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Abstract

The progress towards understanding the molecular basis of Alzheimers’s disease is

strongly connected to elucidating the early aggregation events of the amyloid-β (Aβ)

peptide. Molecular dynamics (MD) simulations provide a viable technique to study the

aggregation of Aβ into oligomers with high spatial and temporal resolution. However,

the results of an MD simulation can only be as good as the underlying force field. A

recent study by our group showed that none of the force fields tested can distinguish be-

tween aggregation-prone and non-aggregating peptide sequences, producing the same

and in most cases too fast aggregation kinetics for all peptides. Since then, new force

fields specially designed for intrinsically disordered proteins such as Aβ were devel-

oped. Here, we assess the applicability of these new force fields to studying peptide

aggregation using the Aβ16−22 peptide and mutations of it as test case. We investigate

their performance in modeling the monomeric state, the aggregation into oligomers,

and the stability of the aggregation end product, i.e., the fibrillar state. A main find-

ing is that changing the force field has a stronger effect on the simulated aggregation

pathway than changing the peptide sequence. Also the new force fields are not able

to reproduce the experimental aggregation propensity order of the peptides. Dissect-

ing the various energy contributions shows that AMBER99SB-disp overestimates the

interactions between the peptides and water, thereby inhibiting peptide aggregation.

More promising results are obtained with CHARMM36m and especially its version

with increased protein–water interactions. It is thus recommended to use this force

field for peptide aggregation simulations and base future reparameterizations on it.

1 Introduction

Intrinsically disordered proteins (IDPs) are a class of proteins which are either completely

unstructured or contain large disordered regions in their native state, which comes with a

high tendency towards self-assembly leading to non-toxic or toxic aggregates and fibrils that

may be related to diseases.1 One of the IDPs is the amyloid-beta peptide (Aβ), forming
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the core of senile plaques inside the human brain, which is considered to be the hallmark of

Alzheimer’s disease (AD).2 Decoding the conformational dynamics of IDPs is a critical step

in understanding the process of protein aggregation and fibrillation.3 However, the structural

flexibility and high aggregation propensity impede experimental investigations to capture the

dynamics of IDPs at atomic level.4 An alternativ approach to experiments is provided by

molecular simulations, which allow for the necessary temporal and spatial resolution to follow

the motions of IDPs.5,6 The recent years have seen the development of force fields (FFs) that

allow the reliable modeling of IDPs using molecular dynamics (MD) simulations.6–10 The

flexible nature of IDPs necessitated the FFs originally developed for folded proteins to be

revised in order to accurately characterize the unfolded protein state.

However, while numerous FFs have been developed and benchmarked for IDPs (see ref 11

and references therein), it remains to be shown that they can also capture their aggrega-

tion behavior correctly. Our group compared the performance of several FFs for the for-

mation of hexamers of the Aβ16−22 peptide, which is the sequence 16KLVVFAE22 of Aβ,

and mutants of this peptide.12 This benchmark included FFs from AMBER, CHARMM,

GROMOS, and OPLS. One of the main conclusions was that GROMOS54A713 and OPLS-

AA14,15 overstabilize protein–protein interactions, leading to an overestimation of the aggre-

gation speed and an inhibition of protein-aggregate dissociation. Thereafter, Derreumaux

and coworkers investigated the protein aggregation behavior for the Aβ16−22 dimer using 17

different FFs in combination with conventional MD simulations,16 following up their pre-

vious work where they had employed replica exchange MD to study dimers and trimers of

Aβ16−22.17 They concluded that FFs from CHARMM with updated CMAP correction18,19

such as CHARMM22*,20 CHARMM36,21 and CHARMM36m,9 along with FFs based on

AMBER9922 with modified torsional parameters for the backbone and for the four amino

acids Ile, Leu, Asp, and Asn like AMBER99SB-ILDN23 and AMBER14SB24 are best suited

for studying amyloid aggregation. From these FFs, Charmm36m is the only one developed

for IDPs which was realized by refining backbone potentials in order to model the prefer-
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ence of IDPs to adopt extended structures.9 Recently, researchers at D. E. Shaw Research

developed an FF aimed at being applicable to both folded and unfolded proteins leading

to AMBER99SB-disp.10 To reach this goal, Robustelli at al. used AMBER99SB*-ILDNQ23

in combination with the TIP4P-D water model8 as starting point and introduced modifi-

cations to the backbone torsional potential and enhanced the interaction potential between

the backbone carbonyl oxygens and backbone amide hydrogen atoms, which is thought to

increase the overall stability of extended conformations as present in β-sheets.10 In addition,

they revised the water model by increasing the C6 term determining the attractive part

of the Lennard-Jones interactions, which is expected to avoid hydrophobic collapse of the

proteins. An increased protein–water interaction usually leads to a stabilization of extended

conformations.8,25

The tendency of Aβ towards aggregation has been proposed to result to a large extent

from its hydrophobic core region (residues 17–21). While the Aβ16−22 segment is not sufficient

to understand the aggregation of full-length Aβ, since the latter involves 5–6 times more

residues compared to the former, which not only increases the conformational space but also

influences the aggregation behavior, this short peptide is nonetheless an attractive model

for studying amyloid aggregation. First, Aβ16−22 is able to form fibrils itself, which are

characterized by an antiparallel ordering of the peptides forming the β-sheets.26 Second,

given its small size it is ideally suited for exploring the thermodynamics and kinetics of its

aggregation using experiments27–29 and also MD simulations. The rigorous mutation study

by Senguen et al. showed that π–π interactions do not play an important role during Aβ16−22

aggregation.27 Instead, the hydrophobicity of the amino acids in the region 17–21 seems to

be the dominant factor determining the aggregation speed of Aβ16−22 and mutants of it,

while electrostatic contacts between K16 and E22 provide further stability of the Aβ16−22

aggregates and ensure proper orientation in antiparallel β-sheets.30 In the past two decades,

numerous coarse-grained and all-atom MD simulations have been performed for studying

the aggregation of this peptide into small oligomers.12,16,30–35 For a comprehensive review
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of simulation studies of Aβ16−22 including both all-atom and coarse-grained peptide models,

the reader is referred to ref 36.

However, a valid question is – considering the vastly different results that were obtained

from FF benchmarks of Aβ 37–40 and other IDPs25 – to what extent the simulation results of

Aβ16−22 aggregation are affected by the FFs used in these studies. This question is addressed

in the current work, aiming to elucidate the FFs that are suited to study amyloid aggrega-

tion using the heptapeptide Aβ16−22 and two of its mutants as a test cases. Experiments

by Senguen et al. showed that the single mutant F19L Aβ16−22 (m1) forms fibrils faster

than wild-type Aβ16−22 (wt), while the double mutant F19V/F20V Aβ16−22 (m2) does no

aggregate at all.27 These findings can be explained with the increased and decreased hy-

drophobicity of m1 and m2, respectively. Since they were derived from sedimentation assays

and dynamic light scattering that followed the monomer concentration of each of these pep-

tide sequences until fibrils were formed,27 they allow us to compare our simulation results on

small fibrillar oligomers with the experimental observations.12 In the first part of this study,

we elucidate the structural transitions of the three peptide sequences at the monomeric level

since it is known that the monomer state has an effect or even controls the aggregation

process.41–44 Secondly, we investigate the formation of hexamers by these peptides and es-

tablish links between the monomer configuration and the oligomer state. To complement

this view, we finally check the stability of a preformed steric zipper involving twelve copies

of either wt, m1, or m2, providing a conclusive evidence regarding which of the FFs under

study is best suited to study amyloid aggregation using MD simulations. The FFs included

in our test set are AMBER99SB-disp, CHARMM36m and CHARMM36mW (which is based

on CHARMM36m but includes more favorable van der Waals interactions between protein

and water) recently developed for IDPs as well as the older force fields GROMOS54A7 and

OPLS-AA, which are already known to overstabilize protein–protein interactions12 but serve

as a useful reference here.
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2 Simulation details

2.1 Systems

To understand the influence of the different FFs on the kinetics and structures of amyloid

aggregation, we simulated residues 16–22 of the amyloid-β peptide, considering the wild-

type (wt) and the two mutant F19L (m1) and F19V/F20V (m2) sequences. We capped the

N- and C-termini of the peptides with acetyl (ACE) and N-methlyamide (NME) groups,

respectively, to mimic the experimental conditions.27 Each peptide was simulated using five

different force fields with their respective water models: AMBER99SB-disp 10 with modified

TIP4P-D8 (A99-d), CHARMM36m9 with TIP3P45 (C36m) and with increased protein–

water interactions9 (C36mW), GROMOS54a713 with SPC46 (G54a7), and OPLS-AA14,15

with TIP4P47 (OPLS). Throughout this paper, we will refer to each of these systems with

their abbreviations given in the parentheses.

2.2 Monomer simulations

We simulated the monomeric peptides starting from extended states and solvated them with

a cubic water box. We set the minimum distance between the peptides and the edges of

the water box to 1.2 nm. Only for the translational diffusion simulations, we placed the

monomers 1.7 nm away from the box edges, effectively doubling the simulation box volume.

We assigned the ionization states of lysine and glutamic acid at pH 7 to be protonated and

deprotonated, respectively, resulting in electrostatically neutral peptides. In all simulations,

we added Na+ and Cl− ions to reach an NaCl concentration of 150 mM. We minimized each

system using the steepest descent algorithm, followed by equilibration, first with a 10 ps run

in the NV T ensemble while constraining the heavy peptide atoms to their initial positions,

afterwards with a 10 ps run in the NpT ensemble without position constraints. For the

production runs we simulated each system for 500 ns in the NpT ensemble with T = 298 K

and p = 1 bar. We obtained three independent trajectories for each system starting from the
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same initial structures but applying independent minimization and equilibration procedures.

For the translational diffusion simulations we collected three 400 ns long trajectories for

each system. Throughout all simulations we constrained all bond lengths using the LINCS

algorithm.48 The electrostatic and van der Waals interactions were calculated using the

particle mesh Ewald (PME) method49 and the real-space components truncated at 1.2 nm.

We controlled the temperature and pressure using a velocity rescaling algorithm50 with a

relaxation time of 0.1 ps and a Parrinello-Rahman barostat51 with a relaxation time of 2 ps,

respectively. For the simulations with G54a7 and OPLS we employed virtual sites for the

nonpolar hydrogen atoms52 allowing for an integration time step of 4 fs, while a time step

of 2 fs was used for the remaining FFs.

2.3 Hexamer simulations

We introduced six peptides into a cubic box with 10 nm edge length to study the oligomer

formation for each of the three peptides and FFs. The initial configurations for these sim-

ulations were generated with the software PACKMOL53 using the most populated peptide

structures identified in the monomer simulations. We positioned the monomers in such a way

that none of the monomer–monomer distances with respect to any atom pair was smaller

than 0.4 nm or greater than 1 nm. The simulations were set up using the same procedure

as described for the monomer systems in section 2.2. For A99-d, C36m, and C36mW we

obtained three independent trajectories of 1 µs length each, while for G54a7 and OPLS

we used the existing data from previous simulations performed within our group,12 which

contain five production runs in the NpT ensemble for 300 ns each.

2.4 Steric zipper simulations

In order to corroborate the results from the oligomer formation simulations, we tested the

stability of preformed minifibrils composed of twelve peptides stacked in two layers with six

peptides forming an antiparallel β-sheet in each layer (Fig. S1 in the Supporting Informa-
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tion). This arrangement is also called steric zipper.54 These minifibrils were generated using

the microcrystal structure of KLVFFA as determined by X-ray crystallography (PDB code

3OW9)55 as starting point. After adding the E22 residue as well as the terminal capping

groups ACE and NME to each of the twelve peptide chains, which was accomplished with

PyMOL,56 the peptides had to be aligned again so that the terminal residues K16 and E22

were next to each other in the antiparallel β-sheet and above each other in the double layer.

In the case of the mutants m1 and m2 the mutations F19L and F20V/F20V were introduced

too. We placed each of the minifibrils in the center of a cubic water box of size 15 nm in each

spatial dimension. We added Na+ and Cl− to adjust the salt concentration at 150 mM. We

performed the minimization, equilibration, and production runs with the same simulation

parameters as described in section 2.2. For each system three production runs in the NpT

ensemble and of 300 ns length were carried out. These simulations testing the stability of

the steric zipper conformation were performed for A99-d, C36m, and C36mW.

2.5 Analysis

Structural characterization The simulations were analyzed using a combination of stan-

dard GROMACS tools, VMD,57 and in-house Python scripts58 invoking the MDAnalysis59

and MDTraj60 libraries. We determined the representative monomer structures of the pep-

tides using the Gromacs clustering tool of Daura et al.61 with a cutoff of the root mean

square deviation (RMSD) of 0.2 nm. For the intra- and interpeptide contacts, we considered

two residues to be in contact if the distance between any pair of atoms from residue a and

residue b is 0.4 nm or less. Based on this distance cutoff also the size of the oligomers was

determined. The nonbonded interaction energies consisting of van der Waals (vdW) and

electrostatic interactions were calculated using the rerun option of GROMACS mdrun for

all intra- and interpeptide residue–residue pairs. In order to calculate the interaction ener-

gies between peptides, we extracted the peptide pairs present in the simulations using the

distance criterion of 0.4 nm or less between the two peptides. Thus, peptide pairs as present
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in dimers and higher-order oligomers up to hexamers are considered for this analysis. For the

characterization of the steric zippers we calculated the number of hydrogen bonds (H-bonds)

formed between the peptides within a β-sheet as well as the nematic order parameter, S2.

An H-bond is defined to be formed if the donor–acceptor distance is less than 0.35 nm and

the donor-H-acceptor angle is less than 30◦. The nematic order parameter,

S2 =
〈3

2 cos2 θ − 1
2

〉
, (1)

where the angle brackets refer to time and ensemble averaging and θ is the angle between

the vector pointing from the N-terminus to the C-terminus of one peptide and the same

kind of vector of another peptide in the system, was calculated with MDTraj. It describes

the orientational order of a system with values ranging between 0 and 1 corresponding to

isotropic and anisotropic systems, respectively.

Transition networks In order to visualize the aggregation pathways, we constructed

transition networks to elucidate the important intermediate stages.12,34,62,63 We define the

states in the transition networks in terms of the oligomer size, which ranges from 1 for

monomers to 6 for hexamers, and the β-sheet content divided into five ranges with 0–20%,

20–40% etc. In the resulting network models, which were plotted with Gephi,64 the nodes

represent the intermediate aggregation states and the edges the transitions between these

states. The size of the nodes are proportional to the population of the states and the edge

thickness to the mass flux between the connected states. We calculated the β-sheet content

based on the dihedral angles along the peptide backbone. A β-sheet is assumed to be formed

when the φ and ψ values are located within the polygon with the vertices at (−180◦, 180◦),

(−180◦, 126◦), (−162◦, 126◦), (−162◦, 108◦), (−144◦, 108◦), (−144◦, 90◦), (−50◦, 90◦), and

(−50◦, 180◦).30,34 This definition allows to also assign a monomer to the β-state, which would

not be possible if one used, as commonly done, the H-bond pattern between the peptides

instead.
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Translational diffusion In order to accurately compute the translational diffusion con-

stants of the Aβ16−22 peptide and its mutants, we extended the trajectories of the monomers

to 400 ns in the NpT ensemble. It is important to note that the velocity-rescaling thermostat

used in our simulations50 has been shown to produce transport properties indistinguishable

from the NV E ensemble.65,66 Therefore, we did not run additional simulations in the NV E

or NV T ensemble. We used the mean-squared displacement (MSD) and the Einstein relation

in three dimensions to calculate the translational diffusion constants of the peptides,

Dt = 1
2d lim

t→∞

d

dt
〈[r(t)− r(0)]2〉 , (2)

where Dt is the diffusion constant, d is the system dimension, r(0), r(t) are the particle

positions at times t = 0 and t, and the term with angle brackets represents the MSD.

For normal diffusion, the MSD grows linearly with sufficiently large values of time t. As

a result, the three-dimensional translational diffusion constant Dt is equal to one sixth of

the slope of the linear region of the MSD-vs-time curve. In order to obtain the MSD of the

peptides, we divided each trajectory to 10 ns time windows with 5 ns lag time between two

consecutive windows. This yields 80 subtrajectories per 400 ns trajectory, from which the

MSD of the entire peptide was obtained by averaging over all atoms and subtrajectories.

The three-dimensional translational diffusion constant Dt was calculated from the slope of

the subtrajectory- and atom-averaged MSD curves by fitting a linear curve between 2 and

8 ns. The final translational diffusion constant Dt per system (i.e., per peptide and FF) and

the associated standard error is reported as the average over three trajectories.
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3 Results

3.1 Structural characterization of the Aβ16−22 monomer

When studying oligomer formation, it is important to separate the effects coming from the

monomeric structure from those originating from interprotein interactions that drive the

aggregation process. In this section, we assess how the different FFs affect the monomeric

ensemble of Aβ16−22 based on RMSD-based clustering as well as intrapeptide contact maps

and interaction energies.

Structural clustering and characterization We performed an RMSD-based cluster

analysis to explore the conformational heterogeneity in the ensemble of peptide structures

generated by the MD simulations of a single wt, m1, and m2 peptide using the different FFs.

By clustering structures that are within an RMSD of 0.2 nm, we calculated how the total

number of observed clusters changes with time (Fig. 1). The plateau region of the number

of clusters over time indicates that from ≈300 ns on no new structures different from the

clusters already identified were sampled, which applies to all FFs. The number of clusters

obtained signify the unique structures sampled during the MD simulations. Irrespective of

the peptide sequence the G54a7 force field yields the largest number of clusters, followed

by OPLS, while C36m yields the lowest number of clusters. By counting the frequency of

each cluster throughout the simulation trajectories, we observe that with A99-d, C36m, and

C36mW the two dominant clusters are significantly more populated than the counterparts

obtained with OPLS and G54a7. For instance, the first two clusters obtained with A99-d,

C36m, and C36mW contain >85% of the structures for the wt peptide compared to 72%

with OPLS and only 63% with G54a7 (the full list is given as Table S1 in the Supporting

Information). This observation indicates that with the newer FFs the peptides are less

flexible, which can result from increased peptide–water interactions, as introduced in A99-d10

and C36mW,9 and/or increased torsional barriers implemented to enforce extended peptide
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structures.

The preference for extended structures in the simulations with the IDP-corrected FFs

becomes visible by the inspection of representative structures of the most populated clusters

(Fig. S2). For wt, A99-d, C36m, and C36mW produce an extended structure, whereas G54a7

results in a π-helix conformation and OPLS leads to a turn structure. A similar structural

pattern is observed for m1 and m2, i.e., extended structures with A99-d and C36m(W) and

structures with more intrapeptide interactions with G54a7 and OPLS. As found in previous

studies we thus observe that the differences between force fields for the same peptide are

larger than the differences between different peptides but using the same FF.25 However, it

should be noted that we do not know the experimental structures of wt, m1 and m2; it is

thus not clear whether they should possess different monomer structures and which of the

FFs provides the better description for their conformational ensembles. If one looks into

the details, some small peculiarities are found, such as a slightly reduced flexibility of m2

compared to wt and m1 when modeled with C36m(W), or that m2 is more extended than

the other two peptides in the simulations with G54a7. These findings are in agreement with

the higher β-propensity of Val compared to those of Phe and Leu. For instance, for exposed

residues Fujiwara et al. assigned a β-propensity of 2.31, 1.50, and 1.18 for Val, Phe, and

Leu, respectively.67
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Figure 1: The number of structural clusters as a function of time for wt (red), m1 (green),
and m2 (blue) from the simulations of the monomers using A99-d, C36m, C36mW, G54a7,
and OPLS. Representative cluster stuctures are shown in Fig- S2.

Intrapeptide contacts and interaction energies To better understand the structural

preferences predicted by the different FFs, we characterized the intrapeptide interactions

by calculating the frequency of residue–residue contacts (Fig. 2). The resulting contacts

indicate that among the FFs developed for IDPs, C36mW produces the highest preference

for extended structures and A99-d the lowest. A99-d leads in particular to more contacts

beyond the first- and second-neighboring residues in m1 and m2, which in the case of m2 is

against the propensity of Val to adopt the β-state.67 C36mW is the FF that best reproduces

the preference for extended structures in the order Val (m2) > Phe (wt) > Leu (m1). With

C36m, on the other hand, this behavior cannot be reproduced, which is visible from the higher

presence of intrapeptide contacts including electrostatic contact between K16 and E22 in m2

compared to wt. G54a7 and OPLS produce many intrapeptide contacts indicating collapsed
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monomeric structures, apart from m2 modeled with G54a7.

Figure 2: Probability of intrapeptide contacts for monomers of wt, m1, and m2 from
simulations using A99-d, C36m, C36mW, G54a7, and OPLS. The color code represents
the probability of a contact between residues during the MD simulations. For the sake of
clarity, the diagonal and first off-diagonal elements of the contact maps corresponding to
self-contacts and contacts with direct neighbors are not shown.

The intrapeptide contacts can be understood based on the inter-residue interaction en-

ergies, which can be dissected into electrostatic and vdW interactions (Fig. S3A and B,

respectively). G54a7 and OPLS predict strong electrostatic interactions between K16 and

E22, which cause the monomer structures to collapse, entailing several other intrapeptide

contacts of vdW nature. An exception is m2 modeled with G54a7 where more extended

structures are produced. However, here an electrostatic interaction between K16 and V18

plays a role, which is also present in wt and m1 modeled with G54a7, but to a lesser ex-

tent. This contact, which is an H-bond between the carbonyl oxygen of K16 and the amide

hydrogen of V18, is only present in the simulations with G54a7 and OPLS, but none of the

IDP-corrected FFs. Interestingly, with A99-d and C36m(W) the K16–E22 interaction is also

of considerable intensity in m1, which mirrors the medium flexibility of Leu, yet does not lead

to completely collapsed structures. This electrostatic attraction must thus be counteracted
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by solvation energies or torsional parameters of the other residues favoring overall extended

structures. For wt and m1, none of A99-d, C36m, and C36mW predicts the interaction

between the termini to be of (large) relevance as the corresponding interaction energies are

close to zero. This suggests that these peptides are generally more extended than m2, which

agrees with the contact maps in Fig. 2 and can be explained with the high propensity of

Phe and Val to adopt a β-conformation. Finally, it can be concluded that for none of the

FFs and peptides the vdW interactions play a large role in the structure formation of the

monomer.

3.2 Peptide–water interactions

Peptide structure and dynamics emerge from an interplay between the peptide–peptide and

peptide–solvent interactions. To understand the latter, we quantify the first hydration shell

of wt, m1 and m2 and their translational diffusion.

Hydration shell The first hydration shell is defined as the water layer around the peptide

in which all the water molecules are directly in contact with the peptide.68 To fulfill this

definition, one needs to i) define the peptide atoms to be used for computing the contacts,

and ii) set a cutoff distance between the selected peptide atoms and the water molecules to

define the contacts. There are several procedures available in the literature to obtain the

cutoff distance and the peptide atoms.69–73 Here, we use the non-hydrogen peptide atoms to

define the contacts and a single cutoff distance of rcut = 0.45 nm between the peptide non-

hydrogen atoms and the water oxygens. This particular choice emerged from the analysis of

the MD trajectories using different cutoff distances and contact definitions.

Fig. S4A shows the number of water molecules in the first hydration shell on a per-

residue basis. The solvation pattern is very similar across the FFs. There are only few

notable differences. For wt we find that, except for E22, A99-d always yields slightly larger

numbers of water molecules per residue than the other FFs, followed by C36mW and C36m.
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G54a7 and OPLS cause less solvation, especially at the C-terminal capping groups, which

is accompanied by a higher K16–E22 contact probability as seen above. Thus, G54a7 and

OPLS are more favorable for residue–residue interactions than the the other three FFs where

the strength of the protein–water interactions was increased on purpose (A99-d and C36mW)

and/or the preference for extended structures was increased. The effect of the mutations

in m1 and m2 can be observed in Fig. S4B and C, respectively. For the m1 variant, the

F19L mutation results in less hydration at the mutation site, which can be explained by the

smaller volume of the side chain of Leu compared to that of Phe. For the other residues of

m1 the differences are small. In the case of m2, both mutation sites F19V and F20V are

less hydrated compared to wt, which again can be explained with the smaller side-chain size.

OPLS predicts for both mutation sites of m2, as also for the mutation in m1, significantly

lower differences compared to the other FFs. For the other m2 residues we observe that they

are more hydrated compared to wt and also have more water molecules in the first hydration

shell than the m1 variant. OPLS yields the largest differences for these residues. Thus, with

respect to the whole peptides OPLS predicts a more similar solvation for m2 and also m1

compared to wt.

Solvent accessible surface area One factor that determines the number of water molecules

within the first hydration shell is the solvent accessible surface area (SASA) of the solute.

We calculated the SASA are for wt, m1, and m2 using a standard 0.14 nm probe radius.

Our results in Table S2 show that within each FF wt has the largest SASA and m2 has the

lowest, which can be explained with the different sizes of Phe, Leu, and Val. The differences

across the FFs for each peptide positively correlate with differences found for the number

of water molecules within the first hydration shell, i.e., G54a7 and OPLS lead to smaller

SASA values as a result from the more collapsed structures sampled with these two FFs.

However, the interfacial water area (IWA), which is the ratio of the SASA to the number of

waters within the first hydration shell, attains an almost constant value of IWA = 0.096 nm2
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for all peptides and force fields. For globular proteins an IWA value of 0.11 nm2 has been

previously reported68 suggesting that Aβ16−22 has a higher solvent density than the globular

proteins.

Figure 3: The average number of H-bonds formed between wt residues and water. The
dashed and non-dashed areas indicate the number of instances where the amino acids act as
H-bond donor and acceptor, respectively. The color key for the FFs is given as part of the
plot.

Peptide–water hydrogen bonds The analysis of the H-bonds between the peptide and

water allows us to assess to what extent specific peptide–water interactions play a role,

which serve as a stabilizing factor for the peptide structure and largely influence the peptide

dynamics.74,75 To this end, we determined the number of H-bonds between peptide and water

on a per-residue basis. The results of this analysis are shown for wt in Fig. 3. Interestingly,

the propensity to form H-bonds with water is quite different from the solvation pattern

found for the residues. While K16, F19, F20, and E22 are surrounded by the same amount

of water molecules, E22 engages in the largest number of H-bonds, followed by K16. These

two residues can use both their backbone and side chain for H-bond formation, while this

is limited to the backbone for the residues L17–A21. This explains why these residues have

similar numbers of H-bonds with water. We further analyzed whether the residues acted as

H-bonds acceptor or donor, which is shown as dashed and non-dashed areas, respectively, in
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Fig. 3. The backbone can act as both a donor and an acceptor. Since the side chain of E22

can only act as an acceptor and that of K16 only as a donor, it becomes clear that most

H-bonds formed by these residue take place via their side chains. While the different FFs

yield the same distribution between H-bond donor and acceptor capabilities for each of the

residues, G54a7 and OPLS lead to a smaller tendency for H-bond formation between peptide

and water. This difference is most pronounced for E22, even though OPLS led to the same

level of hydration for that residue.

Translational diffusion constants The three-dimensional translational diffusion con-

stants for wt, m1, and m2 are shown in Table 1, which were calculated from the MSDs

(Fig. S5). The experimental value for the wild-type Aβ16−22 has previously been measured

by NMR spectroscopy and has a value of 0.353×10−5 cm2/s.76 Our results show that none of

the FFs can reproduce the experimental three-dimensional translational diffusion constant.

A99-d yields considerably smaller diffusion constants than observed in experiment, whereas

the other FFs overestimate the diffusion, with C36m leading to the fastest diffusion. How-

ever, after correcting the diffusion constants by the viscosity of the solvent models,77 all FFs

underestimate the diffusion similarly to A99-d. While there are small differences between the

computed diffusion constants for wt, m1, and m2, most of them obtained per FF can be con-

sidered identical within the standard error. Exceptions are the diffusion constants resulting

from the C36m(W) simulations. However, here no clear trend is observed: with C36m the

mutant m2 has the smallest diffusion constant, whereas with C36mW the wild-type peptide

has a smaller diffusion constant than its mutants. Since we have no experimental results

for the translational diffusion constants for m1 and m2, we are unable to judge the latter

findings.
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Table 1: Three-dimensional translational diffusion constant Dt. The values in parenthe-
ses are Dt scaled by the correction factor of the solvent model viscosity (where available).
The scaling factors are 2.8 for TIP3P (C36m), 3.27 for SPC (G54a7), and 2.13 for TIP4P
(OPLS).77

A99-d C36m C36mW G54a7 OPLS

wt 0.21 ± 0.01 0.69 ± 0.04
(0.25±0.02) 0.56 ± 0.01 0.52 ± 0.05

(0.16±0.02)
0.47 ± 0.03
(0.22±0.01)

m1 0.21 ± 0.01 0.66 ± 0.02
(0.24±0.01) 0.61 ± 0.06 0.54 ± 0.05

(0.17±0.02)
0.46 ± 0.04
(0.22±0.02)

m2 0.21 ± 0.01 0.59 ± 0.05
(0.21±0.02) 0.62 ± 0.02 0.53 ± 0.04

(0.16±0.02)
0.43 ± 0.04
(0.20 ±0.02)

3.3 Characterization of the aggregation process

Oligomer size After studying the conformations of single peptides in solution, we turn

our attention to the aggregation properties of Aβ16−22 and its mutants represented by the

different FFs. We choose to study the aggregation properties by simulating six peptides

in a water box. Fig. 4 shows the size of the oligomers as a function of time. We observe

that the peptides aggregated more quickly attaining the highest oligomer size within 300 ns

in the case of G54a7 and OPLS as compared to A99-d, C36m, and C36mW. Despite the

intrapeptide interactions observed in the monomer state being of similar strength for A99-d

and C36m(W), the highest average oligomer size achieved with A99-d was a trimer for wt

and a dimer for the variants m1 and m2. With C36m(W), on the other hand, the highest

oligomer size is reached for all peptide systems, albeit for m2 the oligomers are less stable.

Both wt and m1 aggregate more quickly than m2, while the former two peptides aggregate

with a similar speed. C36mW predicts the smallest aggregation tendency for m2. Thus,

from the five FFs under study, C36m and C36mW are the only ones which are able to

model m2 as less aggregation-prone than wt and m1 as found in experiments.27 However,

the correct behavior according to experiment would be that m2 does not aggregate at all,

while m1 aggregates faster than wt. This aggregation ranking cannot be modeled by any

of the five FFs and also none of the FFs that were included in our previous benchmark.12

While G54a7 and OPLS overestimate the aggregation tendency of all three peptides,12 A99-d
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underestimates it.

Figure 4: Average oligomer size as a function of time for wt (red), m1 (green), and m2
(blue) using A99-d, C36m, C36mW, G54a7, and OPLS. The graphs are averages over three
trajectories per system in the case of A99-d and C36m(W) and five trajectories for G54a7
and OPLS. The different x-axes scales for the top and bottom row are noted.

Transition networks and oligomer structures For the characterization of the interme-

diate oligomeric states and the transitions between them, we calculated transition networks

(TNs).34,58 As in our preceding study,12 we chose to build the TNs in a two-dimensional

space defined by β-strand content (x-axis) and oligomer size (y-axis) (Fig. 5). The TNs

for A99-d confirm that this FF does not support stable oligomer formation; for all three

peptides the most populated state is the extended monomer structure. All oligomer states

are only weakly populated with the maximum oligomer size being a pentamer in the case

of wt and tetramers for m1 and m2. Typical snapshots for oligomers formed with A99-d

(Fig. 6) show that the peptides in these oligomers are only loosely attached and no β-sheets

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290320


are formed. As we used the backbone dihedral angles for the definition of the β-state and

since with A99-d the peptides have a high preference for extended structures, these oligomers

nonetheless populate TN states with high a β-content. In fact, the three peptides modeled

with A99-d only aggregate when being extended, which is understandable as in the collapsed

peptide state, K16 and E22 interact with each other within the peptide as seen from the

monomer simulations.

Figure 5: Transition networks for the aggregation of wt (top), m1 (middle), and m2 (bot-
tom) using A99-d, C36m, C36mW, G54a7, and OPLS. The oligomer size (from monomer
to hexamer) is given along the vertical axis and the horizontal axis represents the β-strand
content (divided into 5 ranges: 0–20%, 20–40% etc.). The size of the nodes is proportional
to the population of the state, and the width of the edges is proportional to the mass flux
between the states.

The most populated state in the TNs obtained with C36m and C36mW is in each case a

hexamer with a high amount of β-sheets. For m2 modeled with C36mW the pentameric state

is of almost equal importance, corroborating the finding that with this FF the aggregation is

slowed down for this peptide. Typical structures indicate that with C36m(W) well-developed

β-sheets are adopted. They are characterized by a high amount of antiparallel β-sheets

resulting from the electrostatic attraction between neighbored K16 and E22 within a sheet.

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290320


In some cases two sheets with three peptides each form a steric zipper as best seen for wt

modeled with C36m in Fig. 6. Such a double layer can serve as a nucleus for amyloid fibril

formation. In other cases, such as m2 modeled with C36m barrel formation is observed.

With both C36m and C36mW the aggregation pathways involve β-sheet formation from the

very beginning, i.e., no disordered aggregates with a low amounts of β-content are formed.

This behavior can be understood based on the high tendency of the peptide monomers to

adopt extended structures. While the latter also holds true for A99-d, C36m and C36mW

provide a better balance between peptide–peptide and peptide–water interactions.

As already seen in our previous study,12 G54a7 and OPLS result in the formation of

disordered oligomers with lower amounts of β-sheets, which mirrors the behavior of the

monomers when modeled with these two FFs. The most extreme case is given by m2 modeled

with OPLS. As the representative snapshot of the hexameric state of this system shows, here

the peptides mainly adopt a turn conformation as a result of strong intrapeptide K16–E22

attraction (see Fig. S2A), inhibiting β-sheet formation in this system. Compared to OPLS,

G54a7 provides a better description of the amyloid oligomers formed by Aβ16−22 and its

mutants, especially for the largest oligomer considered here, which, after it formed, relaxed

into β-sheet conformations. However, compared to the structures found for C36m(W) these

β-sheets are less ordered.
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Figure 6: Representative structures of the largest oligomers formed during the MD simula-
tions of oligomer formation of wt (top), m1 (middle), and m2 (bottom) modeled with A99-d,
C36m, C36mW, G54a7 and OPLS. The spheres colored in red and blue represent the N- and
C-terminus, respectively. The assignment of the secondary structure is according to the color
key at the bottom.

Interpeptide contacts and interaction energies To better understand the driving

forces behind the different aggregation patterns observed for the different FFs, we first ana-

lyzed the interpeptide contacts present in the oligomers that formed (Fig. S6). However, we

find that these contacts are too unspecific to allow for an in-depth understanding. Instead,

we turned our attention to the nonbonded interaction energies between the peptides on a

per residue–residue basis. The resulting energy decomposition is shown for the vdW and

electrostatic energy contributions in Fig. 7 and Fig. 8, respectively, while the sum over all

residue–residue interaction energies per system are provided in Table S3.
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Figure 7: Residue–residue vdW interaction energies between peptides forming oligomers of
wt (top), m1 (middle), and m2 (bottom) obtained from simulations using A99-d, C36m,
C36mW, G54a7, and OPLS. The interaction energies (in kJ mol−1) are according to the
color key on the right.

For A99-d only weak interaction energies are seen in the interaction maps, and the values

in Table S3 show that the level of interaction is an order of magnitude weaker than with the

other FFs. This explains why with A99-d the peptides did not aggregate: the peptide–water

interactions are stronger than the interactions between the peptides. With the other FFs

strong vdW interactions are observed among residues from the hydrophobic core regions of

wt and m1, while for m2 they are generally weaker, which is confirmed by the accumulated

values in Table S3. For this peptide also the electrostatic interactions are weaker with each

of these FFs. In principle, this could translate into a reduced aggregation propensity as

seen experimentally,27 which however is not the case, especially not with G54a7 and OPLS.

In particular with OPLS the interpeptide interactions for m2 are considerably weaker than

those for wt and m1, yet the aggregation speed is largely the same for all three peptides.

Thus, for OPLS the peptide–water interactions must be too weak so that the peptide–peptide

interactions, even when not as pronounced, dominate the aggregation behavior. The analysis

of the hydration shell around monomers indeed revealed that solvation is of less importance in
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G54a7 and OPLS. With C36mW, on the other hand, the increased protein–water interactions

result in somewhat weaker interactions between the peptides, yet opposite to A99-d they are

still strong enough to enable peptide aggregation.

Figure 8: Residue–residue electrostatic interaction energies between peptides forming
oligomers of wt (top), m1 (middle), and m2 (bottom) obtained from simulations using A99-
d, C36m, C36mW, G54a7, and OPLS. The interaction energies (in kJ mol−1) are according
to the color key on the right.

In general, all FFs predict very similar total interpeptide interaction energies for wt and

m1, which explains why both peptides aggregated at similar speeds in the MD simulations.

The contribution of the electrostatic interactions to the total interaction potentials is in

most cases slightly larger than the vdW contribution. Exceptions are wt and m1 modeled

with A99-d and m2 simulated with OPLS. The dominant electrostatic interaction is the

K16–E22 contact, causing the peptides to arrange themselves in an anti-parallel orientation

to each other, which was best seen in the simulations with C36m(W). As mentioned above,

m2 simulated with OPLS prefers to form a turn structure with intrapeptide K16–E22 salt

bridges, which prevents these two residues from interacting with each other across peptides.
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3.4 Stability of preformed fibrillar aggregates

In the previous section, we characterized the self-assembly of six randomly positioned monomers

of wt, m1, and m2. Here we test whether the various FFs are able to maintain the structure

of the aggregation end product, which is a fibril. If this is not possible it follows that one

can also not simulate the aggregation into that state. To this end, we set up a minifibril

involving two β-sheet layers with six peptides forming an in-register, antiparallel β-sheet in

each layer (Fig. S1). The stability of this minifibril, also called steric zipper,54 was tested

with 3× 300-ns MD simulations per system using the recently developed force fields A99-d,

C36m, and C36mW. We performed various analyses to test the stability of the simulated

minifibril. One of them is the RMSD (Fig. S7), which shows that the systems are less stable

when simulated with A99-d. The largest RMSD is observed for wt modeled with A99-d,

which results from one of the twelve peptides leaving the minifibril at t ≈ 200 ns (Fig. S8).

However, this occurred during only one of the three simulations for this system. From the

RMSD plots for C36m and C36mW one can see that with these two FFs the wt minifibril is

most stable, while it is least stable for m2.

In order to distinguish whether the RMSD changes arise from a slow disassembly of the

fibril structure or from local fluctuations, we calculated the nematic order parameter S2

defined in eq (1) to describe the orientational order of the peptides with respect to each

other (Fig. 9). This analysis clearly shows that with A99-d the characteristic arrangement of

peptides within a fibril is not supported with A99-d. For all three peptide sequences S2 drops

below 0.5, for m1 and m2 it even reaches values as as low as ≈0.3. The loss of the steric zipper

geometry can also be seen in the representative structure shown in Fig. S8. With C36m and

C36mW the overall fibril structure is generally better retained, especially for wt modeled with

either FF where S2 ≈ 0.8 at the and of the 300-ns simulations. This agrees to the findings of

the hexamer simulations, which already revealed steric zipper formation with three peptides

per sheet for wt (Fig. 6). The double mutant m2, on the other hand, appears not to be stable

in the fibril state as S2 . 0.6 at the end of the simulations. The hexamer simulations for m2
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revealed a slowed-down aggregation, yet β-sheets were nonetheless formed. The combined

picture from both sets of simulations thus suggests that C36m and C36mW model a reticent

aggregation of m2 into β-sheets, which however would not develop into a fibril. This only

partly agrees with the experimental findings,27 based on which no aggregation at all should

be happening. The fibril structure of m1 is found to be stable when modeled with C36mW,

yet starts to disintegrate when simulated with C36m. Thus, C36mW is better suited to

reproduce the intricacies of the aggregation of Aβ16−22 and its mutants.

Figure 9: The change in the nematic order parameter (top) and the number of backbone
H-bonds (bottom) for the minifibril of wt (red), m1 (green), and m2 (blue) simulated with
A99-d, C36m, and C36mW. The averages over three independent simulations per system are
shown. The shaded areas indicate the standard error.

To gain further insight into the origin of the fibril instabilities seen for some of the systems,

we determined the β-sheet content as well as the number of H-bonds formed between peptides

within the two β-sheets. In Fig. 9 the average number of H-bonds per sheet is shown.

The maximum number is ≈40, which includes both backbone and side-chain H-bonds. In

the simulations with A99-d the number of H-bonds consistently decreased, reaching values

between 20 and 30 for all three peptides. The breaking of H-bonds is accompanied by a
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dissolution of β-sheets, as Fig. S7 shows, yet the decline is not as pronounced as for the H-

bonds. Taken together, the fibril simulations confirm that with A99-d peptide aggregation

cannot be simulated as the peptide–water interactions are considerably more favorable than

interpeptide H-bonds. With C36m(W), on the other hand, the H-bonds and β-sheets are

well conserved for wt and with C36mW also for m1, while for m2 the number of H-bonds

has dropped to 30–35 at the end of the 300-ns MD simulations. The count of H-bonds for

m1 modeled with C36m remained constant until 200 ns after which it started to decline

somewhat. Thus, this analysis confirms that from the FFs considered C36mW is best suited

for modeling wt, m1, and m2, followed by C36m.

4 Discussion and conclusions

In this work, we examined the applicability of current force fields (FFs) developed for IDPs,

namely AMBER99SB-disp10 (A99-d), CHARMM36m9 (C36m), and C36m with increased

protein–water interactions9 (C36mW), for studying amyloid aggregation with MD simula-

tions using the Aβ16−22 peptide and its two mutants F19L and F19V/F20V (denoted wt,

m1, and m2 here) as test case. Based on experimental results the order of the aggregation

speed should be m1 > wt� m2 ≈ 0.27 As amyloid aggregation results from an interplay of

monomeric peptide properties as well as the stability of the intermediate oligomers and the

final aggregation product, which are amyloid fibrils, we employed a step-wise approach and

investigated each of these aspects separately. In order to gain an in-depth understanding

of the performance of the FFs we dissected the intra- and interpeptide interaction energies

of the monomers and oligomers, and included in our analysis the results of the simulations

obtained with GROMOS54a7 (G54a7) and OPLS-AA (OPLS). For these two FFs we had

already demonstrated that they are not suitable for the problem under study, because they

overestimate the aggregation process and cannot discriminate between the different aggre-

gation propensities of wt, m1, and m2.12 By including them in the analysis we wished to
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learn the origin of their failure, knowledge that in future can be used for FF reparameter-

ization. For the IDP-corrected FFs we can conclude that A99-d is not applicable to the

process of amyloid aggregation as this FF does not lead to stable aggregates being formed,

whereas C36m(W) give rise to proper β-sheet formation with the aggregation speed order

wt & m1 > m2. In the following we discuss how these results are affected by the properties

at the monomeric and oligomeric level as well as how the components of the FFs give rise to

their different behavior.

Different peptide structures with different force fields Given the quite small size of

the peptides under study, one would expect that the different FFs should not lead to large

differences in the peptide structures and dynamics sampled in the MD simulations. However,

Figs. 1 and 2 show that this is not the case. The older FFs, G54a7 and OPLS, lead to a

considerably larger structural diversity than the IPD-corrected FFs. Nonetheless, this high

flexibility at the monomeric level does not hinder the peptides from rapid self-association as

can be seen in Fig. 4. The larger structural diversity with G54a7 and OPLS is also visible

at the oligomeric level, where especially for the smaller oligomers structures other than β-

sheets are also sampled. This can be deduced from the transition networks in Fig. 5. In the

simulations with A99-d and C36m(W), on the other hand, extended structures prevail both

at the monomeric and oligomeric level. This leads to ordered aggregation into β-sheets from

the very beginning in the case of C36m(W), whereas with A99-d only encounter complexes

that promptly dissociate again are formed.

Peptide–water interactions as key determinant for peptide structure and ag-

gregation Our analysis of the intra- and interpeptide interaction energies as well as the

interactions between peptide and water revealed that the preference of Aβ16−22 and its mu-

tants to adopt collapsed structures at the monomeric level and disordered oligomer structures

when modeled with G54a7 and OPLS, but extended structures when modeled with A99-d

and C36m(W) is mostly due to the different amounts of peptide–water interactions. Fewer
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H-bonds between the peptides and water are formed in the simulations with G54a7 and

OPLS, which can be seen in Fig. 3. This allows for more intra- and interpeptide interactions

being formed, which explains both the larger structural diversity as well as the faster aggre-

gation. The IDP-corrected force fields, on the other hand, lead to extended structures as here

especially the terminal residues K16 and E22 have a high preference to interact with water

via H-bond formation, inhibiting their interaction with each other which would lead to a col-

lapsed peptide structure. However, in the case of A99-d the peptide–water interactions are

too much increased, leading to reduced interpeptide interactions and thus inhibiting aggre-

gation. A better balance between peptide–water and peptide–peptide interactions is reached

with the other FF with increased vdW interactions between protein and water, i.e., C36mW.

While for the remaining FFs the overall strength of the residue–residue interactions is simi-

lar, specific interactions nonetheless play a role in the structural preferences at the monomer

and oligomer level. For instance with OPLS the electrostatic attraction between K16 and

E22 is very strong, causing turn structures in the monomers and fast, electrostatic-driven

aggregation.

Too strong peptide–water interactions with A99-d In the case of A99-d not only

the number, but also the strength of the H-bonds between peptide and water is increased.

This can be deduced from the much smaller translational diffusion constant obtained with

this FF compared to the four other ones (Table 1). We conclude that this is the main source

of the decreased aggregation propensity observed with A99-d. A similar behavior was seen

in the simulations with AMBER03WS in our previous study,12 a FF where the short-range

protein–water pair interactions were increased by a factor of 1.1, while all the water–water

and protein–protein parameters were left unchanged.7 However, it should be mentioned that

also the peptide conformation may play a role in the simulations with A99-d. While the

peptides prefer extended structures, these are in fact to a large extent poly-proline II (PPII)

conformations. This shortcoming of A99-d was already revealed in our previous work78 and
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confirmed for Aβ16−22 here (data not shown). It has been proposed that PPII might prevent

the formation of β-sheet79 due to its particular orientation of the amide bonds.80 Thus, the

problems of A99-d are twofold and involve both backbone and protein–water interaction

parameters.

Best performance for C36mW A generally better performance was obtained with C36m

and C36mW. The differences between their results are subtle. While the numbers of H-bonds

between peptides and water are identical, with C36mW they are somewhat stronger – judged

by the translational diffusion – as a result of increasing the protein–water interactions.9

This parameterization change slightly increased the solvation of m2 modeled with C36mW

compared to C36m (Fig. S4), which leads to a decreased aggregation propensity as both

the hexamer and the minifibril simulations showed. Thus, only small adaptations of of the

protein–water interactions as done in C36mW9 can make a positive difference. Nonetheless,

the results obtained with C36 and C36mW are rather similar, allowing to conclude that C36m

is in general suitable for modeling peptide aggregation. This is partly due to the refined

backbone torsion parameters leading to more extended peptide structures,9 but also seems

to be a general feature of CHARMM force fields since in our previous study CHARMM22*

was already identified as the best FF for modeling the aggregation of wt, m1, and m2.

Also in our benchmark of Aβ1−40 the performances of C36m and CHARMM22* were quite

similar.78

Future directions The overall conclusion is that the IDP-corrected FFs A99-d and C36m(W)

provide no or only minor advancements to previous FFs when it comes to modeling peptide

aggregation. Neither the older12 nor the newer FFs can reproduce the different aggrega-

tion propensities of Aβ16−22 and its two mutants, F19L and F19V/F20V. Moreover, also all

FFs considered here failed to predict the experimental diffusion constant of Aβ16−22. Thus,

further FF parameterization is required. This conclusion considers the results of applying

AMBER99SB-ILDN/TIP4P-D to the aggregation of wt, m1, and m2. Also with this water
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model, which implies increased water dispersion interactions compared to TIP4P8 and which

were further increased in A99-d,10 no stable peptide oligomers formed. This result reinforces

our conclusion that a general and quite drastic increase of the peptide–water interactions is

not the right way to go. Instead, we propose to carefully reparameterize the Lennard-Jones

interactions between protein and water taking the characteristics of each amino acid into

account, with the aim to reproduce the free energy of solvation for individual amino acids

as well small peptides. In addition, any future (re)parameterization attempt should aim at

reproducing further experimental observables, such as different aggregation propensities as

available for Aβ16−22 and it mutants,27 the translational diffusion of different peptides, as

well as conformational characteristics of the monomeric state, given that the current study

showed that the different behaviors of the FFs already emerge for the peptide monomers.

Only when a diverse set of target properties is included during FF development, one will

have a chance to optimize the large set of FF parameters without introducing dominant

biases, as seen here for A99-d favoring the solvated protein state or with G54a7 and OPLS

targeting the folded state. For the time being, the recommendation is to use C36mW; while

it is not a perfect FF either, overall it produced the best results for the current aggregation

benchmark and is one of the better FFs when it comes to modeling full-length Aβ 78 and

other IDPs.9,10
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Coté, S.; De Simone, A.; Doig, A. J.; Faller, P.; Garcia, A.; Laio, A.; Li, M. S.; Mel-

chionna, S.; Mousseau, N.; Mu, Y.; Paravastu, A.; Pasquali, S.; Rosenman, D. J.;

Strodel, B.; Tarus, B.; Viles, J. H.; Zhang, T.; Wang, C.; Derreumaux, P. Amyloid β

Protein and Alzheimer’s Disease: When Computer Simulations Complement Experi-

mental Studies. Chem. Rev. 2015, 115, 3518–3563.

33

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290320


(6) Best, R. B. Computational and theoretical advances in studies of intrinsically disordered

proteins. Curr. Opin. Struct. Biol. 2017, 42, 147–154.

(7) Best, R. B.; Zheng, W.; Mittal, J. Balanced Protein-Water Interactions Improve Prop-

erties of Disordered Proteins and Non-Specific Protein Association. J. Chem. Theory

Comput. 2014, 10, 5113–5124.

(8) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water dispersion interactions

strongly influence simulated structural properties of disordered protein states. J. Phys.

Chem. B 2015, 119, 5113–5123.

(9) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B. L.;

Grubmüller, H.; MacKerell, A. D. CHARMM36m: An improved force field for folded

and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73.

(10) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular dynamics force field for

both folded and disordered protein states. Proc. Natl. Acad. Sci. U.S.A. 2018, 115,

E4758–E4766.

(11) Huang, J.; MacKerell, A. D. Force field development and simulations of intrinsically

disordered proteins. Curr. Opin. Struct. Biol. 2018, 48, 40–48.

(12) Carballo-Pacheco, M.; Ismail, A. E.; Strodel, B. On the Applicability of Force Fields

to Study the Aggregation of Amyloidogenic Peptides Using Molecular Dynamics Sim-

ulations. J. Chem. Theory Comput. 2018, 14, 6063–6075.

(13) Schmid, N.; Eichenberger, A. P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A. E.;

Van Gunsteren, W. F. Definition and testing of the GROMOS force-field versions 54A7

and 54B7. Eur. Biophys. J. 2011, 40, 843–856.

(14) Jorgensen, W. L.; Tirado-Rives, J. The OPLS Potential Functions for Proteins. Energy

34

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290320


Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988,

110, 1657–1666.

(15) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation and

reparametrization of the OPLS-AA force field for proteins via comparison with accurate

quantum chemical calculations on peptides. J. Phys. Chem. B 2001, 105, 6474–6487.

(16) Man, V. H.; He, X.; Derreumaux, P.; Ji, B.; Xie, X. Q.; Nguyen, P. H.; Wang, J.

Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly:

The Case of Aβ 16-22 Dimer. J. Chem. Theory Comput. 2019,

(17) Nguyen, P. H.; Li, M. S.; Derreumaux, P. Effects of all-atom force fields on amy-

loid oligomerization: Replica exchange molecular dynamics simulations of the Aβ16-22

dimer and trimer. Phys. Chem. Chem. Phys. 2011, 13, 9778–9788.

(18) Mackerell Jr., A. D. Empirical force fields for biological macromolecules: Overview and

issues. J. Comput. Chem. 2004, 25, 1584–1604.

(19) Buck, M.; Bouguet-Bonnet, S.; Pastor, R. W.; MacKerell, A. D. Importance of the

CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme.

Biophys. J. 2006, 90 .

(20) Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. How robust are protein folding simulations

with respect to force field parameterization? Biophys. J. 2011, 100 .

(21) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.; MacKerell, A. D.

Optimization of the additive CHARMM all-atom protein force field targeting improved

sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J. Chem.

Theory Comput. 2012, 8, 3257–3273.

(22) Wang, J.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential

35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290320


(RESP) model perform in calculating conformational energies of organic and biological

molecules? J. Comput. Chem. 2000, 21, 1049.

(23) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.;

Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force

field. Proteins 2010, 78, 1950–1958.

(24) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmer-

ling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parame-

ters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713.

(25) Rauscher, S.; Gapsys, V.; Gajda, M. J.; Zweckstetter, M.; de Groot, B. L.;

Grubmüller, H. Structural Ensembles of Intrinsically Disordered Proteins Depend

Strongly on Force Field: A Comparison to Experiment. J. Chem. Theory Comput.

2015, 11, 5513–5524.

(26) Balbach, J. J.; Ishii, Y.; Antzutkin, O. N.; Leapman, R. D.; Rizzo, N. W.; Dyda, F.;

Reed, J.; Tycko, R. Amyloid Fibril Formation by Aβ16-22, a Seven-Residue Fragment

of the Alzheimer’s β-Amyloid Peptide, and Structural Characterization by Solid State

NMR. Biochemistry 2000, 39, 13748–13759.

(27) Senguen, F. T.; Doran, T. M.; Anderson, E. A.; Nilsson, B. L. Clarifying the influence of

core amino acid hydrophobicity, secondary structure propensity, and molecular volume

on amyloid-β 16-22 self-assembly. Mol. BioSyst. 2011, 7, 497–510.

(28) Pachahara, S. K.; Nagaraj, R. Probing the role of aromatic residues in the self-assembly

of Aβ(16âĂŞ22) in fluorinated alcohols and their aqueous mixtures. Biochem. Biophys.

Rep. 2015, 2, 1–13.

(29) Tao, K.; Wang, J.; Zhou, P.; Wang, C.; Xu, H.; Zhao, X.; Lu, J. R. Self-assembly

of short Aβ(16-22) peptides: Effect of terminal capping and the role of electrostatic

interaction. Langmuir 2011, 27, 2723–2730.

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.09.290320doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290320


(30) Klimov, D. K.; Thirumalai, D. Dissecting the assembly of Aβ16-22 amyloid peptides

into antiparallel β sheets. Structure 2003, 11, 295–307.

(31) Gnanakaran, S.; Nussinov, R.; GarcÃŋa, A. E. Atomic-Level Description of Amyloid

β-Dimer Formation. J. Am. Chem. Soc. 2006, 128, 2158–2159.

(32) Nguyen, P. H.; Li, M. S.; Stock, G.; Straub, J. E.; Thirumalai, D. Monomer adds to

preformed structured oligomers of Aβ-peptides by a two-stage dock–lock mechanism.

Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 111–116.

(33) Cheon, M.; Chang, I.; Hall, C. K. Spontaneous formation of twisted Aβ 16-22 Fibrils

in Large-Scale Molecular-Dynamics Simulations. Biophys. J. 2011, 101, 2493–2501.

(34) Barz, B.; Wales, D. J.; Strodel, B. A kinetic approach to the sequence-aggregation

relationship in disease-related protein assembly. J. Phys. Chem. B 2014, 118, 1003–

1011.

(35) Wang, Y.; Bunce, S. J.; Radford, S. E.; Wilson, A. J.; Auer, S.; Hall, C. K. Thermo-

dynamic phase diagram of amyloid-β (16–22) peptide. Proc. Natl. Acad. Sci. U.S.A.

2019, 116, 2091–2096.

(36) Nguyen, P. H.; Sterpone, F.; Derreumaux, P. In Computational Approaches for Un-

derstanding Dynamical Systems: Protein Folding and Assembly; Strodel, B., Barz, B.,

Eds.; Progress in Molecular Biology and Translational Science; Academic Press, 2020;

Vol. 170; pp 435 – 460.

(37) Sgourakis, N. G.; Merced-Serrano, M.; Boutsidis, C.; Drineas, P.; Du, Z.; Wang, C.;
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