
REINVENT 2.0 – an AI tool for de novo drug
design

Thomas Blaschke§, Josep Arús-Pous§⊥, Hongming Chen¥, Christian Margreitter§, Christian Tyrchan║, Ola

Engkvist§, Kostas Papadopoulos§, Atanas Patronov§*.

§ Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, 43183, Mölndal,

Sweden

║ Medicinal Chemistry, Early RIA, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden

1, 43183, Mölndal, Sweden

⊥ Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

¥ Chemistry and Chemical Biology Centre, Guangzhou Regenerative Medicine and Health-Guangdong

Laboratory, Science Park, 510530, Guangzhou, China

Corresponding author: atanas.patronov@astrazeneca.com

Abstract

In the past few years, we have witnessed a renaissance of the field of molecular de novo drug

design. The advancements in deep learning and artificial intelligence (AI) have triggered an

avalanche of ideas how to translate such techniques to a variety of domains including the field of

drug design. A range of architectures have been devised to find the optimal way of generating

chemical compounds by using either graph or string (SMILES) based representations. With this

application note we aim to offer the community a production-ready tool for de novo design, called

REINVENT. It can be effectively applied on drug discovery projects that are striving to resolve

either exploration or exploitation problems while navigating the chemical space. It can facilitate

the idea generation process by bringing to the researcher’s attention the most promising

compounds. REINVENT’s code is publicly available at https://github.com/MolecularAI/Reinvent

mailto:atanas.patronov@astrazeneca.com
https://github.com/MolecularAI/Reinvent

Introduction

The main goal of de novo drug design is to identify novel active compounds that can

simultaneously satisfy a constellation of essential optimization goals such as activity, selectivity,

physico-chemical and ADMET properties. Because of the sheer number of possible solutions, it is

a non-trivial task to optimally satisfy such a multitude of requirements which makes the search

process slow and costly even when it is only conducted in silico. Therefore, having an efficient

solution which enables the navigation of chemical space and generation of relevant ideas is

essential. To address such needs the research community has recently turned its focus towards

artificial intelligence (AI) based generative models that are capable of proposing promising small

molecules. The potential of generative models for chemical space exploration has been

demonstrated in numerous studies 1–13. Various neural network architectures have been

engineered and a plethora of AI training strategies have been employed in the race to device

more efficient methods for the generation of compounds. A number of architectures, such as

Variational Autoencoders (VAEs) 7,14, Recurrent Neural Networks (RNNs) with Long Short-Term

Memory (LSTM) cells 15, Conditional RNNs or Generative Adversarial Networks have been proven

successful in generating molecules by using data representation of molecules either as molecular

graphs or SMILES 8,16–18.

Most tools for de novo drug design, regardless of the specifics of their implementation, can be

generalized to three main components: search space (SS), search algorithm and a search

objective19. In this context we can refer to the generative models as the search space. We also

observe two main trends of using generative models for de novo design: distribution-learning and

goal-directed generation. Distribution-learning efforts are mostly focused on generating ideas

that resemble a particular set of molecules. Goal-directed generation methods are typically using

search algorithms while aiming to suggest molecules that satisfy the given objective (or

objectives) without having to sample the entire search space. In both cases results are ultimately

filtered by user defined scoring function (search objective) either during the generation in the

goal-driven case or after sampling the entire set of solutions in the distribution-learning scenario.

While a common issue of using goal-directed approach is the narrow set of solutions the opposite

approach of using distribution learning leads to screening through a vast variety of irrelevant

suggestions. These two extreme scenarios represent the attempt to achieve either exploration or

exploitation of the search space.

There is an increasing variety of open-source solutions based on generative models aiming to

address these two aspects of de novo design separately 2,9,20,21. Ideally, users should be allowed

to navigate the chemical space efficiently in both exploration and exploitation mode while using

the same de novo design tool. For exploitation, users define an area of interest and focus on

generating compounds that share similar structural features. In contrast, the exploration mode

enables them to obtain compounds that share less structural similarity but still satisfy other

desired features. To achieve this in a fashion different from plain distribution-learning approach

we need the goal-directed learning to store in memory and adapt to the suggested solutions that

have been produced in the course of a single search run. This implies the necessity to utilize not

only predictive models and structure similarity/dissimilarity but also various rule-based scoring

components to push towards or pull away from specific areas of the chemical space. Moreover,

to be able to adapt appropriately to any given drug discovery project at hand, the ability to fine-

tune each of these potential scoring function components is paramount.

In this application note we are describing REINVENT 2.0 which is a tool for de novo design of small

molecules. REINVENT 2.0 draws inspiration from the works of Olivecrona et al. and Sutton et al.

for the use of Reinforcement Learning (RL), Arus-Pous et al. for the architecture and the

implementation of the generative model, Cummins et al. for the scoring function formulation,

and Blaschke et al. for the use of Diversity Filters (DF) in the RL loop to enforce exploration 22–26.

As a de novo design application REINVENT 2.0 covers both distribution-learning and goal-directed

scenarios. The goal-directed use case uses a generative model as a SS, RL as a search algorithm

and flexible scoring function that can combine the scores from different components to form a

reward as a score objective. The calculations in the individual components can be run in parallel.

Scores can be also modulated by a diversity filter which penalizes redundancy and rewards

diversity in the found solutions thus stimulating exploration. Comprehensive logging is

implemented for each use case. Additionally, the option to send logs to a remote REST endpoint

is also available which allows to put the application behind a web interface. REINVENT 2.0 can be

also used to build generative models from scratch. For details on the generative model, please

refer to Arus-Pous et al. 23. To facilitate the users we supplement the code with pre-built

generative model and a range of examples that aim to illustrate some of the most common use-

cases. These examples are provided in a separate repository:

https://github.com/MolecularAI/ReinventCommunity .

More details on these features are provided in the sections below.

Application Overview

In its core, REINVENT is using a generative model. The generative model has an architecture

derived from the work of Arus-Pous et al 23 which in turn is inspired by Segler et al 6and Olivecrona

et al 22. The model is trained on a dataset derived from ChEMBL 27 and capable of generating

compounds in the SMILES format. The architecture of the model is illustrated with figure S1.

REINVENT provides different running modes listed in table S1. Different combinations of the

running modes allow the users to achieve either exploitation or exploration of the chemical space,

see table S2. Further discussion on the general use cases can be found in the supporting materials.

One of the key features that allow achieving an exploratory behavior are the Diversity Filters.

Diversity Filters

DF can be regarded as a collection of buckets that are used for keeping track of all generated

scaffolds and the compounds that share those scaffolds. A bucket is a collection of compounds

that share the same scaffold. Obviously, not all generated compounds are of interest and only

those that are ranked by the multi-parameter objective (MPO) score above a certain user-defined

threshold will enter the scaffold buckets. When the average score settles above this threshold we

have reached state of productivity. This means that the majority of the compounds from each

https://github.com/MolecularAI/ReinventCommunity

step (the ones that score above threshold) will be collected and stored in the memory. Once a

compound with a score above the threshold has been generated, its scaffold is extracted and

stored in a scaffold registry and the compound enters the corresponding bucket. The buckets

have limited capacity and once the limit of compounds in a given bucket has reached the allowed

threshold, any subsequent bucket affiliation will be penalized. Every new compound that enters

a full bucket will be assigned a score of zero thus informing the agent that this area of chemical

space has become unfavorable. It is important to note that compounds will be added to the

bucket even if the bucket limit has been exceeded. The only impact will be on the agent, since it

will be constantly discouraged from producing similar compounds that share a given scaffold. This

will enforce the agent to seek alternative solutions thus achieving in effect chemical space

exploration and will prevent the agent from becoming stuck in local minima and generating the

same compounds repeatedly. All collected compounds are kept and stored until the end of the

RL run and become available as a csv formatted file.

Users can select their diversity strategy by using Topological DF 28, Identical Murcko DF or a

Scaffold Similarity DF 29. The Topological DF is the most restrictive since it is agnostic of the atom

types. It is created by removing all side chains and subsequently converting all atoms in the

structure to sp3 carbons. The other two DF also remove all side chains but retain the atom types.

Identical Murcko DF only checks if there is a bucket with exactly the same scaffold while Scaffold

Similarity is more permissive and can include compounds into the bucket if they satisfy a certain

threshold of scaffold similarity. The threshold is user defined and is sensitive to the discrete

definition of the scoring function. Setting it to higher values would clearly result in less

compounds passing the threshold.

Reinforcement Learning

It is often necessary to direct the generative model towards relevant areas in the chemical space

that contain compounds of interest. We achieve this by subjecting it to a RL 25 scenario while

aiming to satisfy a set of user-defined requirements that reflect the most important features of

the desired compounds. In other words, the generative model will try to maximize the outcome

of a scoring function that contains multiple components/parameters, thus computing an MPO

score 30. To generate compounds from a specific part of the chemical space, REINVENT employs

a composite scoring function consisting of different user-defined components. Each component

is responsible for a simple target property. The feedback from the scoring function is used in a RL

loop with a policy iteration as described by Olivecrona et al. 22.

The components of the RL loop used in REINVENT are shown in figure S2. Commonly the RL setup

consist of an actor and an environment in which the actor takes a set of actions and receives a

reward. The reward reflects how well the actor solved the problem at hand. The set of actions is

referred to as policy, and the reward after completing the policy is known as a policy iteration. In

our case, the actions are the individual steps necessary for building sequences of tokens which

translate into SMILES. The role of the environment is played by the score modulating block in

figure S2 and the actor is denoted as an “agent”. After the agent samples a batch of smiles the

reward is influenced by several components: scoring function, “prior” and a diversity filter.

The “prior” is a generative model which shares identical architecture and vocabulary with the

agent. It possesses a great generative capacity and the potential to sample compounds from a

comparably vast area of the chemical space. Essentially, the prior is the same as the agent at the

beginning of the RL. There is, however, a use case where the agent might be subjected to initial

transfer learning in which case the models will have different weights. Further details are

described in workflow “E” table S2. The role of the prior is to serve as a reference point for the

likelihood of sampling a given SMILES. For every batch of SMILES generated by the agent, the

prior calculates the negative log-likelihood denoted as NLL (eq. 1). NLL reflects how likely it is to

sample a sequence S from the model. 𝑃(𝑋𝑖 = 𝑇𝑖|𝑋𝑖−1 = 𝑇𝑖−1 … 𝑋1 = 𝑥1) is the probability of

sampling a token Ti at step Xi given the previously sampled tokens. The minus sign is to account

for the fact that large positive values are actually corresponding to a low probability.

𝑁𝐿𝐿(𝑆) = − ∑ 𝑙𝑛 𝑃(𝑋𝑖 = 𝑇𝑖|𝑋𝑖−1 = 𝑇𝑖−1 … 𝑋1 = 𝑥1)

𝑁

𝑖=1

(1)

Analogously the NLL(S) for the given string S is also calculated by the agent. The SMILES string is

also evaluated by the scoring function which we denote as a multi-parameter objective (MPO).

MPO is a value in the range [0,1]. At this step the DF is used to evaluate whether the SMILES string

has been sampled before or whether it satisfies the DF policy. The MPO score will be set to 0 if

the DF filters determine that the provided compound already exists or if there are too many

compounds of the same scaffold and their number exceeds the user defined threshold. For more

details on the types of DF please consult with the supporting materials table S4. The resulting

MPO score is combined with the prior’s likelihood and used to form the augmented likelihood (eq

2). The MPO score is multiplied by σ which is a scalar value used for scaling up the scoring function

output to the same order of magnitude as the NLL. Otherwise, the low MPO score ranging

between [0,1] will have no impact whatsoever. The higher MPO score translates into higher

augmented likelihood values. Ultimately, the loss is calculated as the squared difference between

the agent’s likelihood and the augmented likelihood (eq 3).

𝑁𝐿𝐿(𝑺)𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑁𝐿𝐿(𝑺)𝑃𝑟𝑖𝑜𝑟 − 𝛔 ∗ 𝑀𝑃𝑂(𝑺)𝑠𝑐𝑜𝑟𝑒

(2)

𝑙𝑜𝑠𝑠 = [𝑁𝐿𝐿(𝑺)𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 − 𝑁𝐿𝐿(𝑺)𝐴𝑔𝑒𝑛𝑡]
2

(3)

The final component of the RL loop as shown on figure S2 is inception. The purpose of inception

is to keep track of previously well scored compounds and to randomly expose a subset of them

to the agent thus helping to direct the learning. More details about inception are provided in the

supporting information. Finally, after including the compounds from inception’s memory to the

batch the loss is propagated back and only the agent is updated thus receiving the feedback from

its interaction with the environment. The environment is represented by the score modulating

block on figure S2. The prior on the other hand does not undergo any changes.

The duration of RL is pre-defined by the user in terms of number of RL steps to be performed.

This is very case specific and is normally determined by the complexity of the problem at hand. In

terms of computational cost the scoring function is the costliest element of the RL loop since it

may contain a variable number of components including slow predictive models, docking and/or

pharmacophore similarity (the latter two are not included in the current release).

Scoring Functions

REINVENT offers two general scoring function formulations (eqs 4 and 5). The individual

components of the scoring function can be either combined as a weighted sum or as a weighted

product 24. The individual score components can have different weight coefficients reflecting their

importance in the overall score. Score contribution from each component can vary in a [0,1]

range. As a result, the overall score is also within the same [0,1] range. In the equations below

the score for sequence x is denoted S and is either a weighted product (eq 5) or a weighted sum

(eq 4). The user-selected components are denoted as p in both equations and the corresponding

weights are denoted as w. Weights can vary in the range of [1, +∞).

𝑆(𝑥) = [∏ 𝑝𝑖(𝑥)𝑤𝑖

𝑖

]

1
∑ 𝑤𝑖𝑖

⁄

(4)

𝑆(𝑥) =
∑ 𝑤𝑖 ∗ 𝑝𝑖(𝑥)𝑖

∑ 𝑤𝑖𝑖

(5)

Both formulations are provided for user convenience and flexibility. More details on the scoring

functions and a full list of components included in this release is provided in table S3 and in the

supporting materials.

Transfer Learning (TL)

As an alternative to the goal-directed generation, distribution-learning is also supported in

REINVENT. This approach requires a pre-trained generative model with the generative capacity

and the potential to sample compounds from a rather vast area of the chemical space. We refer

to this generative model as the prior. This prior is subjected to transfer learning with a smaller

set of compounds which are relevant for a given project. For example, if we aim to maximize a

predictive model among the other components we would use all the compounds that are

considered as active by this model. If we aim towards certain subseries of compounds we would

only use those that share the series-specific features (for example scaffold). This will result in a

model that produces compounds similar to the target dataset with a higher probability. We refer

to that model to as “focused prior”. The user can subsequently sample this model and score the

generated compounds by using the scoring mode in REINVENT.

As an alternative we could also use the resulting “focused prior” as an agent in the RL loop. The

resulting generative model from distribution-learning is a suitable starting point for goal-directed

generation 31. This pre-focusing of the prior can speed up the overall RL process since the chance

of producing compounds of relevance will be much higher compared to using a general,

unfocused prior as an agent. Once focused, the agent will have an increased probability of

sampling a chemical subspace of interest thus reaching a state of productivity sooner. Both use

cases are further illustrated in figure S3 and table S2 within the supporting information.

Logging

Essential for monitoring of the learning process is the availability of a comprehensive logging

system. In REINVENT we utilize Tensorboard 32 to provide information about the evolution of the

agent during TL by sampling after each step and displaying the likelihood distribution for the

sampled data. Stats on validity of the smiles and the most frequently encountered molecules are

also shown. For RL we are plotting the evolution of the scoring function and the individual scoring

component contributions to the overall score. We are also displaying the highest scoring

compounds after each RL step. As an alternative, we also provide the implementation used by us

for remote logging which can be set up to post the logging results to a custom REST endpoint.

Implementation

REINVENT is an open-source Python application. It uses PyTorch 1.3.0 33 as a deep learning engine

and RDKit version 2019.03.3.0 34 as a chemistry engine. It works exclusively with scikit-learn based

machine learning models and for the detailed logging of the chemical space navigation process,

it makes use of Tensorboard’s implementation in PyTorch.

Conclusion

We have described a production-ready, open-source application for de novo generation of small

molecules. It can be used to address both exploration and exploitation type of problems while

allowing a flexible formulation of complex MPO scores. Examples of various use cases are

provided with the code repository and in https://github.com/MolecularAI/ReinventCommunity.

Apart from providing a ready-to-use solution, with releasing the code, we are hoping to facilitate

the research on using generative methods for drug discovery. We also hope that it can be used

as an interaction point for future scientific collaborations.

Funding

TB has received funding from the European Union's Horizon 2020 research and innovation program

under the Marie Sklodowska‐Curie grant agreement No 676434, „Big Data in Chemistry” („BIGCHEM”,

http://bigchem.eu). The article reflects only the authors’ view and neither the European Commission nor

the Research Executive Agency (REA) are responsible for any use that may be made of the information it

contains.

https://github.com/MolecularAI/ReinventCommunity

References

(1) Arús-Pous, J.; Patronov, A.; Bjerrum, E. J.; Tyrchan, C.; Reymond, J.-L.; Chen, H.; Engkvist, O.
SMILES-Based Deep Generative Scaffold Decorator for De-Novo Drug Design. 2020.
https://doi.org/10.26434/CHEMRXIV.11638383.V1.

(2) Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.;
Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.;
Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.;
Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep Learning Enables Rapid Identification of Potent DDR1
Kinase Inhibitors. Nat. Biotechnol. 2019, 37 (9), 1038–1040. https://doi.org/10.1038/s41587-019-
0224-x.

(3) Winter, R.; Montanari, F.; Steffen, A.; Briem, H.; Noé, F.; Clevert, D. A. Efficient Multi-Objective
Molecular Optimization in a Continuous Latent Space. Chem. Sci. 2019, 10 (34), 8016–8024.
https://doi.org/10.1039/c9sc01928f.

(4) Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De Novo Design of Bioactive Small Molecules by
Artificial Intelligence. Mol. Inform. 2018, 37 (1). https://doi.org/10.1002/minf.201700153.

(5) Grebner, C.; Matter, H.; Plowright, A. T.; Hessler, G. Automated De Novo Design in Medicinal
Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn? J. Med. Chem.
2020. https://doi.org/10.1021/acs.jmedchem.9b02044.

(6) Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P. Generating Focused Molecule Libraries for
Drug Discovery with Recurrent Neural Networks. ACS Cent. Sci. 2018, 4 (1), 120–131.
https://doi.org/10.1021/acscentsci.7b00512.

(7) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.;
Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic
Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci.
2018, 4 (2), 268–276. https://doi.org/10.1021/acscentsci.7b00572.

(8) Li, Y.; Zhang, L.; Liu, Z. Multi-Objective de Novo Drug Design with Conditional Graph Generative
Model. J. Cheminform. 2018, 10 (1), 33. https://doi.org/10.1186/s13321-018-0287-6.

(9) Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement Learning for de Novo Drug Design. Sci.
Adv. 2018, 4 (7), eaap7885. https://doi.org/10.1126/sciadv.aap7885.

(10) Sattarov, B.; Baskin, I. I.; Horvath, D.; Marcou, G.; Bjerrum, E. J.; Varnek, A. De Novo Molecular
Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic
Mapping. J. Chem. Inf. Model. 2019, 59 (3), 1182–1196.
https://doi.org/10.1021/acs.jcim.8b00751.

(11) Skalic, M.; Jiménez, J.; Sabbadin, D.; De Fabritiis, G. Shape-Based Generative Modeling for de
Novo Drug Design. J. Chem. Inf. Model. 2019, 59 (3), 1205–1214.
https://doi.org/10.1021/acs.jcim.8b00706.

(12) Grisoni, F.; Moret, M.; Lingwood, R.; Schneider, G. Bidirectional Molecule Generation with

Recurrent Neural Networks. J. Chem. Inf. Model. 2020, 60 (3), 1175–1183.
https://doi.org/10.1021/acs.jcim.9b00943.

(13) Méndez-Lucio, O.; Baillif, B.; Clevert, D. A.; Rouquié, D.; Wichard, J. De Novo Generation of Hit-like
Molecules from Gene Expression Signatures Using Artificial Intelligence. Nat. Commun. 2020, 11
(1), 1–10. https://doi.org/10.1038/s41467-019-13807-w.

(14) Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H. Application of Generative
Autoencoder in De Novo Molecular Design. Mol. Inform. 2018, 37 (1–2), 1700123.
https://doi.org/10.1002/minf.201700123.

(15) Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9 (8), 1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

(16) Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to
Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28 (1), 31–36.
https://doi.org/10.1021/ci00057a005.

(17) Prykhodko, O.; Johansson, S. V.; Kotsias, P.-C.; Arús-Pous, J.; Bjerrum, E. J.; Engkvist, O.; Chen, H. A
de Novo Molecular Generation Method Using Latent Vector Based Generative Adversarial
Network. J. Cheminform. 2019, 11 (1), 74. https://doi.org/10.1186/s13321-019-0397-9.

(18) Kotsias, P.-C.; Arús-Pous, J.; Chen, H.; Engkvist, O.; Tyrchan, C.; Bjerrum, E. J. Direct Steering of de
Novo Molecular Generation Using Descriptor Conditional Recurrent Neural Networks (CRNNs).
2019. https://doi.org/10.26434/CHEMRXIV.9860906.V2.

(19) Brown, N.; Fiscato, M.; Segler, M. H. S.; Vaucher, A. C. GuacaMol: Benchmarking Models for de
Novo Molecular Design. J. Chem. Inf. Model. 2019, 59 (3), 1096–1108.
https://doi.org/10.1021/acs.jcim.8b00839.

(20) Moret, M.; Friedrich, L.; Grisoni, F.; Merk, D.; Schneider, G. Generative Molecular Design in Low
Data Regimes. Nat. Mach. Intell. 2020, 2 (3), 171–180. https://doi.org/10.1038/s42256-020-0160-
y.

(21) Liu, X.; Ye, K.; van Vlijmen, H. W. T.; IJzerman, A. P.; van Westen, G. J. P. An Exploration Strategy
Improves the Diversity of de Novo Ligands Using Deep Reinforcement Learning: A Case for the
Adenosine A2A Receptor. J. Cheminform. 2019, 11 (1), 35. https://doi.org/10.1186/s13321-019-
0355-6.

(22) Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular De-Novo Design through Deep
Reinforcement Learning. J. Cheminform. 2017, 9 (1), 48. https://doi.org/10.1186/s13321-017-
0235-x.

(23) Arús-Pous, J.; Johansson, S. V.; Prykhodko, O.; Bjerrum, E. J.; Tyrchan, C.; Reymond, J. L.; Chen, H.;
Engkvist, O. Randomized SMILES Strings Improve the Quality of Molecular Generative Models. J.
Cheminform. 2019, 11 (1). https://doi.org/10.1186/s13321-019-0393-0.

(24) Cummins, D. J.; Bell, M. A. Integrating Everything: The Molecule Selection Toolkit, a System for
Compound Prioritization in Drug Discovery. J. Med. Chem. 2016, 59 (15), 6999–7010.
https://doi.org/10.1021/acs.jmedchem.5b01338.

(25) Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction; 1998.

(26) Blaschke, T.; Engkvist, O.; Bajorath, J.; Chen, H. Memory-Assisted Reinforcement Learning for

Diverse Molecular de Novo Design; ChemRxiv, 2020.
https://doi.org/10.26434/CHEMRXIV.12693152.V1.

(27) Gaulton, A.; Hersey, A.; Nowotka, M. L.; Patricia Bento, A.; Chambers, J.; Mendez, D.; Mutowo, P.;
Atkinson, F.; Bellis, L. J.; Cibrian-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magarinos, M. P.;
Overington, J. P.; Papadatos, G.; Smit, I.; Leach, A. R. The ChEMBL Database in 2017. Nucleic Acids
Res. 2017, 45 (D1), D945–D954. https://doi.org/10.1093/nar/gkw1074.

(28) Xu, Y. J.; Johnson, M. Algorithm for Naming Molecular Equivalence Classes Represented by
Labeled Pseudographs. J. Chem. Inf. Comput. Sci. 2001, 41 (1), 181–185.
https://doi.org/10.1021/ci0003911.

(29) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs. 1. Molecular Frameworks. J. Med.
Chem. 1996, 39 (15), 2887–2893. https://doi.org/10.1021/jm9602928.

(30) Wager, T. T.; Hou, X.; Verhoest, P. R.; Villalobos, A. Moving beyond Rules: The Development of a
Central Nervous System Multiparameter Optimization (CNS MPO) Approach to Enable Alignment
of Druglike Properties. ACS Chem. Neurosci. 2010, 1 (6), 435–449.
https://doi.org/10.1021/cn100008c.

(31) Renz, P.; Rompaey, V.; Wegner, K.; Hochreiter, S.; Klambauer, G.; Rompaey, D. Van; Wegner, J. K.;
Unter Klambauer, G. On Failure Modes of Molecule Generators and Optimizers. ChemRxiv 2020.
https://doi.org/10.26434/chemrxiv.12213542.v1.

(32) Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.;
Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.;
Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan,
V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X.; Research, G.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

(33) Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; Facebook, Z. D.; Research, A. I.; Lin, Z.;
Desmaison, A.; Antiga, L.; Srl, O.; Lerer, A. Automatic Differentiation in PyTorch.

(34) G., L. RDKit http://www.rdkit.org/ (accessed Feb 12, 2020).

