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Abstract

In this paper, we develop a set of software agents which improve a knowledge-graph

containing thermodynamic data of chemical species by means of quantum chemistry

calculations and error-cancelling balanced reactions. The knowledge-graph represents

species-associated information by making use of the principles of linked data as em-

ployed in the Semantic Web, where concepts correspond to vertices and relationships

between the concepts correspond to edges of the graph. We implement this repre-

sentation by means of ontologies, which formalise the definition of concepts and their

relationships, as a critical step to achieve interoperability between heterogeneous data

formats as well as software. The agents, which conduct quantum chemistry calculations
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and derive estimates of standard enthalpies of formation, update the knowledge-graph

with newly obtained results, improving data values and adding nodes and connections

between them. A key distinguishing feature of our approach is that it extends an exist-

ing, general-purpose knowledge-graph, called J-Park Simulator (theworldavatar.com),

and its eco-system of autonomous agents, thus enabling seamless cross-domain appli-

cations in wider contexts. To this end, we demonstrate how quantum calculations

can directly affect the atmospheric dispersion of pollutants in an industrial emissions

use-case.

Introduction

Optimising industrial operations is critical for mitigating their environmental impact, that

is, maximising energy efficiency and minimising pollution and waste of resources. In order for

this to be most effective, systems must not be considered in isolation, but rather connected

to one another as part of a network. Furthermore, implementing this requires models of

all systems involved. Such reasoning naturally leads to the ideas of Industry 4.01 and the

Internet of Things (IoT),2 where digital twins of real objects can communicate with each

other via the internet.

In case one or more of the models in the network involve chemistry in some form, chem-

ical models need to be built, using chemical data about species and reactions. Numerous

databases exist for such purposes, containing various levels of detail. For instance, some

of the most widely used are Reaxys,3 PubChem,4 and the CAS Registry,5 each of which

include a wealth of chemical and physical substance information on in excess of 108 com-

pounds. Amongst the largest is the Chemical Universe Database GDB-176 with more than

1011 structures, though it contains SMILES strings7 only. At a smaller scale, PrIMe8 is

largely focussed on combustion, and includes not only a warehouse of experimental and

computational data, but also an associated set of tools for a variety of tasks related to

model development. At the most detailed end of the spectrum, and even more focussed on

2

http://theworldavatar.com


thermodynamic properties, are collections that include quantum chemistry calculations. For

example, Ramakrishnan et al. 9 have conducted quantum calculations for a GDB-17 sub-

set of more than 105 structures. NIST’s CCCBDB10 provides extensive experimental and

quantum calculation data on the thermochemistry of 1968 small gas-phase species. Active

Thermochemical Tables (ATcT)11 use a statistical approach to synthesise accurate and con-

sistent thermodata from experiments and computations for 1617 species. Highly accurate

thermochemistry has been calculated for 219 molecules relevant to combustion.12

With so much data available from so many different sources, inconsistencies are ubiq-

uitous, both in terms of naming of species and in terms of data values of thermodynamic,

transport, and kinetic properties of species and reactions (see e.g. Lambert and West 13).

Combined with the complexity of fuel combustion models, with hundreds or even thousands

of species and reactions, it is clear that automation is inevitable. A number of attempts

have been made to automate the generation of kinetic mechanisms, and in particular the

generation of thermodynamic data. The Reaction Mechanism Generator (RMG)14 con-

structs species and reactions based on a known set of rules, which also includes estimation

of thermodynamic, kinetic, and transport properties. Building upon RMG, Keçeli et al. 15

have developed a Predictive Automated Computational Thermochemistry (PACT) software

package which automatically generates thermodynamic data from quantum calculations for

species involved in the combustion of an arbitrary hydrocarbon fuel. Li et al. 16 have imple-

mented a self-evolving thermochemistry machine which uses a convolutional neural network

to predict species formation enthalpies. The network is trained on a database of density

functional theory (DFT) calculations and estimates its own prediction errors, launches new

DFT calculations whenever the error exceeds a given threshold, and includes the new results

into its training database, thus continuously and automatically improving its predictions.

As the above examples show, automating specific, well-defined tasks can be achieved

through tailor-made code. However, the challenge becomes much harder as soon as one con-

siders more general contexts, where, in order to make substantial progress with automation,
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a more fundamental, systematic approach is required. One such approach utilises knowledge-

graphs, which represent information by making use of the principles of Linked Data17,18 as

employed in the Semantic Web,19 where concepts correspond to vertices and relationships

between concepts correspond to edges of the graph. This representation is implemented

by means of ontologies, which formalise the definition of concepts and their relationships

through collections of subject-predicate-object triples. The power of knowledge-graphs at a

large scale has become abundantly clear in various applications over the last few years.20,21

In the field of chemistry, it has been recognised that subject-predicate-object representations

of chemical data are of value, in particular for automation,22 with PubChemRDF23 being

one of many examples.

In previous work on knowledge-graphs in the chemistry domain,24 we have developed an

ontology for quantum chemistry calculations based on Chemical Markup Language (CML25),

called OntoCompChem.26 We have furthermore developed an ontology for chemical reaction

mechanisms, called OntoKin.27 In order to connect these two worlds, linking reaction mecha-

nisms and quantum chemistry,28 we have introduced an ontology for unique chemical species,

called OntoSpecies, thus integrating the union of all these concepts into a single knowledge-

graph.

The purpose of the present paper is to employ a knowledge-graph approach, specifically

with newly-developed software agents, to improve thermodynamic data for chemical species,

and apply it to a multi-scale, multi-domain combustion example. Whilst this process can

also be automated by means of other methods, our approach achieves this in a fashion that,

by design, guarantees interoperability between data and software, and thus allows seamless

integration with complex cross-domain applications. As such, the knowledge-graph approach

renders automated thermochemistry extensible beyond its original scope.

The paper is structured as follows. The next section explains the context, namely the

general-purpose knowledge-graph within which the present work is placed. Subsequently,

we outline a generic agent design and describe a number of thermochemical agents and how
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they are integrated. We then provide a cross-domain use-case of atmospheric dispersion of

industrial pollution, and finally draw conclusions.

The World Avatar

The term ‘World Avatar’ intends to capture the idea of representing every aspect of the real

world in a digital ‘mirror’ world. This is essentially an extension of the Digital Twin concept,

where, taking an example from Industry 4.0, a device or a unit operation in an industrial pro-

cess has a corresponding virtual representation. Lifting the restriction to industrial devices,

thus considering virtualisation of any abstract concept or process, is a logical continuation,

similar to extending the Internet of Things to the Internet of Services and beyond.

Knowledge-graph

Active agents

Discovery

Composition

Communication

Update

New agent

Agent2

Agent1

Agent3

Composition
Agent

Figure 1: Current design of the J-Park Simulator (JPS) as an implementation of a World
Avatar. Agents are part of the knowledge-graph and operate on it.

The J-Park Simulator (JPS)29,30 is an implementation of the World Avatar concept. Fig-

ure 1 illustrates its main underlying principles. At the heart of the JPS lies a knowledge-graph

that is intended to be general-purpose and all-encompassing. As a representation of data,

the key distinguishing feature of a knowledge-graph is that individual items of information
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are linked to each other. In the JPS, this Linked Data is achieved through the use of Inter-

nationalised Resource Identifiers (IRIs), essentially generalised web-addresses, in line with

the Semantic Web. The concepts in the knowledge-graph and the links between them are

implemented by means of ontologies for various domains. These include process engineer-

ing (OntoCAPE31), Eco-Industrial Parks (EIPs) (OntoEIP32–34), electrical power systems

(OntoPowerSys35), and 3D buildings and landscapes (OntoCityGML30). In the chemistry

domain, we have developed ontologies for the subdomains of quantum chemistry (Onto-

CompChem26), species (OntoSpecies28), and kinetic reaction mechanisms (OntoKin27). In

addition, various subgraphs of the Linked Open Data (LOD) Cloud36 are also connected to

the JPS knowledge-graph, in particular DBpedia.37,38

Beyond mere data representation, the JPS contains an eco-system of software agents that

act autonomously and operate on the knowledge-graph, constantly updating it, as also illus-

trated in Fig. 1. Crucially, the agents themselves are part of the knowledge-graph, governed

by the OntoAgent39 ontology. As agents are continuously operating on the knowledge-graph,

it evolves in time. In particular, we have developed agents for automatic agent discovery

and composition,39 i.e. agents that create new, composite agents for more complex tasks.

And further, in order to facilitate the usage of agents and simplify identification of an agent

suitable for a specific task in an agent-rich environment, with an abundance of services avail-

able, we have established an agent market place based on block-chain technology and Smart

Contracts.40

The JPS started with a focus on virtualising industrial operations within the Jurong

Island EIP in Singapore,33,41,42 but has since expanded well beyond this original scope. It

has been employed in a variety of cross-domain applications that require interoperability

between heterogeneous software and data formats, such as optimal site selection of nuclear

power plants43 and industrial pollution prediction of ships and power plants.30 In addition,

scenario planning is possible using the Parallel World Framework,44 which generically allows

asking what-if questions and exploring alternatives in complex multi-domain applications.
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Design and implementation

In this section, we describe the agents that form the basis of the present paper. We give

some theoretical background of what they do and outline their architecture as well as some

key features of their implementation. We also explain how they are integrated, i.e. how they

work with each other and the knowledge-graph, and thus how they are part of the wider

World Avatar agent eco-system as described in the previous section.

The chemical knowledge-graph

In order to provide the necessary context of what environment the agents are operating in,

we briefly recall here what chemical entities are represented in the knowledge-graph and how.

As mentioned above, we have previously created three ontologies for a number of chemical

concepts, populated triple-stores with collections of instances, and established links between

them:

The OntoKin27 ontology covers chemical reaction mechanisms – collections of chemi-

cal elements, species, and reactions together with their associated thermodynamic, kinetic,

and transport data. A web-interface is available45 that allows up- and download, and ba-

sic queries.46 In addition, we have developed an API that allows programmatic up- and

downloading, and import of, export of, and conversion between widely used mechanism file

formats.

The OntoCompChem26 ontology is concerned with representing quantum calculations.

Whilst the ontology itself is not intrinsically specific to a particular piece of software, the

parser and API we have written for file import is designed for Gaussian 09/16 calculations.

A web-interface is also available.47 Representable quantities include empirical formula, InChI

and SMILES strings, molecular geometry, level of theory and basis set, rotational and vibra-

tional frequencies, rotational constants, and electronic energies.

Thirdly, we have introduced the OntoSpecies ontology,28 primarily for the purpose of
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identifying chemical species uniquely. The ontology captures basic physical and chemical in-

formation about species, such as elemental composition, connectivity between atoms, molec-

ular geometry, and in particular standard enthalpy of formation. In itself, OntoSpecies is not

meant to and does not need to store much information – its main value lies in providing links

via IRIs, connecting quantum calculations with each other as well as species in mechanisms,

which are labelled using arbitrary strings. These IRI links are used to disambiguate arbitrary

chemical labels, distinguishing different species with identical labels as well as recognising

identical species with different labels, thus circumventing naming inconsistencies.

The agents described in the following critically depend upon this infrastructure, with its

links between relevant concepts, being in place.

Agent template

When developing agents for various tasks, one quickly arrives at the realisation that many

design features are entirely generic, i.e. independent of the specific task. Such design features

include most importantly listening and responding to requests via the internet (implemented

through HTTP), submission and monitoring of jobs to a resource manager (e.g. SLURM)

on an HPC system, and managing input and output files associated to a job as well as their

transfer between the hardware platforms involved. We have thus developed a template that

is, within reason, applicable to ‘any’ (Linux) executable.

Figure 2 illustrates the main components of this generic agent and how it interacts with

the knowledge-graph. The agent (the triangle shaded in red) consists of two executable

elements: An asynchronous watching process and a generic executable. The asynchronous

watcher handles HTTP requests and responses, through which other agents can request

jobs. Secondly, it manages input and output files, which are being stored in separate folders

associated to each job. And thirdly, it takes care of submitting jobs to a resource manager

tool on an HPC system as well as monitoring any jobs that are running. It does this using

a status file associated to each job in its corresponding folder. This design is robust to
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 HPC

 Knowledge-graph

OntoAgentOntoSpecies OntoCompChem

On successful
completion populate

knowledge-graph

Asynchronous
watching
process

Agent instance:
Hardware-specific information:
- Number of cores
- Memory to use

Executable

SLURM file

Job folder

Status file Output
files

Input
files

JSON input
file

Quantum
calculation
instance
(G16)

External inputs (from another agent):
- Job specification
- Numerical parameters
- etc.

Run executable
via SLURM

Species instance:
- Charge, multiplicity
- Molecule geometry
- Enthalpy of formation
- Reference sets, etc.

Figure 2: Elements of a generic agent (red triangle) and how they interact with the
knowledge-graph (green box). An asynchronous watcher (grey diamond) manages running
an executable (grey diamond), with all associated input and output files (blue boxes).

unexpected interruptions such as power-cuts or reboots by a system administrator. Once

the hardware and the agent are restarted, the latter will continue its operations unaffected.

When the agent receives a job request, inputs to the agent are passed to it in Semantic

Web standard JavaScript Object Notation (JSON) format. These inputs can include ‘direct’

inputs (from other agents) such as parameters specifying the task to be executed, but more

typically will take the form of IRIs, pointing to relevant entities that are represented in the

knowledge-graph. Also retrieved from knowledge-graph are parameters that are specific to

the HPC hardware on which the executable that constitutes the agent is to be executed,
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Agent	Template

Worker

Evaluates
executables,
typically	on	an
HPC	platform

SLURM
submission	file

Submit	job	to	run
executable	X	to	SLURM

Output	files

Input	files

Asynchronous Watcher

Runs
permanently,
on	any	server

Obtain	executable-
specific	inputs
from	KG	via	IRIs

Obtain	hardware-
specific	information
from	KG	via	IRIs

Create	input	files

Listen	for	job
requests	via	HTTP

Populate
knowledge-graph

Y

Keep	a
record	in
JSON	files

Notify	requesting
entity	of	failure

Success?

Monitor	running
jobs

N

Figure 3: UML activity diagram of a generic agent which enables computational jobs (run-
ning of an executable “X”) to be executed asynchronously on an HPC system upon request
(via HTTP), with inputs obtained from the knowledge-graph (shaded in yellow) and outputs
written back into the knowledge-graph (shaded in magenta).

such as the number of CPU-cores and amount of memory to be used, as well as a SLURM

file which is used for submission to the resource manager.

As an aside, we note that this design implies that only a single instance of this agent

needs to be deployed on a particular piece of hardware, and also in general, if the volume of

incoming requests is sufficiently small.

Figure 3 shows a Unified Modelling Language (UML) activity diagram, illustrating the

step-by-step activities of the components. Handling job requests and monitoring running
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jobs are conducted asynchronously in parallel, as any events can happen at any time, in

any order. Most agents will retrieve inputs from the knowledge-graph (shaded in yellow)

and write outputs back to the knowledge-graph (shaded in magenta). The knowledge-graph

itself is held in triple-stores such as RDF4J, Fuseki, and Blazegraph, which expose SPARQL

endpoints. Reading and writing of subject-predicate-object triples is implemented by means

of SPARQL queries and updates, respectively, through these endpoints. Which inputs and

outputs exactly are exchanged with the knowledge-graph is of course not generic, but depends

on the executable in question. Another critical activity relates to job monitoring: In practice,

there are many things that can go wrong in the submission and execution of a computational

job. It is therefore important to have robust procedures in place to deal with any unexpected

failure in a controlled fashion, which in particular involves escalating useful error messages

back to the calling entity, and ultimately a human, if the cause of the problem cannot be

rectified by means of an algorithm.

Error-cancelling balanced reaction agent

The purpose of this agent is two-fold. Given a set of chemical species, it can produce

estimates of standard enthalpy of formation, and in addition, within the given set, identify

individual species as either consistent or inconsistent. The agent operates in two steps. The

first step computes the standard enthalpy of formation of a species by using error-cancelling

balanced reactions (EBRs).48 At the centre of this method lies Hess’ law, which states that

the total enthalpy change of a reaction, ∆H◦r is equal to the sum of all individual enthalpy

changes, independent of the reaction pathway:

∆H◦r =
∑
s∈SP

ν(s)∆H◦f (s)−
∑
s∈SR

ν(s)∆H◦f (s) (1)

Here, SP and SR denote the sets of products and reactants, ν(s) the stoichiometric coeffi-

cients, and ∆H◦f (s) the standard enthalpy of formation of species s. The reaction enthalpy
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can be estimated from the results of quantum chemistry calculations via

∆H◦r =
∑
s∈SP

ν(s)E◦(s)−
∑
s∈SR

ν(s)E◦(s), (2)

where E◦(s) is the zero-point corrected ground state energy given by quantum chemical

calculations. If the enthalpy of reaction is computed as above, then the standard enthalpy

of formation of a given target species, sT, assumed here to be a reactant, can be estimated

by rearranging Hess’ law:

∆H◦f (sT) =
1

ν(sT)

∑
s∈SP

ν(s)∆H◦f (s)− 1

ν(sT)

(
∆H◦r +

∑
s∈SR\{sT}

ν(s)∆H◦f (s)
)

(3)

However, it is known that estimating enthalpies using quantum chemical calculations results

in systematic errors.49 To circumvent this, error-cancelling balanced reactions (EBRs), are

employed, which make use of structural and electronic similarities between the species in

a reaction to allow cancellation of the systematic errors. Examples of types of EBRs in-

clude isogyric reactions, which conserve the number of spin states during the reaction, and

isodesmic reactions, which conserves the number of each type of bond during the reaction.

Using EBRs enables improved estimates of standard enthalpies of formation of species from

quantum chemical calculations.

The second step performed by the agent is a heuristic cross-validation. The algorithm

is described in detail elsewhere,48 and so only a brief summary is provided here. A set of

species is given to the agent, each with a reference value for the standard enthalpy of forma-

tion. These reference values may be derived experimentally or from high-level computational

methods. Next, one species in the set is selected, in a leave-one-out cross-validation method.

For the selected species, a user-defined number of EBRs are generated. Each EBR can then

be used to estimate the standard enthalpy of formation of the species by using Eqn. (3),

an estimate of ∆H◦r derived from quantum calculations, and the reference enthalpies for

all other species in the EBR. For each EBR, the estimated standard enthalpy of formation
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generated for the species is then compared to the reference value, and an error is computed:

εr(r, sT) =
∣∣∆H◦f,reference(sT)−∆H◦f (r, sT)

∣∣ (4)

The EBR is then accepted if this error is below a defined upper limit, εmax
r , and rejected

otherwise. If all EBRs for a given species are rejected, the species is flagged as potentially

inconsistent. This process is repeated for all of the species in the reference set to sort them

as consistent or potentially inconsistent.

The set of consistent and potentially inconsistent species is then refined by selecting the

potentially inconsistent species with the highest average error and generating a new set of

EBRs for it using only species that were deemed consistent in the initial sorting. The errors

are then recomputed for this new set of EBRs. If the average error for the new set of EBRs,

ε̄newr , is lower than the error for the initial set of EBRs, ε̄initialr , then it is assumed that the

original inconsistency for this species is due to another species that appeared in the original

EBRs, and the selected species is added to the consistent set. The process is repeated for

each potentially inconsistent species in descending order of average error until the set of

inconsistent species does not change. At this point, convergence is reached, and the set of

inconsistent species is reported as needing an improved estimate of the standard enthalpy of

formation. It is noted that, depending on the size of the species set and other parameters,

executing the algorithm can be computationally expensive.

The design and implementation of this EBR agent follows that of the generic template

illustrated in Figs. 2 and 3. Jobs are requested via HTTP. The JSON-formatted inputs, that

are passed as arguments as part of the job request, include a list of pairs of IRIs. Each pair

consists of an IRI to a unique species instance in OntoSpecies, and an IRI to a quantum

calculation in OntoCompChem. This list defines the species set that the EBR algorithm is

applied to. All associated information, like reference values for the standard enthalpies of

formation for each species, can be retrieved from the knowledge-graph using the provided

13



IRIs. Other JSON inputs include for example the type of EBR to be used (isogyric, isodesmic,

etc.), and algorithm termination criteria (maximum numbers of iterations of various loops).

Once all required information has been assembled, input files for the core EBR code are

generated and the job is submitted to the resource manager on an HPC platform. In case

of successful termination, the resulting new estimates of standard enthalpies of formation as

well as the finding of whether or not a species is being deemed consistent or not are stored

in the knowledge-graph (as part of the relevant instances in OntoSpecies).

Quantum calculation agent

The purpose of this agent is to conduct a quantum chemistry calculation using the Gaussian50

software. Quantum chemical calculations are used to derive the molecular properties of a

chemical system from first principles by solving the time-independent Schrödinger Equation.

Solving this equation for a molecule, i.e. for a system consisting of several electrons and

nuclei, yields the wavefunction of the system, which provides information about the quantum

state of the system, such as the positions of nuclei and electrons and the energy associated

with their particular configuration. The Schrödinger Equation can be written as

ĤΨ(~r, ~R) = EΨ(~r, ~R), (5)

where Ĥ is the Hamiltonian operator, Ψ is the wavefunction of the system, ~r and ~R are the

positions of electrons and nuclei, and E is the eigenvalue, representing the total energy of

the system. The Hamiltonian operator can be written as

Ĥ = T̂n + T̂e + V̂n-n + V̂n-e + V̂e-e, (6)

where, T̂n and T̂e operators represent the kinetic energy of the nuclei and electrons respec-

tively, and V̂n-n, V̂n-e and V̂e-e represent the potential energy of the nucleus-nucleus, nucleus-

electron, and electron-electron interactions, respectively.
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Typically, the Born-Oppenheimer approximation is invoked, which neglects the coupling

between the electrons and nuclei of a system. This results in the electronic Schrödinger

equation, which is what modern computational chemistry packages like Gaussian solve to

derive molecular properties:

ĤeΨ(~r, ~R)e = EeΨ(~r, ~R)e (7)

In this notation, Ψ(~r, ~R)e is the electronic wavefunction, Ee are the eigenvalues representing

the electronic energies of the system, and Ĥe is the electronic Hamiltonian:

Ĥe = T̂e + V̂n-e + V̂e-e (8)

For chemical systems larger than simple hydrogen-like atoms, the Schrödinger equation can

only be solved numerically. Various methods to do so are implemented in modern computa-

tional chemistry software such as Gaussian. One very popular method is Density Functional

Theory (DFT), which derives the properties of a chemical system by manipulating the elec-

tronic Schrödinger equation and solving for the energy as a function of the electron density

ρ(~r) of the system.51 This results in the equation52

E[ρ(~r)] = Ts[ρ(~r)] + Vn-e[ρ(~r)] + J [ρ(~r)] + Exc[ρ(~r)], (9)

where Ts[ρ(~r)] is the kinetic energy of the non-interacting model system and J [ρ(~r)] is the

Coulomb energy functional, both of which are known exactly. Similarly, Vn-e[ρ(~r)] is the

nucleus-electron attraction potential functional whose form can be derived given the Born-

Oppenheimer approximation. The final term, Exc is termed the exchange-correlation func-

tional, and accounts for the difference in kinetic and potential energies between the real

interacting-electron system, and the approximate non-interacting electron system.

DFT is a very popular approach, as the electron density is only a function of the spatial

coordinates, making it a computationally efficient way to derive molecular properties through
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quantum chemistry, and is hence adopted in this work. Nevertheless, such methods still

require substantial computational resources, and do typically need to be run on HPC systems.

The quantum calculation agent automates the solutions of the above equations via Gaus-

sian. Similar to the enthalpy of formation agent, the implementation of this agent follows

exactly the design outlined in Figs. 2 and 3, i.e. calculations can be requested via the internet

and are conducted on an HPC system, with key inputs and outputs retrieved from and writ-

ten back into the knowledge-graph. JSON inputs passed to this agent include in particular

an IRI of a unique species instance in OntoSpecies. Species definition information required

for a quantum calculation such as charge, spin multiplicity, and geometry of the molecule

are retrieved from the knowledge-graph by means of SPARQL queries. Having obtained all

necessary inputs from the knowledge-graph, a plain-text Gaussian input file is then popu-

lated. Job submission and monitoring are managed generically by an asynchronous watching

process. In case of successful completion, the result of the quantum calculation, namely the

log file output by Gaussian, is converted to OWL and a new instance of the G16 class, as

defined in the OntoCompChem ontology, is created in the knowledge-graph. That is, in this

case the newly created OWL file, which is essentially a collection of subject-predicate-object

triples itself, can simply be uploaded to a triple-store.

Thermodata agent

The purpose of this agent is to calculate three thermodynamic quantities for a chosen chemi-

cal species as functions of temperature T , namely the heat capacity at constant pressure Cp,

enthalpy H, and entropy S.28 These thermodynamic quantities are derived by means of the

molecular partition function, q = qT qV qRqE, whose components consist of the translational

(qT ), vibrational (qV ), rotational (qR), and electronic (qE) partition functions derived from

standard statistical mechanics expressions and the rigid-rotor-harmonic-oscillator (RRHO)
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approximation:53

qT =
(mkBT

2π}2
) 3

2
V (10)

qV =

NV∏
i=1

exp
(
− hνi

2kBT

)
1− exp

(
− hνi

kBT

) (11)

qR =
(8π3IxIyIz)

1/2(kBT )3/2

σπ}3
(12)

qE ≈ gE0 (13)

Here, h denotes Planck’s constant, kB is the Boltzmann constant, m is the mass, V is the

volume, νi is the magnitude of the ith frequency, Ik is the moment of inertia about the kth axis,

σ is the symmetry number, and gE0 is the ground state electronic degeneracy. We note at this

point that the RRHO approximation can result in errors for species with internal rotors54

that can be comparable in magnitude with the systematic errors in some DFT methods.

However, more advanced hindered rotor treatments can become computationally expensive,

so for simplicity such treatments are not applied in the present work but will be considered

in the future. The necessary frequencies, rotations, and ground state energies to compute

the partition functions are obtained from the results of quantum chemistry calculations.

Once the molecular partition function is constructed, the molar heat capacity, entropy, and

enthalpy can be derived from the following expressions:

Cp = Cv +NAkB with Cv = NAkBT
∂2(T ln q)
∂T 2 (14)

S = NAkB
[∂(T ln q)

∂T
− lnNA + 1

]
(15)

∆H =
∫ T
0
CpdT = NAkBT

2

q
∂q
∂T

+NAkBT (16)

Here, NA denotes Avogadro’s number. Note that Eqn. (16) provides instead of an absolute

value only an enthalpy difference. In order to obtain meaningful absolute values, it is there-

fore necessary to provide a reference value for the enthalpy of formation at a known reference
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temperature, usually 298.15 K. In practice, the functional dependence of the three thermo-

dynamic quantities on temperature is captured by fitting the widely-used NASA polynomials

to the thermochemical data extracted from the partition functions, with seven coefficients

c1, . . . , c7 for each polynomial, for two contiguous temperature ranges:

Cp

R
= c1 + c2T + c3T

2 + c4T
3 + c5T

4 (17)

H

R
= c1T +

c2
2
T 2 +

c3
3
T 3 +

c4
4
T 4 +

c5
5
T 5 + c6 (18)

S

R
= c1 lnT + c2T +

c3
2
T 2 +

c4
3
T 3 +

c5
4
T 4 + c7 (19)

The calculations involved for the thermodata agent are computationally very light and

thus do not require submission to an HPC system. Instead, they can be conducted directly

by whichever webservice responds to the job request. Therefore, this agent can follow a

simpler design than the one outlined in Figs. 2 and 3. When it receives a job request, the

JSON arguments need to contain an IRI of a quantum calculation in the knowledge-graph

from which thermodata is to be derived, as well as an IRI to a unique species instance in

order to retrieve a reference value for the enthalpy of formation.

Integration

Figure 4 sketches in a UML sequence diagram how the three agents described above are

being integrated, i.e. how they communicate with each other and how they interact with the

knowledge-graph. The basic idea is a three-step process: Firstly, the EBR agent commences

the process by retrieving previously obtained quantum calculation results and enthalpies of

formation for a given set of species from the knowledge-graph via IRIs, and then detecting

inconsistent species amongst the given set using cross-validation. Secondly, for each of

those species that have been identified as inconsistent, the EBR agent requests quantum

calculations from the quantum calculation agent at a higher level of theory than currently

available in the knowledge-graph. Lastly, for any quantum calculation job that has finished
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:Quantum
Calc.	Agent

:Thermodata
Agent

:Knowledge-
graph:EBR	Agent

for	invalid	species

upon	completion

request	via	IRIs

return	molecule	geometries

request	via	IRIs

request	via	IRIs

return	quantum	calculations,	enthalpies	of	formation

write	quantum	calculations

write	thermodata

quantum	calculations,
enthalpies	of	formation

cross-validate

Figure 4: UML sequence diagram illustrating the interaction of the agents and how they act
on the knowledge-graph (inputs to agents from knowledge-graph shaded in yellow, outputs
back into the knowledge-graph shaded in magenta).

successfully, the thermodata agent derives the corresponding thermodata. This involves

retrieving a consistent estimate of the standard enthalpy of formation from the knowledge-

graph, as populated by the EBR agent. As the final step, the thermodata agent then

updates a chemical mechanism if it contains a species that is linked to the unique species

whose thermodata was just updated.

As mentioned above, we note that this sequence of three agents reading from and writ-

ing to the knowledge-graph is made possible by and relies upon IRI links being present

in the knowledge-graph between quantum calculations (OntoCompChem), unique species

(OntoSpecies), and species as they are part of chemical mechanisms (OntoKin).

Monitoring agent

In order to monitor the health status of the knowledge-graph, and to provide a high-level

overview of how it evolves over time, we have created a web-page displaying various met-

rics.55 Figure 5 displays screen-shots of the relevant parts of that web-page. The page

mainly features counters of instances of selected concepts in the OntoKin (mechanisms,

species, and reactions), OntoSpecies (unique species), and OntoCompChem (quantum cal-
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(a) Counters of selected concepts, including quantum calculations, unique
species, mechanisms, species, and reactions.

(b) Time-history chart showing numbers of species added on particular dates.

(c) Counters of selected types of species and reactions within chemical mech-
anisms (as represented in OntoKin).

Figure 5: Screen-shots of a web-page showing knowledge-graph statistics.

culations) ontologies, as shown in Fig. 5(a), that can be useful for monitoring and diagnostics.

A time-history chart of additional species within mechanisms (OntoKin) and as quantum

calculations (OntoCompChem), showing how many instances were added on a particular
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date, is also included (Fig. 5(b)). More specialised statistics on certain types of species and

reactions within mechanisms in OntoKin are shown in Fig. 5(c).

All the data displayed on this web-page is ultimately obtained through SPARQL queries

from various triple-stores. In this context, it should be noted that subject-predicate-object

triple representations of complex data structures such as chemical mechanisms involve consid-

erable numbers of triples: For example, the sixty mechanisms we uploaded for demonstration

purposes require several tens of millions of triples. The complexity of a query and the size of

the repository both impact the response times. For this reason, in order to reduce loading

times, most of the numbers shown on the page are cached. The cache is being refreshed once

every 24 hours by this agent.

Use-case: Atmospheric pollutant dispersion

As a use-case, we integrate the agents discussed in the previous sections into a cross-domain

simulation of the atmospheric dispersion of pollutant emissions from a power plant and dis-

play this interactively on a web-page.56 We consider a power plant that is fictitious, but

inspired by the Energiecentrale in The Hague (see Eibeck et al. 30 for more details). Three-

dimensional representations of selected buildings, which are stored in the knowledge-graph

using the OntoCityGML ontology, are overlaid on an OpenStreetMap. The atmospheric

dispersion of pollutants is simulated using the Atmospheric Dispersion Modelling System

(ADMS),57 which is based on a fluid-dynamic model that includes Gaussian plume air dis-

persion. ADMS requires as one of its inputs weather data, which are retrieved in real time

from the world wide web and stored in the knowledge-graph by a dedicated weather agent.

All relevant data are held in the knowledge-graph and as such are linked through IRIs.

Combustion in the stationary power generator is simulated by means of a Stochastic

Reactor Model (SRM)58 agent. The SRM has been developed primarily as an internal

combustion engine (ICE) simulation tool and has been applied as such in numerous studies
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(a) CO emissions predicted using the original
mechanism.

(b) CO emissions predicted using a mechanism
with updated thermodata.

(c) uHC emissions predicted using the original
mechanism.

(d) uHC emissions predicted using a mecha-
nism with updated thermodata.

Figure 6: Screen-shots of a web-interface showing pollutant concentration distributions in
the atmosphere over The Hague as predicted by ADMS, with 3D-representation of selected
buildings (map data © OpenStreetMap contributors).

(see for example,59 and references therein). It uses detailed chemical kinetics and is thus able

to predict gaseous and particulate pollutants. We consider a Primary Reference Fuel (PRF)

as a surrogate fuel and employ as a mechanism a reduced PRF scheme that was specifically

designed for ICE simulations.60 The mechanism is represented in the knowledge-graph using

OntoKin, is retrieved as an OWL file via IRI, and then converted into an SRM-readable

format.

The process begins with the EBR agent cross-validating a set of 34 hydrocarbon species

and concluding that, based on the given data using isodesmic reactions, 14 of the species are

inconsistent. The EBR agent then launches quantum calculations for each of these species at

a higher level of theory. As our main focus here is to demonstrate the principle, we restrict

ourselves to the relatively basic B97-1/6-311+G(d,p) and M06-2X/6-311+G(d,p) levels of
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theory. Once a job finishes, the thermodata agent is launched in order to derive NASA

polynomials that are suitable for use in a chemical mechanism. One species in particular

whose thermodata is being updated in this way happens to be CO2, which is part of the

mechanism used in this study. As soon as the thermodata agent has deduced new thermo-

data for a species, the mechanism is updated. This then causes changes in the predicted

atmospheric emission distributions.

Figure 6 shows concentration level contours overlaid on a map of The Hague, with some

buildings. Distributions of carbon monoxide (CO, Figs. 6(a) and (b)) and unburnt hydro-

carbons (uHC, Figs. 6(c) and (d)) are shown, each as predicted using the original mechanism

by Wang et al. 60 and as predicted by the same mechanism with updated thermodata. It

can be observed that the shape of the contours changes between the images for the original

and the modified mechanisms. In addition, it should be noted in the legend that the range

of concentration values corresponding to the colours of the contours also differs between the

original and modified mechanisms. Taking this into account, the maximum predicted con-

centration level of CO decreases by about 3% from Fig. 6(a) to (b). Similarly, the maximum

predicted concentration level of unburnt hydrocarbons changes by about 50% from Fig. 6(c)

to 6(d).

We emphasise that the set of 34 species, with CO2 being among the species that are

identified as inconsistent, has been specifically chosen to demonstrate the principle. The

fact that CO2 is being highlighted does, however, not necessarily imply that the thermodata

of CO2 in the used mechanism60 are deficient in any way. In fact, those thermodata are close

to the currently most accurate values. The EBR algorithm by nature establishes consistency

or inconsistency of thermodata of a set of species with respect to each other, and thus the

notion of consistency of a species depends on the other species in the set, as well as on the

EBRs considered. In addition, given the rather basic levels of theory we use for the quantum

calculations in this work, one cannot reasonably expect an improvement upon highly accurate

values. And further, even if there were an improvement in the thermodata of a particular
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species, one could not conclude that a prediction of the concentration of another species

within a mechanism would necessarily improve, because again the consistency of (not only

thermodynamic, but also kinetic and transport) parameters of different species with respect

to each other plays a key role. Whilst the question of what constitutes an improvement is

beyond the scope of this work, we believe the linked nature of information in a knowledge-

graph approach offers the potential to address such challenges in the future.

Conclusions

We have developed agents that determine the reliability of the thermodata of sets of species

based on error-cancelling balanced reactions, that conduct quantum calculations upon re-

quest via HTTP, and that deduce thermodynamic data from quantum calculations. These

agents seamlessly fit into and extend the existing general-purpose knowledge-graph of the

JPS. We have integrated these agents so that species whose thermodata have been identi-

fied as inconsistent automatically will be calculated at higher level of theory. Thermodata

is automatically deduced from new quantum calculations, and propagated into an updated

mechanism. As a proof of concept, and to demonstrate interoperability between heteroge-

nous data formats and software in a wider context, we have integrated this further into a

cross-domain application that considers atmospheric pollutant dispersion simulations which

utilise 3D geometries of buildings, and live weather data retrieved by agents from the world

wide web. This use-case involves simulations across the length scales – from quantum cal-

culations to macroscopic fluid flow. As the knowledge-graph grows, and the quality of the

thermodynamic data within it improves, the mechanism used for the combustion simula-

tion automatically updates. We have demonstrated in this multi-scale example how a new

quantum calculation for a species can affect the distribution of pollutants in the atmosphere.
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