a broad minimum corresponding to conformations where the

rings are non-planar. The CA–CA–NA–CA torsional parameter is the immediate cause of

this issue.

The GAFF force field significantly overestimates the barrier for rotations where there is

an amide NH group in the ortho position of one of the rings. For example, in 23, GAFF

predicts a barrier of 22 kcal/mol, while it is only 2 kcal/mol with CCSD(T1)*. This issue is

present in 24, 25, 26, 27, 28, and 29.

3.5 OPLS
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Figure 7: The torsional potential energy surfaces of 7, 9, 12 are examples where the OPLS
force field is an inaccurate model.

The OPLS model performs relatively poorly on this test set. In many cases, this is due to
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a significant overestimation of the rotational barrier. The mean signed error for the OPLS

barrier is 2.5 kcal/mol, indicating that the tendency to overestimate torsional barriers is

systematic in this force field. Some of the surfaces where OPLS is inaccurate are presented

in Figure 7. This is evident in the PES for 7 and 12, where the barrier is overestimated by a

factor of 2 and 6, respectively. In other cases, the topology file generated by the LigParGen

server includes torsions that result in asymmetric potential energy surfaces on torsions that

should be symmetric. The PES of 9 is an example of this effect. Dahlgren et al. showed

that new parameters could improve the performance of the OPLS force field specifically for

biaryl torsions,23 so including these parameters in the models generated by LigParGen could

immediately improve the accuracy of this model.

3.6 ANI
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The ANI-2x and ANI-1ccx NNPs generally outperform the MM models and provide

reasonably accurate surfaces in almost all cases. The ANI-1ccx NNP gives incrementally

greater accuracy than ANI-2x, although it only supports a smaller set of ligands because

only the C, N, O, and H elements are defined for it. There are a few instances where these

methods are significantly in error, which are plotted in Figure 8. The relative stability of

the cis and trans conformations of 25 is overestimated by the ANI-1ccx potential and the

barrier to rotation is significantly overestimated. The PES of 76 is generally irregular and

the barrier is significantly underestimated. The lack of explicit electrostatic terms limits

the accuracy of these NNPs when the relative stability of two conformations depends on a

long-range polar interaction.

3.7 MP2 Failures
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Figure 9: Test set structures where the MP2 barrier height differs by 1 kcal/mol or higher
from the CCSD(T1)* surface.

Torsional potentials of force fields are often parameterized to reproduce MP2 potential

energy surfaces because MP2 is a computationally tractable ab initio method with analytical

gradients. Having calculated the energies at both the CCSD(T*)/CBS//MP2/def2-TZVP

and MP2/def2-TZVP levels, we can test if these levels of theory provide the same level of

accuracy for these torsional profiles. The MP2/def2-TZVP PESs are generally in very good

agreement with the CCSD(T1)*/CBS PESs, with a RMSD of 0.1 kcal/mol and a MADB of

0.3 kcal/mol.

Although the agreement between MP2 and CCSD(T1)* is generally close, the MP2 and
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CCSD(T1)* barrier heights differed by more than 1 kcal/mol in 6 instances out of the 88

surfaces in the test set (Figure 9). In four instances (83, 80, 84, and 85), one of the aryls

in the rotation was bicyclic, so the transition state occurs when the structure is planar and

a steric interaction arises between the ortho hydrogen of the phenyl ring and an atom in

the ortho position of the other ring. The CCSD barrier is lower than the MP2 barrier in 3

out of 4 of these examples, suggesting that MP2 overestimates the strength of this type of

steric repulsion. The other examples are nitrogen-containing heteroaromatics (19, 67). The

MP2 barrier is lower than the CCSD(T1)* barrier in 1 of these examples, suggesting that

there is a small tendency for MP2 to underestimate the electronic repulsion associated with

pi-lone pairs. The origin of the deviation in 19 and 67 is less evident, although both are

N-containing heteroaromatics.

This raises questions about the common practice of using MP2 potential energy surfaces

as the target data for fitting force field torsional potential energy surfaces. Although MP2

is in good agreement with CCSD(T1)* surfaces for most of the molecules, the MP2 and

CCSD(T1)* barrier heights differed by 1 kcal/mol or higher for 6 of the torsions. This

suggests that parameterizing a force field to reproduce the torsional surfaces of an NNP

trained for CCSD(T) data could be advantageous because it is not necessary to calculate

CCSD(T1)* potential energy surfaces for each torsion in the ligand.

The ANI-1ccx NNP is incrementally more accurate than the ANI-2x NNP. The ANI-1ccx

NNP was developed through a transfer learning approach, where input and output layers of

the ANI-1X NNP were retrained using a subset of CCSD*(T1)/CBS data, while the ANI-2x

potential was trained to DFT (ωB97X/6-31G*) data exclusively.

3.8 Molecular Dynamics of Torsional Rotations

The large barriers to torsional rotations present in some biaryl compounds can result in large

activation energies for conformation isomerization. Consequently, in molecular dynamics

simulations of drug compounds containing biaryls, the timescales associated with rotation
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around the biaryl bond can be much longer than other, more facile, types of conformational

isomerization. The atomic forces of the ANI NNP can be calculated analytically using the

auto-differentiation (autograd) feature of the Torch library, so geometry optimizations and

MD simulations can be performed simply and efficiently by calling this differentiation routine

in the TorchANI library.33

To demonstrate that these methods are practical for use in molecular dynamics simu-

lations for real drug molecules, we have performed simulations of ozanimod in an explicit

aqueous solution (Figure 10 (a, b)). Ozanimod is a drug for the treatment of multiple

sclerosis that binds the sphingosine 1-phosphate receptor.51 The rotation around the bond

connecting the isopropyl benzonitrile and the diazafuran has a significant barrier height be-

cause of the conjugation between the rings and low steric repulsion in planar conformations.

The time series of this angle over the course of a 10 ns simulation shows that this molecule

undergoes conformational isomerization through rotation around this torsional degree of

freedom on the multi-nanosecond timescale (Figure 10 (c)). These simulations are tractable

using conventional Graphical Processing Unit hardware; these NNP/MM MD simulations

required 0.34 days/ns on an Intel(R) Core(TM) i7-8700 with an NVIDIA Titan Xp GPU.

This performance will improve futher when NNPs are implemented directly into simulation

codes and when GPU-accelerated implementations of symmetry function calculations are

completed.

To investigate this isomerization further, the potential of mean force (PMF) of this degree

of freedom was calculated using umbrella sampling and adaptive biasing force44,45 molecular

dynamics simulations (Figure 10 (d)). Both methods provide similar PMFs and can be used

with the TorchANI NNP/MM interface with NAMD without modification.

Using the umbrella sampling PMF, the rate constant of isomerization (kKS) was calcu-

lated using Kramers–Smoluchowski transition state theory,52,53

kKS = DTS

√
|W ′′(qminimum) ·W ′′(qTS)|

2πkBT
e−∆W ‡/kBT (6)
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where DTS is the diffusion coefficient at the transition state, W ′′ is the second derivative

of the PMF, qTS is the position on the reaction coordinate where the maximum of the PMF

occurs, qminimum is the position on the reaction coordinate where the minimum of the PMF

occurs, and ∆W ‡ is the barrier height of the PMF.

In these simulations, the TIP3P-FB water model was used, which predicts a viscosity

close to the experimental value,42 allowing more accurate predictions of diffusion rates in

aqueous solutions,54 and more accurate predictions of the solvent friction on the reaction

coordinate.

DTS was calculated using the generalized Langevin approach,55–57 where a strong har-

monic potential was used to restrain the simulation to the transition state and the diffusion

coefficient was determined by the rate of relaxation of the position autocorrelation function

of the time series of the reaction coordinate (q).

DTS =
var(q)2∫∞

0
〈q(0) · q(τ)〉dτ

(7)

This theory predicted a rate of isomerization of 4.30 × 10−1 ns−1, which is generally

consistent with the slow rates of isomerization observed in the NNP/MM MD simulation

(Table 2). These simulations demonstrate that the ANI NNPs can be used immediately to

describe the dynamics of slow degrees of freedom of arbitrary drug-like organic molecules

using existing simulation methods. In comparison, the rate predicted by the most reliable

MM model, CGenFF, is roughly 7 times slower. This is predominantly due to the larger

activation energy (3.2 kcal/mol for ANI-1ccx/MM vs 4.7 kcal/mol for CGenFF), although

the diffusion coefficient of the system along the reaction coordinate at the transition state

also differs.

Table 2: Rate theory prediction of isomerization of ozanimod

ANI-1ccx CGenFF
DTS (rad2/ns) 67.5 102.4

∆W ‡ (kcal/mol) 3.2 4.7
rate (ns−1) 4.3× 10−1 6.4× 10−2

25



4 Conclusions

Force field and NNP methods were evaluated for their ability to predict the potential en-

ergy surfaces of biaryl torsions found in drug and drug-like molecules (n = 88). As these

torsions are important features for the structure and dynamics of these molecules, efficient

but accurate computational models of these terms are essential for accurate protein–ligand

binding simulations. In comparison to high-level ab initio reference data, the ANI-1ccx NNP

was the most accurate method and generally predicted barrier heights within 1 kcal/mol,

although this method only supports the elements C, N, O, and H. The ANI-2x NNP had

a comparable level of accuracy and can be used with elements C, N, O, H, S, F, and Cl.

Significantly, these NNPs provided accurate models in most of the cases and provided poor

descriptions in relatively few cases. The accuracy and reliability of these NNPs without

specific parameterization is particularly useful for simplifying modeling workflows, although

the NNPs examined here are not appropriate for simulations of charged compounds, which

limits their applicability somewhat.

The force field methods were less accurate, although there were significant differences in

the accuracy of the force fields. The CGenFF and OpenFF models were accurate, followed by

GAFF and OPLS. The OpenFF model is notable because it performs well despite having been

parameterized with relatively little data and includes relatively few parameters. Although

the MP2 potential energy surfaces were generally in good agreement with the CCSD(T1)*

reference values, there were significant differences in 6 instances, suggesting force fields and

NNPs should be parameterized to reproduce CCSD(T1)* data for optimal and comprehensive

accuracy.

The NNP/MM method was used to simulate the conformational isomerization of the

biaryl-containing drug molecule ozanimod. Multi-nanosecond molecular dynamics simula-

tions in an explicit aqueous solvent were performed, as well as umbrella sampling and adap-

tive biasing force enhanced sampling techniques. These free energy methods can be used

in NNP/MM simulations through the NAMD–TorchANI interface, which makes a diverse

26



set of simulation methods available without modification and allows for facile construction.

This provides a method for computationally-efficient but highly-accurate models for the in-

tramolecular potential energy surfaces of ligands within biomolecular simulations without

relying on a parameterized force field.
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