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Abstract.  

In chemography, grid-based maps sample molecular descriptor space by injecting a set of nodes, 

then linking them to some regular 2D grid representing the map. They include Self-Organizing 

Maps (SOM), and Generative Topographic Maps (GTM). Grid-based maps are predictive 

because any compound thereupon projected can “inherit” the properties of its residence node(s) – 

node properties themselves “inherited” from node-neighboring training set compounds. This 

article proposes a formalism to define the trustworthiness of these nodes as “providers” of 

structure-activity information captured from training compounds. An empirical four-parameter 

Node Trustworthiness (NT) function of density (sparsely populated nodes are less trustworthy) 

and coherence (nodes with training set residents of divergent properties are less trustworthy) is 

proposed. Based upon it, a trustworthiness score T is used to delimit the Applicability Domain 

(AD) by means of a trustworthiness threshold TT. For each parameter setup, success of ensuing 

inside-AD predictions is monitored. It is seen that setup-specific success levels (averaged over 

large pools of prediction challenges) are highly covariant, irrespectively of the targets of 

prediction challenges, of the (classification or regression) type of problems, of the specific 

parameterization and even the nature (GTM or SOM) of underlying maps. Thus, success levels 

determined on the basis of regression problems (445 target-specific affinity QSAR sets) on 

GTMs and levels returned by completely unrelated classification problems (319 target-specific 

active/inactive-labeled sets) on SOMs were seen to correlate to a degree of 70%. Therefore, a 

common, general-purpose setup of the herein proposed parametric AD definition was shown to 

generally apply to grid-based map-driven property prediction problems.  

Abbreviations: AD – Applicability Domain, GTM - Generative Topographic Mapping, LLh- 

LogLikelihood, NB – Neighborhood Behavior, [Q]SAR – [Quantitative] Structure-Activity 

Relationships, R – Responsibility vector, RBF – Radial Basis Function, SOM – Self-Organizing 

Maps 

1 Introduction. 

Computer-aided management of chemical information exploits the “chemical space” (CS) 

defined by a molecular descriptor vector, which positions molecules in this framework 
1
. It 

assumes “Neighborhood Behavior” (NB) compliance 
2-4

 – molecules with similar descriptors 
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should have similar properties. Chemography is a domain of chemoinformatics dedicated to 

“flattening out” the CS, to be rendered as a human-readable 2D map. In virtue of the NB 

principle, close analogues within a CS sphere centered on a reference compound of property P 

will likely have property values close to P. Or, one may conceive P as a local characteristic of 

the CS – like a physical field filling the entire space, not only points where its “sources” (here – 

the reference compounds) are located. Structure-activity (SA) information is herewith 

“disembodied” from its original providers (the training molecules) and transferred to the CS. If 

so, then this high-dimensional property “field” should be mappable as intuitive 2D property 

landscapes – so that the position of a compound on the 2D map may be predictive of its property. 

One powerful approach in chemography, Generative Topographic Mapping (GTM) was 

introduced by Bishop, Svensen & Williams 
5, 6

. Essentially a probabilistic, fuzzy generalization 

of Kohonen Self-Organizing Maps (SOMs) 
7, 8

, GTM draws its multivalence 
9
 specifically from 

its fuzzy-logics approach. Both approaches are grid-based, relying on a 2D grid of nodes laid out 

according to a regular pattern in the map plane (the “latent space”). These nodes are linked to the 

initial descriptor space and are associated to items from their descriptor space neighborhoods – 

albeit the mathematical formalism used to achieve this strongly differs in the two approaches 

(SOMs employ “code vectors” while in GTMs nodes are bound to a flexible “manifold” inserted 

in CS and fitted against the “frame set” of compounds). In both approaches, nodes may serve as 

“probes” reporting local property values at corresponding CS coordinates, and hence become 

instrumental in generating 2D property landscapes. 

By contrast to SOMs, where an item (a molecule) is assigned to one and only one node, GTM 

however interprets the statement “molecule M resides in node N” as a fuzzy truth, of real value 

0<RN(M)<1. The sum of all RN(M) – further on referred to as the Responsibility vector R – over 

all nodes equals one. In practice, the concept of responsibility is associated to the GTM 

algorithm, never to SOMs. Formally, one may nevertheless think about SOM “responsibilities” 

as a binary vector with RW(M)=1 for the “winning” node W, and RN(M)=0 for all others N≠W. 

With this important specification, GTM and SOM-based property prediction are in this work 

described by the same R-based formalism, irrespective of the real (GTM) or binary (SOM) 

nature of this vector. Note that this – landscape-based, vide infra – property prediction procedure 

proposed here is an extension of the standard GTM prediction mechanism, that can be 

seamlessly applied to GTMs and SOMs – and other “grid-based” maps – alike. Many other 
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property prediction mechanisms based on SOMs and GTMs could be envisaged – yet, this one is 

generally applicable to grid-based maps and therefore would also allow for an unified approach 

defining Applicability Domains. 

Above-mentioned landscape construction is nothing but responsibility-mediated transfer of 

structure-activity information from the training set onto the nodes. Prediction represents the 

inverse – first, the compound is projected, and the predicted property is taken as the R-weighed 

mean of node properties. In GTM, any small structural change impacts R levels, and smoothly 

modifies predicted properties. Therefore, GTMs support full-blown predictive regression 
10

 and 

classification 
11

 models (Quantitative Structure-Property/Activity Relationships, QS[P/A]Rs). On 

the contrary, SOMs are limited to postulating that the predicted property of any node resident 

would equal the mean of training set resident properties, a fixed value for each node – a direct 

consequence of the binary nature of their R vector. Thus, any change of structure not impacting 

on the SOM node assignment will have no consequence on SOM-predicted properties. SOM-

based property landscapes are intrinsically “granular” with GTM-based landscapes are smooth. 

This being said, above differences are in practice not as clear-cut. On one hand, R vectors on 

GTM often are de facto binary, as compounds (routinely) happen to be associated to a single 

node, at R levels above 0.99999. On the other, SOMs could be enhanced by a fuzzy-logics 

formalism, defining real-value R scores as some decreasing function of the distance of item and 

code vector nodes. In this paper, however, the goal is not an in-depth benchmarking of GTMs 

against SOMs, but the use of two different paradigms of grid-based maps, GTMs and SOMs in 

order to search an Applicability Domain formalism which may apply to both, in spite of their 

differences.   

Moreover, grid-based maps offer straightforward means to assess the trustworthiness of its 

landscape-based predictions. Two criteria of node trustworthiness can be envisaged. The first is 

the cumulated responsibility of node residents, i.e. the node density. Nodes with low cumulated 

training set responsibilities are basically terra incognita – marginal levels of association to 

training set compounds makes the assignment of a node property value technically possible, but 

not trustworthy. The second is the coherence of the property data contributing to a node, i.e. the 

spread (R-weighed standard deviations) of the resident properties – showing that some map 

zones may be more NB-compliant than others. High coherence is mandatory for high 

trustworthiness. 
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The prediction of a compound property is, in GTM, however tributary to all the nodes to which 

this compound is associated with tangible responsibility values. Each node has its own “Node 

Density” (ND) and “Node Coherence” (NC) – how would these impact on the global 

trustworthiness of prediction? Furthermore – if the predicted compound is equally strongly 

associated to a node characterized by a high activity value and a node of low activity value, is it 

senseful to accept the R-weighted mean of these diverging values as predicted value? This aspect 

– quantitatively measured by the standard deviation associated to the R-weighted mean value – 

will be further on termed “Prediction Coherence” (PC) to be distinguished from above-

mentioned “Node Coherence” (NC). Eventually – how to best combine all the cited aspects into 

one clear-cut decision-making trustworthiness score? 

Paradoxically, even though GTM-based property prediction offers an extremely versatile control 

of its Applicability Domain (AD), and even though the potential power of such AD control has 

been understood and advertised in previous publications 
10, 12

, this versatility makes it impossible 

to easily formulate “the” obviously best mode to define trustworthiness, and its threshold value 

delimiting the AD. So far, in our hands GTM-driven predictions were used as such, with at best 

some empirical, ill-defined minimum density requirements to be satisfied, awaiting for a 

systematic study to explore the relative merits of envisageable trustworthiness scoring schemes – 

hence, this contribution. 

Actually, this study goes one step further, and first investigates whether landscape nodes 

involved in prediction should be no longer contribute proportionally to the R values of the 

compound to predict, but have their effective impact modulated by their density and coherence 

factors. Intuitively, such a strategy makes sense – nodes are the “sources of knowledge” which 

transfer to the candidate to be predicted the knowledge learned about the CS distribution of 

property P on the basis of training set compound. Sources most relevant to the compound to 

predict (nodes of higher level of association R) should impact most on prediction (R-weighted 

averaging is paramount). Yet, it might be senseful to dampen the relative impact of less 

trustworthy sources (empty or non-coherent nodes). A mathematical formalism in this sense is 

proposed here, involving a few tunable parameters. 

Eventually, trustworthiness of node sources (NC, ND) and coherence of prediction (PC) are 

combined into a final trustworthiness score T. Predictions at T above user-specified thresholds 

were carried out and evaluated. AD-dependent predictions need be assessed in terms of two 
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(often) conflicting criteria: prediction accuracy and AD coverage of the external set. A good T 

criterion would typically allow increasing accuracy at the cost of lowering coverage, as more 

constraining thresholds are applied. In order to avoid complex Pareto front analysis, (coverage, 

accuracy) pairs were here characterized by three complementary quality scores QC, QA, QU. All 

the three are geometric means of coverage and accuracy, with one being biased to be more 

sensitive on Coverage (QC), another to respond more to Accuracy (QA), while the default third 

is Unbiased (QU) and equally sensitive to both.  

A large number of pKi (-log of the thermodynamic instability constant of protein-ligand 

complexes) quantitative (regression) prediction problems were run over a pool of 445 different 

biological targets endowed with enough (>100) associated ligands of reported Ki in ChEMBL 

v.26. Systematically, a randomized 30% of each set was taken out as external set, while the 

remaining 70% served to generate pKi landscapes on the seven general-purpose “universal” maps 

previously developed by our team. Prediction of external pKi values was then performed, for all 

envisaged AD-defining parameters. Coverage (fraction of external set within herein defined AD) 

and accuracy (here, R
2*

 values, vide infra) were monitored. For each target, randomized external 

set extraction was repeated 25 times, as prediction scores may significantly change in response to 

training versus external set composition. It is thus possible to count how many of these 25 trials 

returned (coverage, accuracy) pairs of high QC, QA or QU – and implicitly, to monitor the 

percentage of “successful” predictions throughout the pool of prediction challenges featuring the 

445 QSAR sets on the seven GTMs. The question whether preferred AD-defining strategies 

would depend on the nature of the used GTM (based on significantly different molecular 

description schemes) was also addressed. 

Furthermore, it is important to verify whether the findings of the regression-based AD definition 

quest are of general validity – irrespective of both target nature and QSAR problem nature. 319 

additional biological targets for which ChEMBL does not offer sufficient pKi data for large 

enough quantitative QSAR sets but reports enough activity data to generate a classification 

QSAR series (discriminating between empirically defined “actives” versus “inactives”) were 

employed to this purpose. As GTM-driven “fuzzy binary classification landscapes” treat the 

probability to belong to a class rather than the other as a real-value score, they technically behave 

like regression landscapes. The mathematical formalism provided here applies irrespectively of 

whether the molecular property P(M) is a real value or a class number (1=inactive/2=active). 
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However, Balanced Accuracy (BA) is used as accuracy criterion in the latter case. As a side 

remark, multi-class classification problems require a different mathematical formalism and are 

not covered here. However, this is not a real limitation, because any C-class classification 

problem can be reformulated as C independent binary classification challenges – each focused on 

segregating members of a class c=1..C from respective non-members. 

The final key point addressed here is checking whether GTM-based trustworthiness definitions 

may as well apply to SOMs, herewith showing that the herein developed formalism may apply to 

several grid-based mapping algorithms. To this purpose, four “universal” SOMs US1-US4 were 

constructed in following the evolutionary universal GTM selection procedure 
13

, using strictly 

the same 236 active/inactive binary classification QSAR problems for map quality assessment – 

but adapting the map-encoding “chromosome” to accommodate SOM-specific instead of GTM-

specific parameters. The 319 above-mentioned classification problems were eventually enacted 

on US1-US4, following the established protocol. Collaterally, this allows to quantitatively assess 

if – and in how far – GTMs are, as expected but so-far never formally proven – more effective 

predictors than SOMs. 

As an outline, this article focuses on strategies to optimize predictivity of grid-based map 

landscapes, in proposing a means to quantify node trustworthiness as “providers” of 

neighborhood information learnt at training stage. To this purpose, a mathematical formalism 

featuring a few tunable parameters and a series of prediction success criteria is introduced.  

Predictive landscapes rely on “universal GTMs” or on-purpose built “universal SOMs”. They are 

built on hand of ChEMBL-extracted training sets associated with either continuous regression 

(pKi values) or binary (activity class) data. Since universal SOMs were not described before, 

short Methods and Results chapters are needed to properly introduce them.  

The relative performance of the various setups is impacted by the chosen “points of view” 

embodied by the complementary success criteria: setups guaranteeing high coverage are not the 

same as ones providing high prediction accuracy. With this is mind, the following key questions 

were addressed here: 

 Are preferred AD-defining strategies dependent on the nature of the used GTM (based on 

significantly different molecular description schemes)? 

 Are they problem category specific, or are there consensus setups which maximize success in 

both regression and classification problems? 
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 Are they map type specific, or are there consensus setups which maximize success of both 

GTM and in SOM-driven models? 

Based on this study, and dependent on the coverage versus accuracy-oriented point of view of 

the user, the tunable parameters were assigned values guaranteeing a general compliance of the 

AD control schemes with all the prediction scenarios covered here.  

Eventually, a visual illustration of the concepts involved in the AD definition is shown, as an aid 

to highlight and understand prediction errors. 

2 Methods 

GTM construction has been already extensively described in literature. Likewise, the philosophy 

and technical details at the basis of the herein used Universal maps were also largely described 

13
. Therefore, this article will only focus on the methodology of predictive landscapes, based on 

the already introduced responsibility vector RN(M), featuring the level of association of an item 

(compound) M to each of the nodes N of the GTM. 

2.1 Universal SOMs 

Universal SOMs were generated by an evolutionary algorithm exploring the parameter space 

associated to the herein used SOM_PAK software 
14

, while the fitness function used to select the 

maps was the same mean cross-validated BA score over the 236 active/inactive binary 

classification QSAR problems used to power the universal GTM search 
13, 15

. Each of the four 

US was based on the same descriptors used by the corresponding universal GTM, i.e. descriptor 

choice as a degree of freedom of the evolutionary process was disabled. The six SOM-specific 

degrees of freedom encoded by the chromosome are given in the Appendix document available 

as Supplementary Information. 

2.2 Predictive Landscape Construction 

As mentioned in Introduction, the methodology below applies to both GTM and SOM-driven 

property prediction, with the provision that SOM “responsibility” vectors are binary, with 

RW(M)=1 for the “winning” node W, and RN(M)=0 for all others N≠W. A property landscape is 

defined by transferring properties P from training set (TS) molecules (M) onto the strongly 

associated nodes. P may be any continuous molecular property, or a binary class label in fuzzy 

classification landscapes. Many-class classification problems are not considered here. This 
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paragraph outlines how to calculate a predictive landscape (i.e. the set of node-associated 

property values NPN) together with associated AD-relevant criteria (density, coherence). 

The cumulated responsibility on a node, CRN, is the sum of training molecule responsibilities: 

          

    

 (1) 

 

Note that theoretically     is always positive, since all       are positive values rendered by 

radial basis functions. Practically, R values are stored on file with a precision of 10
-5

. Thus, 

nodes with no “tangible” responsibility –            for all molecules – have         

The magnitude     is dependent on training set size and map resolution (number of nodes), thus 

requires some normalization before being used as a node density (ND) criterion in 

trustworthiness estimation. Here, it was empirically decided to assign the most populated node 

ND=1.0 and empty nodes ND=0.0, hence 

    
   

   
 

   
 (2) 

 

The responsibility-weighed mean property value of residents is computed on each node N as the 

node property NPN: 

    
 

   
          

    

 (3) 

 

The associated responsibility-weighed standard deviation value of the property, (NPN) is: 

        
 

   
           

    

     
  (4) 

 

This standard deviation reflects the degree of consistency of the property on the map. It is small 

if most compounds located in the same region of the map have similar property values. It is large 

if there is no relation between the property value and this location on the map. 

This observation can be translated into a coherence score,    , defined as follows: 

      
      

   
    

        
    

    
   

      

  
 (5) 
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The node coherence is a dimensionless value <1, but always positive (the standard deviation of a 

distribution cannot exceed its range width). The score is maximal if the compounds located near 

the considered node share similar property values (NB compliance); it is maximal if there is no 

relation between this node and the property value. The symbol P denotes property range width. 

At null    ,     is undefined and set to zero: empty nodes are completely incoherent, by 

definition. Otherwise,      , as the standard deviation of a property cannot exceed its range 

width. 

2.2.1 The case of empty nodes and the Min-Mean Toggle (MMT). 

For nodes void of any tangible responsibilities,       and hence equations (3) to (5) are not 

applicable. Default NP values are assigned to empty nodes, depending on a “Min-Mean Toggle” 

MMT: 

-  With the toggle set to “mean”, empty nodes are assigned to the average property of the 

training set:                     . It is the reasonable expectation if nothing is 

known about a chemical space zone. 

- Toggle at “min” assigns a chosen expectation of the activity level. In the present case it is 

the lowest property value observed in the training set:                      .  

The minimum value was chosen in the present case, because with all herein predicted bioactivity 

scores (pKi or activity classes) “minimum” is synonymous to low activity. Thus, the MMT 

degree of freedom chooses between two empirical postulates about the behavior of compounds 

in chemical space zones not covered by the training set: “mean” assumes those activities to be 

“average” (as predicted by a null model), “min” assumes those molecules to be inactive.  

2.3 Node Trustworthiness 

The below proposed Node Trustworthiness (NT) score serves to modulate the participation of 

each node in the prediction process – with highly populated and homogeneous nodes expected to 

contribute more. NT is postulated to increase with node density ND, equation (2), and coherence 

NC, equation (5), according to the simple working hypothesis below: 

    
     

     
 

   
 

      
     

 
 
 (6) 
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where  and  are tunable parameters, which will be subject to an exhaustive scan in this 

work. The relative importance of NDN and NCN is controlled by the values of the exponents  

and  that were allowed to take values of (0.0, 0.01, 0.1, 0.5, 1.0, 2.0). Trustworthiness becomes 

independent of the density and the coherence if ==0. The parameter  plays the role of a 

default trustworthiness level and is set to take the values (0.0, 0.01, 0.1, 0.5); if non-null, it 

prevents the score to be undefined in the case both density and coherence are together null. The 

denominator in equation (6) is a normalization factor, ensuring that the most trustworthy of all 

nodes of the trained landscape is assigned      . At the opposite end,       signals that 

such nodes will be completely ignored in predictions. The entire grid of (, 

combinations was explored, excluding redundancies (if ==0, all nodes will have 

      irrespective of . Note that     may become zero only for empty nodes and only if 

=0 and >0. Otherwise, their trust level remains positive and thus the MMT-chosen     value 

becomes relevant, while at =0 and >0 prediction results are MMT-independent. 

2.4 The NT-sensitive prediction protocol. 

The rule to interpolate the property (below, “^” stands for “predicted”) of a molecule M 

accounting for node trustworthiness is:  

      
              

          
 (7) 

 

which resumes to                   if all nodes are equally trustworthy. The 

normalizing factor at denominator is the mean node trustworthiness of residence nodes 

concerning M: 

                   
 

 (8) 

 

The weighted mean       serving as predicted value is associated to a standard deviation: 

        
 

         
             

        

 

 (9) 
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The standard deviation expresses the divergence of the node properties based on which the 

molecular property is extrapolated. It is, in addition to the mean node trustworthiness          , 

the other key contributor to the trustworthiness      of the prediction of M: 

  

                  
      

  
  (10) 

 

      is large if (1) M predominantly resides in trustworthy nodes and (2) the standard deviation 

of the prediction is small in comparison to the activity range   , e.g. nodes of residence have 

nearly equal node property values; it is small otherwise. 

2.5 Applicability domain definition and performance criteria. 

The score is finally used to take an applicability domain decision. For an external set, at given 

(, T), all molecules M reaching a user-chosen Trustworthiness Threshold TT are 

considered as inside the AD. The AD coverage fraction is:  

 

                                                           (11) 

 

Eventually,       is compared to actual      for all compounds within the AD, in order to 

establish the prediction quality criterion. For categorical problems, BA is classically defined as 

the mean of proportions of well classified actives and well classified inactives, respectively – 

ranging from zero to one, with random classifier performance at 0.5. For regression problems, 

the root-mean-squared error of prediction                          has been reported to the 

standard deviation       of      over the entire QSAR series, prior to its randomized split into 

training and external sets. It is translated into a determination coefficient of a given prediction 

simulation: 

                    
                         

  
    

 (12) 

 

This measure is independent on fluctuations of the dynamic range of the property within the 

randomly picked external set. Note that the quality criteria above (fAD and R
2*

, respectively BA) 

are all tributary to the five parameters               . The first four control the prediction 
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mechanism, whereas the latter controls the subset of predictions considered inside the AD. For 

TT, considered values were (0.0, 0.5, 0.7, 0.8, 0.9, 0.95). In view of above-mentioned 

redundancies, 1062 distinct                combinations were systematically scanned.  

2.6 Data sets 

All the ligand structures used were imported from ChEMBL 
16

 and standardized according to the 

default procedure of our web server http://infochim.u-strasbg.fr/webserv/VSEngine.html.  GTM 

landscape-based regression models were benchmarked against a series of 445 QSAR sets 

extracted from ChEMBL v.26. Each such set consists of ligands binding with known 

thermodynamic inhibition constant to a given biological target. The 445 considered targets are all 

the ones featuring ≥100 distinct ligands of known Ki, excluding imprecise entries (Ki larger or 

smaller than indicated value). Since employed molecular descriptors are stereochemistry-

insensitive, strict uniqueness of standardized, stereochemistry-void canonical SMILES is 

required. Unique SMILES associated to multiple Ki values diverging by more than one order of 

magnitude were discarded. The property used in predictions was pKi. 

Classification models were acted on binary active/inactive QSAR sets previously extracted for 

Universal map construction and validation 
13

. Please refer to that article for a detailed discussion 

of their preparation and the assignment protocol of active versus inactive status. After excluding 

targets already covered by the 445 regression problems, 319 distinct classification QSAR sets 

remained.  

2.7 Benchmarking protocol 

Each regression QSAR set was projected on each of the seven Universal maps, further on 

referred as U1…U7. As prediction was run independently for each map, this amounts to 

445×7=3115 series of predictions. For each such series, a systematic scan over combinations of 

the four tunable parameters             is started.  

A “prediction challenge” is run at given              for each set, on every map. Therefore, 

the number of regression prediction challenges performed here equals 3,308,130 = 1062 

(scanned parameter quintuplets) times 3115 (QSAR set, Universal Map) combinations. A 

prediction challenge consists of the following key steps: 

1. First, a random split of associated QSAR data into “training” (70%) and “external test” 

(30%) is proposed.  

http://infochim.u-strasbg.fr/webserv/VSEngine.html
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2. Training data are used to build the pKi landscape on the given map and to define the NT 

scores of nodes therein in accordance to set             values.  

3. Eventually, external compounds are projected on the above landscape, with output of  

      and respectively     .  

4. Looping over considered TT values, entries satisfying the AD threshold are selected and 

quality criteria fAD and R
2*

 are reported as associated to the given setup .  

5. The cycle of (randomized data splitting – landscape construction – prediction – 

evaluation) is repeated, until having recorded 25       
    entries for each TT value. 

Thus, a prediction challenge returns 25       
    entries per TT value, concerning a given 

QSAR data set on a given map.   

The same procedure was then applied to the 319 binary classification problems, employing U1 as 

a representative GTM and monitoring problem-specific          pairs. Eventually, these 

classification problems were also processed on the four universal SOMs US1-US4. 

At any given setup, fAD and R
2*

 and respectively BA may significantly fluctuate in response of the 

randomized composition of training versus external set. Are there any setups providing 

systematic advantages in terms of       
   , respectively          ?  

As mentioned in Introduction, the quality of (coverage, accuracy) pairs cannot be captured by a 

single number but can be characterized by three “view-point-specific” coverage-focused (QC), 

accuracy-focused (QA) and unbiased (QU) quality criteria. To this purpose, the accuracy criteria 

R
2*

 and BA must first be normalized to a [0,1] range, by mapping the lowest relevant value to 0. 

Here,             and             while                   Let the normalized 

values be designed as Q: 

 

   
                                                      

                                                          
  

 

(13) 

Herewith the three quality criteria are defined as: 

          

          
 

 

         
  

 

(14) 
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Three quality thresholds (low, L=0.4; medium, M=0.6; high, H=0.8) were envisaged, making it 

straightforward to count the percentage of situations in which a given parameter vector  

managed to reach a prediction quality score exceeding a given threshold. Formally, the success 

rate             of a setup   over a given pool  of predictions according to criterion QX at 

threshold Y represents the percentage of situations in which setup   delivered the expectation 

QX>Y, out of the total number of times   has been used for prediction within the pool . The 

latter consists of conveniently regrouped prediction challenges – by problem type, by maps or 

map families, as listed in Table 1 below.  

Table 1: Pools of prediction challenges. 

Pool Designation  Description 

reg@U Prediction challenges of the 445 regression QSAR sets on all the seven 

universal GTMs (445×7×25=77875 challenges) 

reg@Ui Prediction challenges of the 445 regression QSAR sets on a specific universal 

GTM #i=1..7 (subsets of reg@U) 

class@U1 Prediction challenges of the 319 classification QSAR sets on universal GTM #1 

(for direct comparison to reg@U1) 

class@US Prediction challenges of the 319 classification QSAR sets on all the four 

universal SOMs (319×4×25=31900 challenges) 

class@USi Prediction challenges of the 319 classification QSAR sets on a specific 

universal SOM #i=1..4 (subsets of class@US) 

 

The analysis of the success rate aims at answering the following questions: 

1. How do success rates depend on the employed quality criteria, QX, and success rate 

threshold, Y? 

2. Are there   setups that can be considered globally better, irrespective of challenge pools, 

and the nature of the problem (classification or regression)? 

3. Are there   setups that can be considered globally better, irrespective of map parameters, 

and even the nature (GTM or SOM) of the mapping algorithm? 
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Positive answers to points 2 and 3 above would mean that a context- and method-independent 

consensus on how to define trustworthiness in grid-based chemical space maps can be found. For 

each challenge pool quality criteria, QX, and success rate threshold, Y, a set of 1062 success 

rate             values was collected – one for each investigated setup  . These vectors of 

success rate values are subjected to covariance analysis. If             is positively correlated to 

               over all the  , this means that roughly the same setups maximizing the success rate 

QX>Y of prediction challenges over pool  are also the ones maximizing success rates QX’>Y’ 

of prediction challenges over pool ‘. Reciprocally, setups causing weak success rates in the 

context        will not work in the context           either. The degree of covariance is 

reported as the Pearson correlation coefficient of the linear regression line             

                   The higher the Pearson score, the stronger the assumption that some 

common parameter set   can be found to perform well in both the contexts        and 

         . Low correlation means, on the contrary, that any specific setup   yielding 

satisfactory results for problems in pool  according to the criterion QX>Y would be a bad 

choice when applied to the context          .  

Eventually, the last key aspect is to understand whether top performing setups are characterized 

by specific values or value ranges of the individual parameters               , herewith 

establishing practical recipes on how exactly to best harness the trustworthiness issues in grid-

based map predictors in order to maximize their predictive quality. 

3 Results 

3.1 Universal SOMs   

Details about the corresponding SOM-specific setups can be found in the Table A1 of the 

Appendix document. Evolutionary “growth” of universal SOMs was a relatively easy exercise 

compared to the previously achieved GTM 
15, 17

 construction, both because (a) the descriptor sets 

of the four top GTMs were used, without further considering descriptor choice as a degree of 

freedom and (b) SOM configuration has less tunable parameters. Therefore, if these SOMs 

would be shown to be less proficient active/inactive separators (in repeated three-fold cross-

validated simulations, following the same protocol used for GTM construction) over the 236 

selection QSAR sets, this cannot be a consequence of insufficient sampling of SOM parameter 



17 

 

space by the evolutionary procedure. Indeed, the distribution histograms of the shifts in cross-

validated Balanced Accuracies XVBA of QSAR sets on the GTM, with respect to the equivalent 

performance of the same set on the equivalent SOM,                            are 

clearly biased towards positive values, for all the k=1..4 four pairs of corresponding maps. 

 

Figure 1: Distribution of the XVBA shift                            for each of the 236 

QSAR sets achieved on universal GTMs versus  equivalent (same descriptor space-based) universal 

SOMs. Ui are universal GTMs , USi are universal SOMs; the i index refers to a given descriptor space 

common to both Ui  and USi. 

Targets seen to better cross-validate on GTMs are clearly a majority, whereas QSAR sets better 

discriminated on SOMs are rare, and are only marginally enhanced. Fuzzy logics-based grid-

based mapping is clearly a winning strategy. 

3.2 The double putative impact of trustworthiness: general discussion. 

The key novelty – and also putative source of confusion – of this work is that node 

trustworthiness is being assigned two distinct roles: it (conditionally) influences upon predicted 

values, according to equation (7), and then contribute to estimate the global trustworthiness of 

predictions, according to (10). Property prediction using grid-based maps is practically a “data 

fusion” exercise: nodes to which the compound is assigned are “data sources” on hand of which 
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a final “decision” concerning the compound predicted properties must be made. By default, this 

“decision” consists in taking the R-weighed mean of node properties. The present work however 

argues that trustworthiness of the “data sources” should also be considered here – a common 

sense strategy in data fusion. Here, importance of robust data sources (trustworthy nodes) is 

enhanced proportionally to NT. If a compound is shared between a coherent and a low 

coherence, activity cliff-ridden node, the NT factor will enhance the contribution of the former 

“safer source” in mean prediction (relative to the default, R-weighted contribution). Turning this 

NT-bias off is implicitly achieved by setting the exponents  and  in equation (6) to zero, as 

covered by the present benchmarking – the current formalism is fully “backwards compatible” 

with the standard grid-based map prediction process.  

Of course, the above only concerns cases in which there are several data sources to ponder upon. 

In SOMs – and, very often, on GTMs, whenever R vectors are de facto binary (~100% of 

residence in a single node) – the only node in question becomes, by default, the most trustworthy 

one. If its NT equals zero, no property prediction can be performed and the molecule is forcibly 

out of the AD. Else, the molecule property will be assigned to the mean property of the node – 

the best envisageable estimate under given circumstances. However, even if NT did not directly 

impact on predicted values, it will nevertheless serve in the user’s decision-making on whether to 

trust or to discard this prediction, its second key role. Thus, a predicted value based on a single 

low-density or uncoherent node cannot be “corrected” – but will be labeled as untrustworthy 

according to its low T(M) value from equation (10).  

3.3 Quality Criteria and Thresholds 

A setup is successful according to a given quality criterion at a given threshold if its coverage 

and accuracy values are fulfilling the specified constraints. The third paragraph of the Appendix 

in Supplementary Information intuitively illustrates what it practically means to achieve 

“success” according to a quality criterion QC, QU and QA. Covariance analysis of success scores 

(details in Appendix) showed that success counts at considered thresholds remain largely 

proportional –                                       – meaning the relative merit of parameter 

sets is actually independent on the threshold. Therefore, further discussion will focus on the 

medium and high levels of performance only. Concerning the nature of the criteria, the analysis 

(details in Appendix) showed that success scores based on compromise QU are fairly correlated 
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to both the QA- and the QC-based ones – while the accuracy- and coverage-based criteria are 

indeed complementary (uncorrelated). Therefore, QU can be further on ignored.  

3.4 Is setup success map-dependent? 

Success scores for regression problems were monitored according to GTMs U1 to U4, then 

compared to each other and to the global success scores obtained over the full set of seven 

universal GTMs. Likewise, success rates of classification problems monitored on US1 to US3 

were compared to each other and to the global success scores obtained over the full set of four 

universal SOMs. These results are reported in Figure 2. The correlation is high for all pairwise 

map comparisons. The proficiency of a setup   is therefore independent of the map.  

 

Figure 2: Level of correlation (Pearson R
2
) between setup success scores advocated by specific maps (Ui 

– universal GTM #i, USi – universal SOM #i) or by the consensus of the entire set of maps of a given 

category (U – all 7 GTMs, US – all 4 SOMs), at M threshold. Color coding refers to the prediction pool-

quality criterion combination. The left-most blue U3-U4 bar reflects the degree of correlation between 

                 and                 , etc 

Within a large pool of QSAR problems of a same type and within a given category of grid-based 

maps (GTM or SOM), the setups optimizing coverage-focused and respectively accuracy-

focused predictive performance appear to be independent on the map parameters, including the 

molecular descriptors it is based upon. Of course, these descriptors are the ultimate reason for 

which a molecule is (fuzzily or not) assigned to a given node and not to another. However, the 
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same (well-tuned) trustworthiness analysis schemes tends to give the good results, irrespective of 

the map. There are no   setups to work well with one specific map and fail with all others, in 

spite of the widely different nature of the chemical information represented on these maps. So 

far, results suggest that node trustworthiness may indeed be coherently tuned as a function of 

node density and coherence, independently of the nature of the map. 

3.5 Is setup success dependent on the nature of the QSAR problem and QSAR sets? 

The universal GTM U1 represents the common ground on which both the 445 regression 

problems and the 319 classification problems were processed. Setup success scores obtained for 

the pool of regression problems,                  and                  respectively can be 

directly compared to their classification pool analogues                    and 

                  . Note that this comparison encompassed two key changes: the nature of the 

prediction problem (regression versus classification) and the QSAR sets per se – the two series 

of 445 and 319 sets do not have a single biological target in common. Nevertheless, the Pearson 

correlation scores are of 0.675 for regression-focused and 0.775 for classification-focused 

success rates, respectively. Trends in setup success scores are thus resilient with respect to 

simultaneous and radical changes in terms of QSAR sets, and the nature of the prediction 

problem. The pertinence of a setup scheme therefore does not significantly depend on the 

particular problem it is being applied to. This is a key result, which completes the previous 

observation that well-tuned trustworthiness analysis schemes are also independent of the map 

nature. Please refer to the fourth paragraph of the Appendix document for a detailed analysis, 

with examples, of this result.  

3.6 Is setup success dependent on the SOM vs GTM nature of the map? 

The Pearson correlation score of                    versus                     reaches 0.744, 

witnessing that the impact of setup on the success scores largely follows a same trend, 

irrespective of the fundamental difference between the SOM and the GTM (all other things 

being, in as far as possible, equal – notably molecular descriptors). Since it was already 

established that the various SOMs tend to be highly covariant in terms of success score rankings, 

                   also strongly correlates to the generic                   , all SOMs 

confounded (Pearson score 0.75). QC-based scores typically tend to correlate even better than 

their QA-based counterparts and exceed 0.8. However, in terms of absolute scores, success rates 
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continue to be significantly higher on the GTM, in line with the cross-validation results from 

Figure 1. The most successful setup on US1 achieved QA>H in 18.5% of class@US1 attempts, 

while being successful in 23.7% of equivalent GTM-base challenges class@U1 – with respect to 

which it is ranked only 10
th

. The absolute best result achievable within class@U1 amounts to 

25.6%. 

Ultimately, a triple “jump” in problem configuration space – from GTMs to SOMs, from 

regression to classification, from one pool of biological targets to another – is characterized by 

the correlation level of                 versus                   . With a robust Pearson score 

of 0.69 (0.76 for QC), this finally underlines that node trustworthiness may indeed be quantified 

independently of node construction history and underlying mathematics. A few representative   

setups can be seen to define node trustworthiness in a way that systematically enhances 

prediction success and intelligently delimits AD throughout the spectrum of grid-based maps. 

3.7 What are the good setups? 

Note that a full-blown correlation of success score values throughout the series of monitored 

setup parameter combinations is not even necessary to define one or more parameter 

combinations of general use with grid-based maps. It is sufficient to find some combinations that 

are systematically ranked amongst the best in each of the prediction challenges on the GTMs and 

SOMs. Sorting                 and respectively                    in order to eventually pick 

parameter combinations with the best mean rank in both lists returns the following Table 2. 

Table 2: Setups being consensually top-ranked in terms of accuracy- and respectively coverage-focused 

success scores (QA, QC) at H thresholds, for both regression problems on GTMs and classification 

problems on SOMs. For each setup, its rank with respect to regression problems is listed in column U, 

while US reports its rank within the classification problem pool. “< >” stands for the mean of the two 

ranks – the criterion by which these setups were selected. On yellow background – the “default” setup 

corresponding to no trustworthiness considerations and no AD control.  

Setup 

               

Rank (QA>H) Setup 

               

Rank (QC>H) 

U US < > U US < > 

(0.01,0.10,1.00,mean;0.70) 9 1 5 (0.50,0.01,0.01,mean;0.00) 9 14 11.5 

(0.10,0.10,1.00,mean;0.70) 7 5 6 (0.50,0.01,1.00,mean;0.00) 18 10 14 

(0.00,0.10,1.00,mean;0.70) 8 6 7 (1.00,0.00,0.00,mean;0.00) 1 31 16 

(0.01,0.10,1.00,min;0.70) 11 4 7.5 (1.00,0.00,0.00,mean;0.50) 1 31 16 

(0.50,0.10,1.00,min;0.80) 5 10 7.5 (1.00,0.00,0.00,mean;0.70) 2 31 16.5 
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(0.10,0.10,1.00,min;0.70) 15 2 8.5 (1.00,0.00,0.00,mean;0.80) 4 31 17.5 

(0.50,0.10,1.00,mean;0.80) 17 7 12 (0.10,0.10,1.00,mean;0.00) 14 28 21 

(0.50,0.10,2.00,min;0.70) 13 26 19.5 (0.01,0.50,2.00,mean;0.00) 45 5 25 

(0.50,0.10,2.00,mean;0.70) 22 23 22.5 (0.10,0.50,0.01,mean;0.00) 13 38 25.5 

(0.01,0.10,2.00,min;0.50) 27 19 23 (0.10,0.50,0.10,mean;0.00) 22 33 27.5 

 

As expected, optimal parameterization of the trustworthiness-driven AD delimiter will differ 

respective to whether the focus is set on accuracy or on coverage. Of course, there is no simple 

relationship between the trustworthiness threshold TT and coverage – there is only a local rule 

stating that at given method, training and test sets, coverage will decrease with increasing TT. 

Otherwise, the fraction of test set predictable at trustworthiness > TT first of all depends on the 

test set, and its degree of overlap with training molecules. It is expected to see rather large TT 

values selected when the focus is on accuracy in left-hand Table 2 (0.7 or 0.8 in 9 out of the 10 

setups), and zero (in 7 out of the 10; right-hand Table 2) when exhaustive coverage is preferred. 

This however does not prevent QA-selected setups to occasionally support very high, or even 

total coverage of test sets.  

Higher   values are also associated to intrinsically enhanced coverage,     ensuring that all 

nodes may be technically used for prediction, including empty nodes. Unless    , if the 

dependency of trustworthiness on node density has a non-zero exponent  , empty nodes will not 

contribute at all to prediction and therefore test compounds having tangible responsibilities only 

on empty nodes are non-predictable, even at TT=0.  If     or    , this “hard” AD exclusion 

is deactivated: full coverage of any arbitrary test set can be guaranteed, at least at TT=0. Notably, 

the default “AD-less” setup (1.00,0.00,0.00, mean;0.00) implemented by the current GTM 

predictor unsurprisingly qualifies amongst the top coverage-focused setup strategies but it is not 

the top one. This is just one of many setups guaranteeing 100% coverage, and it is not the most 

accurate one. It is closely followed in terms of ranking by analogues at TT>0. In those cases, 

prediction trustworthiness is controlled only by the coherence of prediction        as in 

equation (9), since at           all nodes are equally trustworthy. Yet, setting TT>0 does 

not improve ranking in terms of coverage. In accuracy-focused ranking QA>H, this “AD-less” 

setup is ranked #153 out of 1062, with an absolute success score of 0.14% (roughly twice as 

small as top accuracy-focused setups). 
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In terms of Mean-Min-Toggle MMT, under coverage-focus, a clear preference is observed for 

“coloring” empty nodes by the mean of training set compound property values. The situation is 

less clear when accuracy focus is applied – which is expected, as the latter setups actively 

downweigh the impact of empty nodes on prediction, hence making the choice of the assigned 

property largely irrelevant. Yet, if empty nodes must be used for prediction in the name of 

complete test set coverage, the most rational strategy is MMT=”mean”. This choice has no 

negative impact on accuracy-focused setups, thus MMT=”mean” is the universally best option. 

With focus on accuracy, the   exponent controlling the impact of node density on its 

trustworthiness is best set to 0.1 – low, but never zero. Essentially, such a low exponent 

specifically penalizes empty and nearly empty nodes but has a limited impact for reasonably 

populated nodes. By contrast, results prone a rather strong dependence (linear, or even quadratic) 

      of node trustworthiness on node coherence. 

Thus, in an accuracy-focused strategy – and independently of the nature of the prediction 

problems and the underlying grid-based maps – we herein propose to modulate node 

trustworthiness – see equation (6) –  as proportional to              , with a 

trustworthiness threshold of the order of 0.7 to delimit the AD. 

As already mentioned, co-opting empty nodes into the prediction process is a key “strategy” to 

increase coverage, so coverage-based focus typically allows for even lower            , albeit 

values of 0.5 also appear towards the bottom of the preference list. There is no clear trend in 

terms of   in the right-hand columns of Table 2 – meaning that there is no unique recipe to scale 

down contributions from nodes lacking coherence and herewith achieve an improvement 

throughout the (entire) test set. Node coherence is best used as an out-of-AD trigger for test set 

compounds with significant residence rates in low coherence nodes. Still, if focus is on coverage 

then the result quality will be little impacted by the way of modulating node weights in terms of 

coherence. The first two ranked setups of the coverage-focused scenario are practically not 

significanlty more performant than the default setup in the third position – thus, the latter can be 

safely used for predictions in situations when a predicted value should be mandatorily returned 

for the whole training set (               . This is notably the case in cross-validation, for 

failure to do so would result in incomplete set of experimental-predicted data. 
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3.8 Tracking Prediction Errors on the Trustworthiness Landscape 

The strength of grid-based map predictions is that the prediction process can be visually followed 

on the map, and better understood. Below, the prediction challenges of the affinity (pKi) of 

trypsin (CHEMBL209) inhibitors on six universal map landscapes are traced in Figure 3. Five of 

the landscapes represent the training set (70%, 647 compounds), and surround the central bottom 

landscape E, representing the external test molecules (30%, 275 molecules) colored by their 

prediction error (see spectrum bar below), on universal GTM #2 (U2). Shown training set 

information is as follows: 

(A) represents the binary occupancy of U2 nodes by training set compounds: all nodes having 

some tangible cumulated responsibility (>10
-5

) are rendered in black. These are nodes for which 

a mean property value and its standard deviation are technically calculable based on training 

data, i.e. nodes in which there is at least some neighborhood information “trickling down” into 

them. 

(B) renders the actual density distribution (ND) of the training set – from the dark red most 

populous node (containing > 20 of the 647 training compounds) to the barely visible marginally 

populated ones. 

(C) represents the coherence (NC) landscape of the training nodes: darker blue means higher 

coherence. Coherence improves at the borders to the empty zones and degrades in the denser 

areas. Marginally populated nodes with cumulated responsibilities between 10
-5

 and 10
-2

 

frequently acquire these values as a single contribution of one remote compound. The mean 

property value results from such single contributing compound, and the associated standard 

deviation is null. In dense nodes, by contrast, several chemical species with diverging property 

values are clustered. It is impossible to expect all residents to have strictly the same activity 

(D) eventually renders the node trustworthiness score according to the chosen top accuracy-

focused setup              . As =0.01, even empty nodes have non-null trustworthiness, 

hence the homogeneous background. Thanks to the density modulation, perfectly coherent but 

marginally populated nodes are not among the most trustworthy. Dense nodes harboring 

residents with strongly diverging affinity values are being penalized as well. 

(E) represents the property landscape used for prediction. It is not density-modulated, thus 

displaying empty nodes at property value equal to the mean training set pKi value (which is a 

remarkably high 6.7, over this QSAR set very rich in potent actives). 
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Figure 3: Key landscapes for tracing of prediction errors of trypsin affinity on universal GTM#2. They 

represent (A) binary occupancy by the training set, (B) training set density distribution, (C) node 

coherence NC, (D) node trustworthiness NT, (E) prediction error of test set compounds and (F) the 

property landscape used for prediction. The four colored pointers correspond to the specific compounds 

highlighted in the text. Their structures are shown in the following Figures. 

The north-western red marker represents a test compound (Figure 4) falling outside the training 

set-covered zone (Figure 3). Its affinity is set to the training set mean, which is nevertheless two 

orders of magnitude above its actual affinity. Similarly, the central orange marker pinpoints 

towards an only slightly more populated zone of average trustworthiness: the in there projected 

training set compound (Figure 4) is also predicted to be ~100 times more potent than it actually 

is. There are several more examples of misprediction that may be associated to low local 

trustworthiness: at TT=0, the root-mean-squared pKi prediction error over the entire test set is of 

0.95 log units (R
2
=0.67). AD restrictions at increased TT translate in better prediction accuracy 

(at decreased coverage): RMSE=0.91 for 258/275 compounds within the AD at TT=0.7, whereas 
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at TT=0.8 only 78 test compounds remain within AD but are accurately predicted within 

RMSE=0.52. 

 

Figure 4: Test set compounds located in zones void of, or sparsely populated by training molecules 

However (Figure 5), not all prediction failures can be traced back to lacking node trustworthiness 

– the light-blue and green markers point towards rather trustworthy map areas. This is 

particularly true for the former case, representing a zone populated by rather weak training 

inhibitors of overall linear shape (the two training set inhibitors, gray background in FFF, have 

pKi values of 4.6 and 6, respectively). There are no obvious NB violations concerning training 

compounds – yet, the mispredicted test compound may be the one less well fitting into the area. 

Its estimated affinity of 5.2 is much lower than its experimental value, of 7.9. Last but not least, 

the green marker corresponds to a genuine activity cliff – both training and test compounds are 

clearly similar, but the two former are highly potent (9.1 and 7.4, respectively) whereas the latter 

(predicted at 8.6) is not (experimental 6.7). 
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Figure 5: Examples of large prediction errors in relatively dense and coherent map areas (training set 

compounds are against a grey background, by contrast to the mispredicted test molecule). 

4  Conclusions 

In chemography, grid-based maps such as SOM and GTM sample molecular descriptor space by 

injecting a set of nodes, then linking them to some regular 2D grid representing the map. They 

support property prediction models, because any compound thereupon projected can “inherit” the 

properties of its residence node(s) – node properties themselves “inherited” from node-

neighboring training set compounds. In previous publications, the transparent control of the 

Applicability Domain of such approaches was often mentioned as one of their inherent strengths. 

This contribution illustrates how to practically implement such control. 

This work is however not an exhaustive approach to all possible AD definitions, but it is one of 

general applicability to GTM and SOM. The composite AD criterion introduced here integrates 

two key aspects of applicability: closeness to dense training space zones 
18

 and data/prediction 

coherence 
19

. Other – not necessarily node-based – AD criteria exist. The GTM-specific log 
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likelihood criterion
10

 may serve to reject species that are too “far” from the manifold. Eventually, 

nothing would prevent the usage classical “bounding box”-type ADs 
20

 in initial descriptor space.  

This article is a systematic study focusing on the trustworthiness of map nodes as “providers” of 

structure-activity information captured from training compounds, controlling prediction 

trustworthiness score as the key to delimit the AD of a predictive landscape. An empirical four-

parameter Node Trustworthiness (NT) function of density ND (sparsely populated nodes are less 

trustworthy) and coherence NC (nodes with training set residents of divergent properties are less 

trustworthy) is proposed. NT is postulated to depend on ND and NC as      
     

 
, where 

 are three of the four above-mentioned tunable parameters. The fourth, the Min-Mean 

Toggle MMT encodes the empirical choice of how to “color” the empty nodes, which are not 

tangibly populated by any of the training set compounds.  

Based upon the NT function, a trustworthiness score T is defined as the product between the 

mean NT of nodes participating to the prediction and the coherence PC of the predicted mean. 

The role of T is to define the Applicability Domain (AD) within a trustworthiness threshold TT.  

Prediction simulations were run on a large scale, co-opting a significant part of to-date publicly 

available structure-activity data sets (ChEMBL v. 26). Regression problems were represented by 

445 target-specific sets of ligands with reported Ki values, biological targets being as diverse as 

possible (all with ligand series exceeding 100 members were featured). A series of classification 

problems was selected to include, out of the in-house curated active/inactive-labeled ChEMBL 

ligand sets, 319 targets that were distinct from the 445 above. 

The previously constructed universal GTMs served on one hand as supports for predictive 

challenges. On the other, in order to expand the scope of this study to other grid-based mapping 

techniques, analogous “universal SOMs” were calibrated and entered in the study. This 

collaterally represented an opportunity to eventually provide quantitative proof to the – 

presumably true, but previously never explicitly checked – claim that GTM fuzziness is 

paramount to improve their predictive power over SOMs.  

For each parameter setup over all considered “pools” of challenges (combinations of QSAR sets 

and various maps), success of ensuing inside-AD predictions was monitored. This success is 

tributary to the end user’s needs – in some circumstances, accurate predictions at the cost of 

discarding large parts of the external set as out of the AD are paramount. By contrast, 
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compulsory return of a prediction for the entire external set is mandatory. Accordingly, 

“accuracy-focused” and “coverage focused” success criteria were designed.   

It is seen that setup-specific success levels (averaged over large pools of prediction challenges) 

are highly covariant, irrespectively of the targets of prediction challenges, of the (classification 

or regression) type of problems, of the specific parameterization and even the nature (GTM or 

SOM) of underlying maps. Thus, success levels determined on the basis of regression problems 

on GTMs and levels returned by completely unrelated classification problems on SOMs were 

seen to correlate to a degree of 70%. Therefore, a common, general-purpose setup of the herein 

proposed parametric AD definition was shown to generally apply to grid-based map-driven 

property prediction problems.  

It appears that node trustworthiness can be intrinsically defined to characterize any node as a 

“supplier” of learnt structure-activity information – and this irrespectively of the training 

compounds, the nature of the learnt variable or the mathematics behind the grid-based mapping 

mechanism. There are two key distinctions between GTM and SOM. The first is the algorithm 

defining the coordinates of the nodes: “manifold-based” for GTM and “code vector-based” for 

SOMs. The other is the nature of the R vector: continuous for GTM (albeit in practice often 

binary within employed numerical precision), binary for SOM. Thus, in a “metaheuristics” space 

of possible grid-based maps, encoding node localization as 0=”manifold-based” versus 1=“code 

vector based”, respectively the nature of R (0=continuous, 1=binary), GTM is  metaheuristics 

(0,0) and SOM its diagonally opposed (1,1). Alternative options (0,1): GTM with forced binary 

R vectors and (1,0): SOM with fuzzy-logics sharing of an item over several near nodes, are 

technically valid possibilities, albeit not customary ones. Or, the same AD-defining strategy, 

with the same parameters, applies to both “extreme” metaheuristics (0,0) and (1,1). It thus may 

be safely assumed to apply to other grid-based mapping techniques, such as the hypothesized 

(0,1) and (1,0), approaches. 

For an accuracy-focused strategy – and independently of the nature of the prediction problems 

and the underlying grid-based maps – we herein propose to modulate node trustworthiness – see 

equation (6) –  as proportional to              , with a trustworthiness threshold of the 

order of 0.7 to delimit the AD. If focus is on coverage, then the default approach (not modulating 

node weights by their trustworthiness and setting MMT to “mean”) is still one of the best 

strategies. 
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Last but not least, the herein introduced trustworthiness criteria represent per se mappable 

properties that characterize chemical space and may help to track down prediction errors and 

activity cliffs in daily QSAR practice. 

5 Supporting Information 

Two tar archives provide the curated compound sets and their activity values: RegSets.tar.gz 

contains <target>.smi_chid_pki three-column files, where <target> are the CHEMBL IDs of the 

445 biological targets with sufficient pKi data in ChEMBL version 26 (a dictionary file reporting 

the biological names of the targets associated to the CHEMBL IDs is also included in the 

archive). The three columns contain, as the extension .smi_chid_pki suggests, the 

(stereochemistry-depleted) standardized compound SMILES, the compound CHEMBL IDs 

(multiple “+”-concatenated entries if there are several ChEMBL compounds converging to this 

same stereochemistry-depleted structure) and associated pKi value (for <target>). In 

ClassSets.tar.gz the 319 compound series used in classification challenges (these stem from 

ChEMBL version 23) are reported likewise, except that the .smi_chid_class files report the 

activity class (1=inactive, 2=active) in their third and last column. A MS Word document, 

Appendix.docx, provides the more detailed analysis of certain issues mentioned in the main text.  
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