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Abstract

Molecular fingerprints are essential for different cheminformatics approaches like similarity-based virtual screening. In this
work, the concept of neural (network) fingerprints in the context of similarity search is introduced in which the activation of
the last hidden layer of a trained neural network represents the molecular fingerprint. The neural fingerprint performance
of five different neural network architectures was analyzed and compared to the well-established Extended Connectivity
Fingerprint (ECFP) and an autoencoder-based fingerprint. This is done using a published compound dataset with known
bioactivity on 160 different kinase targets. We expect neural networks to combine information about the molecular space of
already known bioactive compounds together with the information on the molecular structure of the query and by doing so
enrich the fingerprint. The results show that indeed neural fingerprints can greatly improve the performance of similarity
searches. Most importantly, it could be shown that the neural fingerprint performs well even for kinase targets that were not
included in the training. Surprisingly, while Graph Neural Networks (GNNs) are thought to offer an advantageous alternative,
the best performing neural fingerprints were based on traditional fully connected layers using the ECFP4 as input. The best
performing kinase-specific neural fingerprint will be provided for public use.



Introduction
A backbone of cheminformatics and computer-aided drug design
is the ability to translate molecules into a computer-readable for-
mat. While formats such as SMILES1, InCHI Key2, and several
file formats represent molecules in their entirety, other encoding
strategies are better suited for computational methods. Molecular
fingerprints convert molecules into numeric vectors of fixed length.
Instead of encoding the complete molecule, this representation
captures structural characteristics and chemical properties. The
MACCS 166 key, for example, encodes the presence of predefined
substructures into a bit vector of length 166 (Figure 1a).3 Hashed
Fingerprints such as the Extended Connectivity Fingerprint (ECFP)
do not rely on such substructure dictionaries but use a hash func-
tion to record information for each atoms neighborhood up to a
prespecified diameter (Figure 1b).4

(a)

(b) (c)

Figure 1 Examples of different fingerprint generation strategies. (a) In
dictionary-based Fingerprint each bit corresponds to a substructure. (b)
The ECFP encodes substructures based on the neighborhood of each
atom. (c) Neural Fingerprints are generated through the training of neural
networks

A central dogma in drug design is that similar molecules have
similar properties and should bind to the same drug target.5 Fin-
gerprints can be used to compare molecules based on their similar-
ity which is applied in fingerprint-based virtual screening. They are
used to analyze virtual compound libraries for the identification of
similar molecules with presumably similar bioactivity.6 The choice
of fingerprint is crucial to the success of such a similarity search,
as different fingerprints focus on different chemical domains and
properties.7

Machine learning (ML) based approaches offer an alternative
approach for identifying molecules with bioactivity of interest.
Rather than searching for similar molecules, machine learning
models are trained to predict the activities of molecules based on
their fingerprints.8–11 This bypasses the need for similarity search
but these approaches still rely, at its core, on precalculated fin-
gerprints. A new class of ML algorithms, called Graph Neural
Networks (GNN) are thought to overcome the calculation of fin-
gerprints.12 These networks can handle molecules directly and
learn how to encode them during the training process. This al-
lows GNNs to change the way molecules are transformed depend-
ing on the task they are being trained for. The hope is that GNNs

can learn and encode structural information relevant for a specific
task, something that traditional fingerprints cannot do.

One of the earliest usages of Graph Neural Networks in the con-
text of molecular fingerprints was described by Duvenaud et. al.13

They introduced a GNN that mimics the ECFP. Later research ex-
panded on the idea with more complex models but still relate to
the concept of chemical fingerprints.12,14 These papers explicitly
state the connection to molecular fingerprints, but virtually any
Graph Neural Network (technically any neural network) that has
been trained on molecules has the same capabilities. These neu-
ral fingerprints are simply the activation of a specific hidden layer
in the network. As Kearnes12 states: "[...] graph convolutions and
other graph-based approaches purposefully blur the distinction be-
tween molecular features and predictive models".

Studies, so far, focused on the possible improvements of pre-
diction achieved through the use of GNNs.9,15–17 A few studies
evaluate and compare the quality of fingerprints that can be ob-
tained from such networks. In a paper by Hirohara et. al.18 the
chemical space covered by their fingerprint is compared to the one
of the ECFP. In the already mentioned paper by Duvenaud13, the
similarity between the ECFP and the GNN fingerprint is assessed.
In a study by Winter et. al.19 a similarity search using a neural
fingerprint based on an autoencoder is conducted. However, those
fingerprints are generated through unsupervised training. While
unsupervised models are trained to reconstruct or translate molec-
ular representations20–22, supervised models are trained for a spe-
cific task, like predicting the activity of molecules. This allows
unsupervised models to be used across many domains, but they
cannot encode any domain-specific/task-specific information like
the supervised models. So far, the similarity search performance of
fingerprints extracted from supervised models has been neglected.
Therefore, the approach presented in this paper is focusing on the
idea to use and evaluate (supervised) neural network fingerprints
for similarity-based virtual screening.

The here proposed idea aims to combine the learned structural
features of a trained model with the specific structural information
of a query compound so that relevant information beyond target
affinity is included. Typical structural features of a class of lig-
ands, for example, kinase inhibitors, are learned by the trained
model and incorporated into the fingerprint. Beyond ligand-class
features, molecules similar to the query are expected to share the
additional properties and leading to a lower false-positive rate.
Choosing an appropriate query molecule with desired properties
increases the chance of finding hits that are not only active on the
same target but also share desired properties. In contrast, many
application of Machine Learning focus solely on target or property
prediction for a given molecule.23 The disadvantage is, that such
prediction models can only take into account properties they are
being trained for. For that reason, similarity search remains an
important and powerful tool in the field of computer-aided drug
discovery.

In this study, we evaluate the performance of fingerprints ex-
tracted from neural networks. We investigate whether fingerprint-
based virtual screening can benefit from (implicit) incorpora-
tion of additional target information. Different neural networks
were trained on a large kinase dataset with known active kinase
inhibitors and inactive molecules.24 The activations of the last
hidden layer are used as a neural fingerprint for a fingerprint-
based virtual screening (see Figure 1c). The expectation was that
molecules sharing similar bioactivity and similar structural fea-
tures will also have similar activations in the final hidden layers.
These fingerprints are expected to carry information on the molec-
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ular space of already known kinase inhibitors together with the
information on the molecular structure of the query. This specific
information should elevate the performance of the fingerprint in
comparison to traditional fingerprints. The initial assumption was
that many ATP-competitive kinase inhibitors share similar struc-
tural elements, e.g. the hinge binder25 and such information
would be learned implicitly across many different kinase targets.

This method of extracting the activations of a hidden layer to
generate fingerprints is not limited to GNNs since the activation
can also be extracted from neural networks that use a traditional
fingerprint as input. Deeper in the network activation should also
contain implicit information on that target. Thus, such a process
could transform static precomputed fingerprints to fingerprints
which adapt to the task, similar to a GNN. Therefore, graph-neural
networks and simpler feed-forward neural networks are trained
to generate neural fingerprints which are compared to the ECFP4
with regards to performance in similarity search.

Experimental Section
Two different architectures were used to generate and access the
neural network fingerprints (see Figure 2). After training, the ac-
tivations of the last hidden layer are used as the neural network
fingerprint for similarity comparison of different molecules. The
Graph Convolution based approach takes the molecular structure
as input and encodes this into a vector that is fed into the fully-
connected layers. The alternative approach directly uses the pre-
calculated ECFP4 fingerprint as input for the fully connected layer.

Figure 2 Architecture of Neural Networks.
Top: GNN-based Model using the molecular structure as input which is
encoded and fed into a network of fully-connected layers.
Bottom: MLP-based architecture using a precalculated ECFP4 fingerprint
as input for the fully-connected layer.

Graph Convolution Network

The Graph Neural Network implemented in this paper can be sep-
arated into three distinct parts: the (1) graph convolution layer,
the (2) read-out layer, and the (3) fully-connected layers.
Graph Convolution

The basic idea of most graph neural networks is that the values
of nodes are updated by the aggregated information of its neigh-

boring nodes/atoms16 (see Figure 3). After updating the values,
each node carries information on itself and also its direct neigh-
bors. If the process is repeated a second time, each node will not
only carry its direct neighborhood information but also the infor-
mation of nodes two hops away. Repeatedly updating nodes by
their neighbors grows the size of the neighborhood of which the
nodes carry information. A similar process is used in the gen-
eration of the widely applied Extended Connectivity Fingerprint
(ECFP). The ECFP uses a hash-function to aggregate the informa-
tion while GNNs can make use of learnable weight matrices.13

This difference allows GNNs to learn how to encode the molecule
depending on the task. Many different variants of GNNs exist and
differ in the way information is aggregated and passed through the
graph.16,26

The Graph Neural Network architecture that we chose is an
extension of the Graph Convolution Network (GCN) by Kipf &
Welling (2017), here the nodes are updated by the mean of its
neighborhood:

X l+1 = σ(D̂−
1
2 ÂD̂−

1
2 X lW l

1 +X lW l
2)

The addition of the skip connection W l
2X l was introduced by

Cangea et. al.27 and allows the model to carry information on
smaller substructures deeper into the model. Here X l are the ac-
tivation’s of layer l. W1 and W2 are trainable weight matrices, Â is
the adjacency matrix with added self-loops (Â = A+ I) and D̂ is the
degree matrix of Â. σ represents the ReLU activation function.

The GCN requires two matrices for each molecule as input. The
first one is the adjacency matrix A of size n×n where n is the num-
ber of atoms in the molecule. The adjacency matrix contains in-
formation on which atoms are connected via a bond. The second
matrix is the feature matrix X of size n× f where f is the num-
ber of features. The second matrix, the feature matrix, contains
the feature information for each atom in the molecule. Both ma-
trices were calculated using RDKit28 (version: 2009.03.04). The
included features for the GCN are shown in Table 1.

Table 1 Features used in the GCN

Feature
Atom Type
Degree
Hybridization
Formal Charge
Num. Implicit Hydrogen Atoms
In aromatic ring

Read-Out Layer
After the input has passed through several graph convolutions

the activations of the nodes have to be pooled to create a single
latent vector for the graph. This can be done through a read-out
layer, which performs a global pooling step on the activation of the
graph convolution. To ensure that information on small substruc-
tures is not lost during the propagation through the convolution
layers, the pooling is not only performed on the activations of the
last layer but the activation’s after each convolution are pooled. We
slightly alter the read-out function from Cangea et. al.27, where a
global mean pooling step is combined with a global max pooling
step. The pooled vector pl is calculated as follows:

~pl =
1
n

n

∑
i=1

~xl
i ||

n
max
i=1

~xl
i

where ~xl
i is the activation of the ith node of the lth convolution

and || represents the concatenation. Different to Cangea, where
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(a) (b) (c)

Figure 3 Each node/atom has a vector storing atom properties assigned to it (a). To update a node (red) the neighbouring nodes information is
collected (b). Lastly the central node is updated by calculating the columns-wise mean (depending on the GNN used) over all neighbouring node
vectors (c).

the pooled vectors ~p = ∑
L
l=1 pl are summed up across all the con-

volution layers L, we chose to concatenate the pooled vectors.

~p = ~p1||~p2||...||~pL−1||~pL

This process of pooling is similar to the way the ECFP encodes
substructures as it not only includes the information of the last
aggregation iteration but also earlier ones.
Fully Connected Layers

In the final step, the vector ~p is passed through a network of fully
connected layers, with subsequent dropout and batch normaliza-
tion, to make the final predictions (see Figure 4). The last hidden
layer is the layer from which the neural fingerprint is extracted.

Multi-Layer Perceptron Architecture.

The architecture of the MLP is identical to the fully connected lay-
ers of the GCN. But rather than receiving the input from the Graph
Convolutions the MLP uses the ECFP as input. We chose the ECFP4
as the input fingerprint because it is one of the best-performing
ones across many different tasks.29 The ECFP4 of length 1024
for each molecule was calculated using RDkit. Because the GCN
and ECFP have similar encoding strategies, the MLP can loosely
be thought of as a GCN alternative in which the encoding of the
molecule is not learnable. As in the GCN, the neural fingerprint is
extracted from the last hidden layer.

Figure 4 Detailed overview of the fully-connected layers. Each Linear Layer
is followed up with a Dropout and Batchnormlayer. The last layer is used
to extract the Fingerprint.

Dataset and processing

For the training and testing of the models, a dataset on kinases
activities was used. The dataset was created and provided on re-
quest by Pogodin et. al.24 based on ChEMBL bioactivity data.30 It
contains 55,594 ligands with activities measured on 160 different

human-protein kinases. All of the ligands are classified as ATP-
competitive and were either scored as active or inactive depending
on their inhibition rate. For more information on the data curation,
we refer to the original paper. The dataset contains many ligands
that were only tested a few kinases, which leads to the issue of
molecules missing activity information on many kinases. We chose
to consider ligands which did not have a recorded activity on a
kinase as inactive on that specific kinases. The final dataset was
made up out of the SMILES strings and the activities on all 160
kinases for each ligand. We used 5-fold cross-validation with a
random split of 80%/10%/10% for the training, test, and exter-
nal validation set. The external set was not only used to evaluate
the performance of the model but also for the evaluation of the
similarity search. All statistics reported are thus the mean across
the five external validation sets. In a second experiment, we used
a 60%/20%/20% split to evaluate the effect of decreased train-
ing set size. To investigate the ability of the fingerprint to gen-
eralize to out-of-sample targets, two additional experiments were
conducted. First, to investigate the effect on leaving out inhibitors
for specific kinases during the training process was investigated.
For ten kinases we trained models ones including its inhibitors and
ones excluding them and compared the change in performance af-
terward. In the second experiment, we kept all inhibitors in the
training set but removed the target information for 64 (40%) ki-
nases. Thus, those models were not trained to predict activities on
160 targets but only on 96.

Model Training

Overall, five different models were created based on the GCN and
MLP architectures. We wanted to investigate, whether training
models to predict general kinase inhibition is already sufficient for
an adequate fingerprint. For this, we trained generic models which
only predicted whether a given molecule is a kinase inhibitor or
not (single-task prediction). This was done for the MLP (MLP
generic) and the GCN (GCN generic). The second kind of model
we trained was a multitask model predicting which specific kinase
the molecules are inhibiting. This leads to the four models: MLP
generic and multitarget (MT), and GCN generic and multitarget
(MT). The last model (Freeze MT) is based on a GCN with fixed
weights of the convolution layers. When freezing these layers, the
information is still aggregated as it passes through the network,
but the weights of graph convolutions cannot be changed, and the
encoding of molecules remains fixed. The random weights were
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sampled from a normal distribution and the activations were nor-
malized before being passed through the fully connected layers.

All models were created and trained with PyTorch (1.3.1)31.
We used the Adam algorithm32 for optimization. Additionally, we
used Early Stopping with a patience of five based on the validation
loss to prevent overfitting. The final models were evaluated based
on the performance on the external validation set. Facebook’s
Open-source library Ax 33 was used for Bayesian hyper-parameter
optimization. For each model, 100 trials were run. Each trial was
evaluated based on the mean loss across the validation sets. Details
on which parameters were optimized are presented in the Support-
ing Information. The final models were evaluated on the external
validation set.

Similarity Search

The created external validation set was the basis for the evalua-
tion of the fingerprint-based virtual screening, where for each ac-
tive molecule a similarity search was performed against all other
molecules in this external validation set. The molecules were
ranked afterward from highest to lowest similarity. This ranking
was used to evaluate the performance of the similarity search. For
the performance assessment, the AUC and different enrichment
factors were calculated based on the different trained neural net-
work architecture. For comparison, a baseline similarity search
was performed using the standard ECFP4 (without any neural net-
work). To assess the similarity, the Tanimoto coefficient was used
for the ECFP4 and the cosine similarity for the neural fingerprints,
since it has been proven that these measures are comparable.34

Additionally, we wanted to investigate how well neural finger-
prints from an unsupervised model perform. For this, we chose
to use the "continuous and data-driven molecular descriptors"
(CDDD) proposed by Winter et. al.19 The pretrained model pro-
vided in the original paper was used to generate a fingerprint of
length 512. For 1730 of the molecules we were not able to produce
a CDDD due to issues with the SMILES strings. Thus, the similarity
search for the CDDD was only performed for molecules on which
we were able to generate the CDDD. For evaluation of the similar-
ity search we followed the protocol proposed by Riniker et. al.35,
with the slight adaptation that we used every active in the external
validation set as a query.

Performance assessment

Area under the Curve (AUC).

The area under the Curve (AUC) measures the area underneath the
Receiver Operating Characteristics (ROC) curve and provides an
aggregated measure of model performance in classification prob-
lems (> 0.5 = better than random). The ROC curve is calculated
using the true positive rate (sensitivity = True Positive

False Positive+True Negative )

and false positive rate ( False Positive
False Positives+True Negatives ). The Curve is

constructed by shifting the threshold for the binary classification.
For each threshold, the false positive rate is plotted against the true
positive rate. For a more detailed explanation, we refer to Sonego
et. al.36 The AUC was used for both, the assessment of the model
performance and the fingerprint-based virtual screening approach.

Enrichment factor.

The enrichment factor (EF) describes the enrichment of active ki-
nase inhibitors as opposed to the number of inactive molecules. It
is an alternative measure and evaluates how well algorithms per-
form for the best-ranked items. It is of great importance as in real-
ity fingerprints are used to screen through millions of compounds.
As resources are limited only the top-ranked compounds are can be

considered for further evaluation. The EF for x% of the screened
dataset is calculated based on the number of true actives in the top
x% relative to the number of true actives in the complete dataset.

EFx% =
Nactive

x%
Ntotal

x%
/

Nactive
100%

Ntotal
100%

. The EF1% = 5 indicates that five times more

actives were are found in the Top 1% relative to the complete set of
molecules. For the similarity search, we evaluated both the EF1%
and EF2.5%.

Average Similarity.

The average similarity is calculated based on the ECFP4 similar-
ity of the top 1% of the active hits in comparison to the query
molecule. This is an indicator of the structural diversity of the
identified hits relative to the ECFP4.

Results & Discussion
The first step in creating the neural network fingerprints is to train
and evaluate the prediction models. The initial idea was to learn
the generic features that are most common amongst kinase in-
hibitors, e.g. a hinge binding motif. The generic models were
implemented to only use information about general kinase activ-
ity or inactivity. As these models might run the risk of overgen-
eralizing, meaning that the neural fingerprint extracted from the
network might only capture kinases specific information and ”ig-
nores” much of the information that describes the structure of the
molecule. Hence, models for multitask predictions were trained
that predict the specific kinase target activity. In general, a GCN
with subsequent fully connected layers is in many ways similar to a
multi-layer perceptron (MLP) that uses an ECFP fingerprint as in-
put. Therefore, two different models using the ECFP4 fingerprint
(MLP generic/ MLP MT) were also trained as a comparison to the
GCN models. The big difference between both is that the GCN
can learn how to encode a molecular structure while the ECFPs
encoding remains fixed. One could also think about the MLP in
combination with the ECFP as a ”GNN” in which the convolution
layers are not differentiable. Vice versa, freezing convolutional lay-
ers, mimics an MLP using an ECFP as input, since the information
is still aggregated and passed through the network. However, as
the weights of graph convolutions cannot be changed the encod-
ing of molecules remains fixed. We can compare the performance
of the Freeze MT to the performance of the GCN MT to assess the
effects that the learnable feature encoding of the GCN has on the
fingerprint.

Model Performance

Table 2 displays the model performance with varying fingerprint
sizes. All models perform well at predicting activities. It can be
seen that the performance of the MLPs is slightly better than the
performance of the GCNs. It is not uncommon that graph-agnostic
models can outperform some GNNs9,15,37,38 and performance dif-
ferences depend on the exact choice of model and task at hand. For
the MT models, the performance improves noticeably through an
increasing fingerprint size while for the generic models the perfor-
mance decrease slightly. Overall, the MLP generic performs better
than the GCN generic and the MLP MT performs better than both
the GCN MT and Freeze MT model.
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Table 2 Average AUC of the trained Models. AUC for MT models is the
average across all targets.

AUC (SD)
Fingerprint Size 64 254 1024
MLP generic 0.9222 (0.004) 0.9207 (0.003) 0.9186 (0.004)
GCN generic 0.9044 (0.004) 0.8984 (0.007) 0.8961 (0.008)
MLP MT 0.9128 (0.009) 0.9264 (0.007) 0.9275 (0.013)
GCN MT 0.9035 (0.012) 0.9130 (0.013) 0.9124 (0.012)
Freeze MT 0.8889 (0.012) 0.9098 (0.005) 0.9130 (0.005)

Fingerprint Distribution

In Figure 5 the average values for each position of the neural fin-
gerprints are shown and average activations of actives are com-
pared to inactives. The generic models show a strong separation
between active and inactive molecules. The separation is some-
what greater for the MLP than for the GCN. For the MT models,
the fingerprint generated for two specific kinase targets are com-
pared. Here the means of active and inactive molecules are closer
together. The strong separation like in the generic models is lost,
but smaller differences can still be identified, especially when com-
paring two different kinases. These results are not surprising as
generic models can more easily separate actives from inactives,
while multitask models have to be more specific with regards to
their prediction. This resulting in more nuanced fingerprints that
are capable of discriminating between different kinase targets in
similarity-based searches.

Similarity Search

Figure 6 shows the results of the similarity search. The AUC de-
scribes the performance of the fingerprint across the whole exter-
nal validation set. The size of the ECFP4 is kept at length 1024 and
the size of the CDDD at 512. Overall, the AUC for all fingerprints is
relatively similar. Here, the ECFP4 is the worst performing finger-
print. The best performing fingerprint is generated by the Freeze
Model, closely followed by the MLP generic. The performance of
some models differs depending on the fingerprint size. The MLP
MT improves with increasing size while the performance of GCN
generic worsens as its size increases.

Further Figure 6 shows the enrichment factor at 1% and 2.5%.
The fingerprints based on the MLP MT model outperform all other
fingerprints by a great margin. Its enrichment factor is two times
larger than that of the ECFP4 and CDDD. The next best fingerprint
is based on the Freeze MT model which outperforms the ECFP4 as
well. The GCN MT initially performs better than the ECFP4 fin-
gerprint, but the performance decrease with increasing fingerprint
size. Another important finding is that the generic models perform
worse than ECFP4. This indicates that a generic kinase-like prop-
erty is not sufficient for a successful similarity search. The CDDD
performs worse than the ECFP4 with regards to enrichment but
performs better than the generic models.

Lastly, the analysis of the average similarity highlights another
useful property of the neural fingerprint. It evaluates the average
ECFP4 similarity of the actives to query in the top-ranked (1%).
The neural fingerprints all have a lower average similarity than the
ECFP4 based similarity search, especially the MLP MT and Freeze
MT differ noticeably from the traditional ECFP4. These findings in-
dicate that a different chemical space is learned and identified us-
ing neural fingerprints. It also points to the fact that the ECFP4 had
less discriminatory power for this particular chemical space, and
as a result identified fewer actives as top-ranked hits. Besides the
higher enrichment, this is an additional benefit of herein proposed
fingerprint. Importantly, the MLP MT and Freeze MT fingerprint
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(c) MLP MT, Kinase 3557
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(d) MLP MT, Kinase 3009
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(e) GCN MT, Kinase 3557
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(f) GCN MT, Kinase 3009
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(g) Freeze MT, Kinase 3557
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(h) Freeze MT, Kinase 3009

Figure 5 Mean Activation per position on the vector for a fingerprint size
of 64, orange: active, blue: inactive

clearly outperform the ECFP4 with regards to similarity search.
Proving that the initial idea of combining knowledge on learned
kinase inhibitors in a neural network fingerprint is a promising
and successful approach. Somewhat surprising, graph convolu-
tions seem to be useful only when the weights are frozen during
learning. Further, we could show that neural networks trained on
a predictive task were able to generate better fingerprints than net-
works that were only trained to reconstruct molecules (CDDD).

Next to the average performance across targets, we also evaluate
how often each fingerprint performs best on each target. In Figure
7 the mean rank of each fingerprint is shown. The results do not
differ much to the mean performance. The Freeze MT is ranked
the highest for the AUC. The ECFP4 is ranked the lowest. When
it comes enrichment the MLP MT is ranked on average the best.
Lastly the Freeze MT and MLP MT are also the lowest rank finger-
print based on their average similarity. These results demonstrate
that the neural fingerprints not only provide better enrichment and
a better AUC but they do so consistently across most targets.

We also tested the performance while using less data during
training in the form of a 60%/20%/20% split. This did not lead
to a significantly different performance of the fingerprints (details
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Figure 6 Average performance statistics of neural fingerprints in similarity
search in comparison to the ECFP4 fingerprint. AUC: Area under the
curve, EF: enrichment factor at the top 1%/2.5% of the dataset, The
mean ECFP4 based similarity of the query and the corresponding hit.

AUC EF1% EF2.5% Mean Similarity

1

2

3

4

5

6

7

M
ea

n 
R

an
k

Size = 64                Size = 254 Size = 1024

ECFP + MLP generic
ECFP + MLP MT

GCN generic
GCN MT

Freeze MT
ECFP4

CDDD

Figure 7 Average ranking of the fingerprints per performance measure

in the Supporting Information). The overall performance is sim-
ilar, which means that the MLP MT-based fingerprint clearly out-
performs the ECFP4 and CDDD. The second-best model, as in the
80%/10%/10% split, was the Freeze MT. This shows that equal
performance can be achieved with less training data.

Out-of-sample Performance

The next analysis deals with the question, if generic kinase proper-
ties can be learned and if they can be helpful in neural fingerprint-
based screening. First, a single kinase and its inhibitors were re-
moved from the training set. In the second experiment, we re-
moved multiple kinases at the same time but kept the inhibitors
in the training set. Table 3 shows the effect of not having trained
with inhibitors for a specific target. We compare the performance
of the fingerprint for a particular kinase, ones when trained with
the active molecules in the training set, and ones when they are
removed from the training. The GCN generic is effected the least
from removing inhibitors specific to a kinase target from training.
The effects are more noticeable for the MLP generic where an av-
erage performance loss of 5% to 10% can be seen. For both MT
models the removal of inhibitors from training has a strong effect
resulting in an average reduction of up to 20%. Lastly, the differ-
ence between training with vs without specific inhibitors shows a
large variance across the different targets. An indication that the
effects of excluding inhibitors from training differ between the ki-
nase targets.

For one specific kinase we observed interesting behavior (see

Table 3 Average relative difference for specific kinase targets between mod-
els excluding and including the inhibitors during training. (Standard De-
viation)

MLP generic MLP MT GCN generic GCN MT
AUC -0.066 (0.067) -0.125 (0.112) -0.003 (0.021) -0.071 (0.054)
EF1% -0.072 (0.135) -0.2 (0.267) 0.067 (0.068) -0.206 (0.241)
EF2.5% -0.098 (0.114) -0.201 (0.287) 0.08 (0.076) -0.16 (0.226)
Mean Sim. -0.039 (0.066) 0.17 (0.238) 0.0 (0.05) 0.117 (0.159)

Table 4). The MLP generic performance in similarity search in-
creased greatly when removing its inhibitors from the training
set. We found that the MLP generic trained without the kinase
inhibitors for CHEMBL4899 led to a model that considered all in-
hibitors for that kinase as inactives. Thus, while the model got
worse at making predictions for those inhibitors the fingerprint
improved. A possible explanation is that the ECFP4 of the in-
hibitors for CHEMBL4899 differs from those of other kinase in-
hibitors. For the model to correctly classify those inhibitors, their
ECFP4 is transformed to match the activations of other inhibitors.
This allows the model to make better predictions but in return, the
neural fingerprints for those inhibitors carry less unique molecu-
lar information decreasing the similarity search performance. This
effect is not seen in the GCN generic, most likely because it can
adapt the encoding of inhibitors during training, and does not rely
on the ECFP4.

In Figure 8 the effects of leaving out multiple kinases during the
training process are shown. Here, 40% of the kinase targets were
left out during training but the inhibitors themselves were kept in
the training set. The performance of the generic models is not in-
fluenced by the decrease in target information. This was expected,
as the generic models are not trained with specific target informa-
tion. In contrast, removing target information decreases the MT
models AUC, especially for the Freeze MT and MLP MT model. The
GCN MT performance also decreases but not as strongly. For a fin-
gerprint of size 64, the performance of the MLP MT is worse than
the one of the ECFP4. With increasing fingerprint size all mod-
els perform again better than the ECFP4 but the effects of training
with fewer targets remain noticeable.
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Table 4 Difference in performance of the similarity search when training with vs training without the inhibitors active on CHEMBL4899

Average Performance when trained without/with
MLP generic MLP MT GCN generic GCN MT ECFP

AUC 0.873/0.65 0.81/0.944 0.786/0.845 0.767/0.765 0.773/0.773
EF1% 61.377/21.662 64.084/64.987 29.786/31.591 42.422/51.448 64.987/64.987
EF2.5% 26.545/9.455 26.182/29.455 14.545/17.091 22.182/21.455 26.182/26.182
Mean Sim 0.446/0.47 0.446/0.446 0.46/0.478 0.467/0.458 0.446/0.446

The effects of removing kinases are even stronger for the enrich-
ment. Here the Freeze MT and MLP MT performance is decreased
by up to a third. Similar to the AUC the reduction is less noticeable
for the GCN MT. While the MLP MT still performs better than the
ECFP4, the decrease in performance lets the Freeze MT and GCN
MT model perform worse than the ECFP4. These results show that
the performance of the fingerprints depends greatly on the targets
they have been trained for. But while the performance decrease,
the MLP MT neural fingerprints can still outperform the ECFP4 and
CDDD even when the model was never trained to predict activities
on a particular kinase. This allows the neural fingerprints to be
used for virtual screening even when the desired kinase target is
not included in the dataset used by us.

Figure 9 further supports this point. While the MLP MT model
clearly performs better on targets which were included in the train-
ing set, it still provides the best performance on most targets not
included during training.
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Figure 9 Average Enrichment per target for a fingerprint of length 64.
The first 96 targets were included in the training, the last 64 targets were
excluded

.

These results demonstrate that training neural networks can cre-
ate fingerprints that are better performing than traditional finger-
prints. The choice of task and architecture, however, is quite im-
portant. Fingerprints obtained through multitask training lead to
higher enrichment than models trained on a generic task. MLP
models also produced better neural fingerprints than the GCN. This
is surprising as the model performance (Table 2) is quite similar
between those models. An explanation for this discrepancy can
be found in the pronounced difference in enrichment between the
Freeze MT and GCN MT. The GCN models can adapt the feature
generation to the task. In contrast, the Freeze MT is unable to
change its feature generation because the weights of the convolu-
tion layers were frozen. The additional learnable weights allow
the GCN to transform the input more specific to the task causing
the model to ”overfit” to the task. Through this process, later ac-
tivations carry more task-relevant information, and much unique
molecular information is lost. This molecule-specific information
is retained in the MLP MT and Freeze MT allowing for a more di-
verse fingerprint which in return leads to better performances. It
can be expected that the quality of neural fingerprints also depends
on the dataset used. When active and inactive molecules are in-
creasingly similar, the neural networks are required to encode the

feature space more nuanced. While when actives and inactives are
less similar the networks only have to encode major differences to
be successful in target prediction. A more difficult task could force
the networks to produce a more diverse and better-performing fin-
gerprint. We believe that the GCN with the additional layers would
profit most from a more difficult task.

Most importantly the lack of performance could be due to the in-
herent limitations of many GNNs including the architecture used in
our analysis. It was shown that simple linear graph models that do
not aggregate the neighboring atoms perform on par with the GCN.
This hints to the potential inability of the GCN to capture more so-
phisticated substructures.39 In a different paper introducing the
Graph Isomorphism Network (GIN), the authors point to the fact
that the GCN and comparable networks have issues distinguishing
certain simple graph structures.40 This lack of so-called expressive-
ness has gained more attention in the last few years. It was shown
that many GNNs have strong limits with regards to differentiating
graphs and their substructures.41,42 Closely related is the issue of
oversmoothing.43,44 As the input passes through the network, the
features related to each node become increasingly similar to each
other. This leads to further difficulties distinguishing nodes and
the features they represent. Overall these factors contribute to the
fact that many GNNs are not able to encode molecules efficiently
and explain the low performance of the GCN fingerprint.

New, more expressive architectures have been proposed such
as the aforementioned GIN, the SGN45, and others.42,46 While it
was shown that more expressive architectures do not automati-
cally lead to better model performance38 they bear the potential
to create fingerprints better than those of the GCN and pose an
interesting direction for future research.

Conclusions
In this work, several important findings are presented and dis-
cussed. First of all, we introduced the novel idea of using the
activations from neural networks trained for target predictions as
fingerprints for similarity search. The proof-of-concept analysis us-
ing a dataset of active and non-active kinase inhibitors showed the
usefulness of neural fingerprints in ligand-based virtual screening.
When choosing the right model the neural fingerprints can outper-
form traditional ones like the ECFP4. Somewhat surprising, the
most successful architecture is based on a multi-layer perceptron
with the ECFP as input trained for multitask classification.

Our initial hypothesis was, that Graph Neural Networks would
perform better due to their ability to adapt the encoding of
molecules. However, the Graph Convolution Network was not able
to produce fingerprints that matched the performance of standard
multi-layer perceptrons. Most interestingly, this seems to be due
to the additional learning capabilities. When the weights of the
convolutional layers are frozen, the performance of the GCN fin-
gerprints massively increases. This indicates that the non-frozen
model "overtrains" to the task. Beyond that, the lack of expressive
power inherent to many Graph Neural Networks is made out to
be a reason for the weak performance. Our results, in combina-
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tion with findings from recent literature, question the usefulness
of many current GNNs for the here proposed approach.

In contrast, using the MLP to generate fingerprints provides con-
sistently higher enrichment than the ECFP4 and other neural fin-
gerprints. Additionally, the hits in the top 1% found by the fin-
gerprint were less similar than those of the ECFP4. Thus, a dif-
ferent chemical space was learned and identified. Even when this
model was not trained to predict a subset of kinases, the finger-
print performed better on the excluded targets compared to the
ECFP4. Therefore, this fingerprint is suitable for ATP-competitive
inhibitors not included in our training set. While kinase inhibitors
are a rather homogeneous group of inhibitors we believe that,
given enough data, our approach can be extended to other ligand
domains.

The pretrained model together with a script to generate the most
successful kinase-specific neural fingerprint will be provided to the
community to enhance the search for new kinase inhibitors.
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Supporting Information

Results 80%-10%-10% Split

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.3325 (1.4917) 4.4112 (2.2493) 3.2812 (1.3001) 4.8825 (1.2012) 2.07 (1.1051) 6.19 (0.9525) 4.8325 (1.2131)
EF1% 6.2513 (0.7871) 1.2288 (0.6583) 6.335 (0.9034) 3.0481 (0.8396) 2.6944 (1.1837) 3.705 (0.9579) 4.7375 (0.9264)
EF2.5% 6.1638 (0.9686) 1.2244 (0.6024) 6.0962 (1.0765) 3.0288 (0.7837) 2.3463 (0.9832) 4.3894 (1.0444) 4.7513 (1.0132)
Mean Sim. 3.9562 (1.4002) 6.4588 (0.8467) 4.24 (1.2817) 3.8525 (1.0199) 5.9362 (0.8852) 1.23 (0.6003) 2.3262 (0.8542)

Table 1: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6911 (0.0462) 0.6517 (0.106) 0.6685 (0.0465) 0.6345 (0.0673) 0.703 (0.0708) 0.6018 (0.0501) 0.6329 (0.0497)
EF1% 4.7443 (3.9901) 15.5406 (13.7324) 4.7762 (4.0505) 8.661 (7.9419) 10.1418 (9.2473) 7.6572 (7.1812) 6.5001 (5.7875)
EF2.5% 3.1413 (1.818) 9.29 (6.6907) 3.2707 (2.0137) 5.3285 (3.827) 6.6565 (4.7716) 4.2594 (3.0614) 3.922 (2.6154)
Mean Sim. 0.3097 (0.0693) 0.2483 (0.0452) 0.3049 (0.0679) 0.3077 (0.0539) 0.265 (0.0539) 0.3737 (0.0458) 0.3402 (0.0558)

Table 2: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.1612 (1.2744) 3.72 (2.1011) 4.7312 (1.291) 4.875 (1.0629) 1.78 (0.8032) 6.2575 (0.9487) 4.475 (1.2772)
EF1% 5.17 (1.1068) 1.1875 (0.5947) 6.6525 (0.7792) 3.6906 (1.029) 2.0912 (0.7727) 3.9219 (0.9747) 5.2862 (1.0911)
EF2.5% 4.955 (1.2694) 1.2238 (0.5982) 6.4537 (0.9632) 3.6331 (0.9841) 1.9431 (0.5923) 4.6237 (1.1625) 5.1675 (1.1578)
Mean Sim 3.3613 (1.2412) 6.3362 (0.9222) 4.3925 (1.4182) 3.7156 (1.1256) 6.145 (0.7672) 1.2919 (0.7283) 2.7575 (1.0686)

Table 3: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.
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MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.696 (0.0462) 0.6762 (0.1056) 0.6284 (0.0488) 0.6291 (0.0582) 0.7123 (0.0776) 0.6018 (0.0501) 0.6329 (0.0497)
EF1% 6.3907 (5.5934) 16.646 (14.7808) 5.205 (4.6032) 7.9529 (7.3027) 12.1225 (10.646) 7.6572 (7.1812) 6.5001 (5.7875)
EF2.5% 3.8938 (2.4448) 9.7286 (7.1847) 3.3866 (2.2746) 4.7556 (3.4193) 7.6383 (5.3841) 4.2594 (3.0614) 3.922 (2.6154)
Mean Sim. 0.3346 (0.0624) 0.2637 (0.0407) 0.3202 (0.0638) 0.3271 (0.0531) 0.2746 (0.0474) 0.3737 (0.0458) 0.3402 (0.0558)

Table 4: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.1638 (1.1922) 2.9988 (1.9531) 6.3413 (0.9423) 4.67 (1.0932) 2.1237 (0.8293) 5.7413 (0.9396) 3.9613 (1.2848)
EF1% 3.8394 (1.0715) 1.1081 (0.4157) 6.8662 (0.5125) 4.7525 (1.1395) 2.2781 (0.8988) 3.8519 (1.0828) 5.3037 (1.0286)
EF2.5% 3.6988 (1.0779) 1.16 (0.5003) 6.78 (0.6998) 4.7756 (1.1465) 2.0662 (0.6964) 4.5206 (1.151) 4.9987 (1.1428)
Mean Sim 2.505 (0.9213) 5.7544 (1.3608) 5.42 (1.5015) 3.7175 (1.0846) 6.0125 (0.8031) 1.3194 (0.7689) 3.2712 (1.129)

Table 5: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6773 (0.0496) 0.6806 (0.0981) 0.5871 (0.0437) 0.6195 (0.0497) 0.6846 (0.0684) 0.6018 (0.0501) 0.6329 (0.0497)
EF1% 7.4082 (6.5602) 14.5275 (12.5815) 4.6182 (4.2315) 7.0045 (6.3773) 10.1031 (8.8352) 7.6572 (7.1812) 6.5001 (5.7875)
EF2.5% 4.3613 (2.8499) 8.7676 (6.393) 3.0244 (2.0595) 4.146 (2.9518) 6.3307 (4.4012) 4.2594 (3.0614) 3.922 (2.6154)
Mean Sim. 0.3514 (0.0529) 0.2886 (0.0401) 0.3083 (0.0644) 0.3349 (0.056) 0.2926 (0.0482) 0.3737 (0.0458) 0.3402 (0.0558)

Table 6: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.
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Figure 1: Mean EF1% per Target for a fingerprint of size 64. The Performance of each fingerprint
is shown for each target. The length of the ECFP4 and CDDD are 1024 and 512 respectively
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Figure 2: Average Mean Similarity Search Performance of the Models trained on only 60% of the
data
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Figure 3: Average Ranking of each fingerprint on each performance measure

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.0988 (1.3737) 4.5362 (2.4427) 3.0325 (1.269) 4.8913 (1.1709) 2.6588 (1.2756) 6.1275 (0.9044) 4.655 (1.1224)
EF1% 6.0038 (0.795) 1.1525 (0.5496) 6.335 (0.7824) 3.1275 (0.8898) 3.86 (1.2156) 3.1838 (0.9222) 4.3375 (0.8461)
EF2.5% 5.9538 (0.9352) 1.1625 (0.5124) 6.1938 (0.9207) 2.9762 (0.8462) 3.47 (1.2361) 3.8963 (1.1368) 4.3475 (0.9499)
Mean Sim 3.9025 (1.3762) 6.4325 (0.8741) 4.3475 (1.2012) 3.7438 (1.0154) 6.0538 (0.7862) 1.2688 (0.749) 2.2513 (0.7299)

Table 7: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6855 (0.0402) 0.6384 (0.1044) 0.6642 (0.0405) 0.6272 (0.056) 0.678 (0.0581) 0.6006 (0.0469) 0.6304 (0.0446)
EF1% 4.5499 (3.4524) 14.6507 (12.8999) 4.2975 (3.157) 7.5395 (6.7117) 7.4207 (6.4479) 7.5073 (7.0001) 6.3391 (5.5114)
EF2.5% 3.0584 (1.6135) 8.7841 (6.2785) 3.0141 (1.6379) 4.71 (3.2937) 5.0577 (3.377) 4.1895 (2.9862) 3.8459 (2.5159)
Mean Sim. 0.3171 (0.0724) 0.2551 (0.0446) 0.3106 (0.0682) 0.3166 (0.0557) 0.2726 (0.0557) 0.3752 (0.0406) 0.3441 (0.0538)

Table 8: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.1562 (1.1551) 3.7725 (2.1922) 5.0925 (1.1804) 4.605 (1.0127) 1.6888 (0.7619) 6.3237 (0.8721) 4.3612 (1.2125)
EF1% 5.2356 (0.926) 1.0606 (0.2894) 6.8725 (0.5103) 3.8912 (0.9855) 2.11 (0.6176) 3.6275 (0.8875) 5.2025 (0.9239)
EF2.5% 4.9138 (1.1465) 1.1244 (0.3676) 6.7613 (0.6699) 3.76 (1.0239) 1.955 (0.4701) 4.4344 (1.1102) 5.0513 (1.0285)
Mean Sim 3.1225 (1.0726) 6.3594 (0.9435) 4.815 (1.4503) 3.7175 (1.0246) 6.1088 (0.6422) 1.2844 (0.7407) 2.5925 (0.8892)

Table 9: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.
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MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6878 (0.0435) 0.6708 (0.1013) 0.619 (0.0397) 0.6288 (0.0499) 0.71 (0.0726) 0.6006 (0.0469) 0.6304 (0.0446)
EF1% 6.1729 (5.4781) 16.034 (14.0027) 4.5741 (3.8649) 7.3141 (6.382) 11.3483 (9.9383) 7.5073 (7.0001) 6.3391 (5.5114)
EF2.5% 3.787 (2.3921) 9.4294 (6.7965) 3.0726 (1.8998) 4.4558 (3.0791) 7.2183 (5.0166) 4.1895 (2.9862) 3.8459 (2.5159)
Mean Sim. 0.3398 (0.0603) 0.2675 (0.0385) 0.3183 (0.0644) 0.3308 (0.0535) 0.2808 (0.0448) 0.3752 (0.0406) 0.3441 (0.0538)

Table 10: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.0488 (1.0188) 2.91 (1.8793) 6.6287 (0.725) 4.7412 (1.0023) 2.1375 (0.8275) 5.7 (0.8592) 3.8338 (1.1589)
EF1% 3.8512 (1.0036) 1.0356 (0.2144) 6.95 (0.3242) 5.0212 (1.0482) 2.3362 (0.9103) 3.5819 (0.9709) 5.2238 (0.9398)
EF2.5% 3.7006 (0.9896) 1.055 (0.2445) 6.9262 (0.3883) 5.0338 (1.1001) 2.1344 (0.6555) 4.2762 (1.0954) 4.8737 (1.062)
Mean Sim 2.3263 (0.7986) 5.8444 (1.2799) 5.6625 (1.5031) 3.7325 (0.9439) 5.8775 (0.6779) 1.3106 (0.8092) 3.2462 (0.982)

Table 11: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6732 (0.0459) 0.6783 (0.094) 0.5793 (0.0342) 0.6144 (0.0449) 0.6752 (0.0642) 0.6006 (0.0469) 0.6304 (0.0446)
EF1% 7.1723 (6.4152) 14.1281 (12.1811) 3.8915 (3.1077) 6.7252 (6.1995) 9.3536 (8.2474) 7.5073 (7.0001) 6.3391 (5.5114)
EF2.5% 4.2225 (2.7573) 8.5476 (6.1526) 2.6693 (1.543) 4.0046 (2.8733) 5.8472 (4.0239) 4.1895 (2.9862) 3.8459 (2.5159)
Mean Sim. 0.3552 (0.0491) 0.2899 (0.0369) 0.3067 (0.0653) 0.338 (0.0537) 0.3007 (0.0472) 0.3752 (0.0406) 0.3441 (0.0538)

Table 12: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024. The Standard Deviation presented here is the average Standard Deviation across the
targets, not the 5-folds of the Cross-Validation.
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Figure 4: Mean EF1% per Target for a fingerprint of size 64. The Performance of each fingerprint
is shown for each target. The length of the ECFP4 and CDDD are 1024 and 512 respectively.
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Out-of-Sample Analysis

Single Kinase Removed

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.609/0.641 0.54/0.568 0.58/0.584 0.544/0.565 0.595
EF1% 1.84/1.89 6.353/6.303 3.866/3.33 6.258/6.204 5.782
EF2.5% 1.899/1.818 4.021/3.442 2.699/2.324 3.462/3.411 3.62
Mean Sim 0.227/0.257 0.3/0.292 0.279/0.265 0.275/0.283 0.36

Table 13: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL2801

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.614/0.606 0.525/0.533 0.566/0.566 0.533/0.569 0.554
EF1% 1.614/1.467 2.645/2.508 1.693/1.585 2.358/2.606 2.313
EF2.5% 1.447/1.404 2.115/1.987 1.536/1.468 1.972/2.05 1.76
Mean Sim 0.185/0.216 0.262/0.266 0.246/0.234 0.243/0.242 0.341

Table 14: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL3829

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.724/0.731 0.561/0.584 0.602/0.606 0.565/0.587 0.599
EF1% 2.346/2.523 4.335/4.17 2.126/2.178 3.811/3.963 3.494
EF2.5% 2.188/2.253 3.297/3.374 1.946/1.84 3.159/3.15 2.561
Mean Sim 0.225/0.238 0.27/0.268 0.232/0.253 0.273/0.271 0.332

Table 15: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL3357

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.634/0.64 0.522/0.541 0.59/0.593 0.545/0.578 0.56
EF1% 1.716/1.536 3.353/3.483 2.137/2.132 2.725/2.825 2.622
EF2.5% 1.467/1.484 2.592/2.601 1.783/1.783 2.32/2.374 1.857
Mean Sim 0.241/0.265 0.249/0.264 0.262/0.259 0.255/0.249 0.343

Table 16: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL4482
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Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.655/0.671 0.598/0.605 0.592/0.593 0.555/0.582 0.575
EF1% 2.201/2.326 5.3/5.666 2.633/2.522 3.794/3.855 3.575
EF2.5% 1.952/2.044 3.725/4.119 2.108/2.003 2.862/2.976 2.495
Mean Sim 0.284/0.28 0.286/0.277 0.275/0.27 0.304/0.293 0.356

Table 17: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL4225

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.612/0.719 0.549/0.746 0.662/0.657 0.556/0.681 0.607
EF1% 6.83/7.494 19.381/37.622 10.935/9.988 14.936/23.525 19.503
EF2.5% 3.522/4.607 8.742/18.668 5.926/5.175 7.812/10.868 8.369
Mean Sim 0.433/0.463 0.426/0.294 0.45/0.436 0.446/0.368 0.452

Table 18: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL3910

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.626/0.764 0.767/0.925 0.702/0.722 0.697/0.817 0.78
EF1% 9.65/12.592 20.437/60.175 13.495/13.027 13.201/43.651 28.366
EF2.5% 5.073/6.813 11.22/29.534 7.48/7.934 6.85/23.15 15.165
Mean Sim 0.485/0.471 0.425/0.291 0.465/0.448 0.472/0.331 0.402

Table 19: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL4439

Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.632/0.662 0.594/0.773 0.619/0.593 0.661/0.661 0.596
EF1% 10.393/15.623 25.88/28.766 14.95/14.55 23.586/26.333 28.156
EF2.5% 5.739/7.469 11.354/13.455 7.955/7.011 11.101/11.61 12.009
Mean Sim 0.466/0.441 0.413/0.403 0.444/0.478 0.43/0.419 0.413

Table 20: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL3142
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Inhibitors Excluded/Inhibitors Included
MLP generic MLP MT GCN generic GCN MT ECFP4

AUC 0.641/0.747 0.613/0.886 0.727/0.752 0.69/0.736 0.619
EF1% 10.873/11.515 21.048/47.671 20.939/17.509 20.3/41.446 21.298
EF2.5% 5.557/6.527 9.296/23.819 11.528/9.739 12.274/18.26 9.201
Mean Sim 0.439/0.432 0.421/0.265 0.351/0.367 0.401/0.298 0.415

Table 21: Difference in performance of the similarity search when training with vs. training without
the inhibitors active on CHEMBL1907601
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Results - Removing multiple Kinases from Training Set

The CHEMBL-IDs for the Kinase which were either removed or included in the training set.

Kinases included in the training set

CHEMBL2695 CHEMBL4708
CHEMBL3797 CHEMBL5314
CHEMBL1907605 CHEMBL3905
CHEMBL3863 CHEMBL5147
CHEMBL4630 CHEMBL5331
CHEMBL2147 CHEMBL299
CHEMBL1844 CHEMBL2094128
CHEMBL2534 CHEMBL2250
CHEMBL3829 CHEMBL2595
CHEMBL1824 CHEMBL3116
CHEMBL2068 CHEMBL4036
CHEMBL3529 CHEMBL3650
CHEMBL3009 CHEMBL1913
CHEMBL2938 CHEMBL2185
CHEMBL262 CHEMBL5543
CHEMBL4899 CHEMBL3024
CHEMBL4045 CHEMBL5518
CHEMBL2094127 CHEMBL3961
CHEMBL2468 CHEMBL4898
CHEMBL279 CHEMBL2345
CHEMBL4204 CHEMBL1991
CHEMBL1868 CHEMBL3788
CHEMBL3616 CHEMBL1936
CHEMBL4223 CHEMBL1907601
CHEMBL2426 CHEMBL4482
CHEMBL3982 CHEMBL2959
CHEMBL2111389 CHEMBL3778
CHEMBL3582 CHEMBL4237
CHEMBL4501 CHEMBL1974
CHEMBL4203 CHEMBL3983
CHEMBL2850 CHEMBL1841
CHEMBL5145 CHEMBL4128
CHEMBL1957 CHEMBL1907600
CHEMBL2815 CHEMBL2041
CHEMBL1075104 CHEMBL1955
CHEMBL2971 CHEMBL1075167
CHEMBL3831 CHEMBL308
CHEMBL2828 CHEMBL5818
CHEMBL2431 CHEMBL260
CHEMBL5330 CHEMBL4897
CHEMBL2793 CHEMBL4895
CHEMBL2835 CHEMBL3234
CHEMBL4282 CHEMBL2007
CHEMBL2276 CHEMBL5650
CHEMBL3629 CHEMBL2292
CHEMBL4273 CHEMBL2527
CHEMBL258 CHEMBL3835
CHEMBL2208 CHEMBL2543

Kinases excluded from the training set

CHEMBL3142 CHEMBL5568
CHEMBL2094126 CHEMBL5600
CHEMBL5719 CHEMBL301
CHEMBL3553 CHEMBL4247
CHEMBL4816 CHEMBL4179
CHEMBL4722 CHEMBL4101
CHEMBL6166 CHEMBL267
CHEMBL2742 CHEMBL3045
CHEMBL4040 CHEMBL5627
CHEMBL5608 CHEMBL3055
CHEMBL5491 CHEMBL2973
CHEMBL2637 CHEMBL3836
CHEMBL203 CHEMBL4525
CHEMBL3231 CHEMBL3587
CHEMBL5261 CHEMBL1862
CHEMBL1906 CHEMBL5251
CHEMBL4576 CHEMBL5408
CHEMBL3357 CHEMBL4900
CHEMBL4601 CHEMBL5407
CHEMBL4523 CHEMBL4224
CHEMBL4454 CHEMBL2689
CHEMBL331 CHEMBL4439
CHEMBL2148 CHEMBL4575
CHEMBL2801 CHEMBL4225
CHEMBL2073 CHEMBL3935
CHEMBL4202 CHEMBL5469
CHEMBL2599 CHEMBL5794
CHEMBL3032 CHEMBL2749
CHEMBL4599 CHEMBL3717
CHEMBL2996 CHEMBL4852
CHEMBL3476 CHEMBL3920
CHEMBL4578 CHEMBL1981
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Figure 5: Average ranking of each fingerprint on excluded Targets, when models were trained
without the target information on the excluded targets

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.3062 (1.4452) 4.4188 (2.2439) 3.2406 (1.2969) 4.9125 (1.1849) 2.025 (0.9946) 6.2281 (0.9128) 4.8688 (1.1273)
EF1% 6.2531 (0.8079) 1.1688 (0.51) 6.2844 (0.8888) 3.0594 (0.8485) 2.6875 (1.1336) 3.7438 (0.9265) 4.8031 (0.9213)
EF2.5% 6.1656 (0.9366) 1.175 (0.5103) 6.0625 (1.064) 3.0156 (0.7145) 2.3688 (0.9444) 4.4531 (1.0493) 4.7594 (1.0282)
Mean Sim. 3.9281 (1.3748) 6.5406 (0.7212) 4.1 (1.262) 3.85 (1.001) 5.9812 (0.8177) 1.2406 (0.6441) 2.3594 (0.8815)

Table 22: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64 when included during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 1.5656 (1.1727) 5.7438 (1.9681) 2.7438 (1.1668) 5.2562 (1.3009) 3.6188 (1.3553) 5.3281 (1.1448) 3.7438 (1.3254)
EF1% 6.0781 (1.0196) 2.0156 (1.579) 6.0344 (1.2358) 3.5156 (1.16) 3.2094 (1.6359) 2.95 (1.4042) 4.1969 (1.3837)
EF2.5% 5.9594 (1.1491) 2.0281 (1.6668) 5.85 (1.3534) 3.4875 (1.2608) 2.7406 (1.5003) 3.7219 (1.6196) 4.2125 (1.3931)
Mean Sim. 4.4094 (1.51) 5.7312 (1.5144) 4.4688 (1.3736) 3.5656 (1.1631) 5.9219 (1.0261) 1.3594 (0.9672) 2.5438 (1.13)

Table 23: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64 when excluded during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6926 (0.0434) 0.6494 (0.1054) 0.6702 (0.048) 0.6339 (0.066) 0.7017 (0.068) 0.604 (0.0503) 0.632 (0.0502)
EF1% 4.8079 (3.9544) 16.4581 (14.2163) 4.9364 (4.4316) 9.0027 (8.4472) 10.6325 (10.1414) 7.9292 (7.6529) 6.5469 (5.8295)
EF2.5% 3.1925 (1.8638) 9.6177 (6.7945) 3.348 (2.2345) 5.4527 (4.0701) 6.7742 (4.9788) 4.3726 (3.2898) 3.9855 (2.7332)
Mean Sim. 0.3083 (0.0712) 0.2445 (0.0441) 0.3046 (0.0681) 0.3057 (0.0531) 0.2632 (0.0512) 0.372 (0.0417) 0.3374 (0.0562)

Table 24: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64 when included during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.
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MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6926 (0.0434) 0.5825 (0.0815) 0.6548 (0.0505) 0.6051 (0.0587) 0.6366 (0.0603) 0.604 (0.0503) 0.632 (0.0502)
EF1% 4.8079 (3.9544) 10.3592 (9.4776) 5.0793 (4.741) 7.0841 (6.4387) 7.6259 (6.9301) 7.9292 (7.6529) 6.5469 (5.8295)
EF2.5% 3.1925 (1.8638) 6.2937 (4.8609) 3.4132 (2.3914) 4.3942 (3.0889) 5.1112 (3.7599) 4.3726 (3.2898) 3.9855 (2.7332)
Mean Sim. 0.3083 (0.0712) 0.2799 (0.0693) 0.3076 (0.0666) 0.3189 (0.0622) 0.2783 (0.0609) 0.372 (0.0417) 0.3374 (0.0562)

Table 25: Average Mean(SD) of the Similarity Search Performance Measures with a Fingerprint
size of 64 when excluded during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.1719 (1.272) 3.8344 (2.1354) 4.6688 (1.3058) 4.85 (1.0175) 1.675 (0.6516) 6.2469 (0.9448) 4.5531 (1.2078)
EF1% 5.1625 (1.116) 1.175 (0.5068) 6.6406 (0.8168) 3.7375 (0.9426) 2.0188 (0.6771) 3.925 (1.0303) 5.3406 (1.0373)
EF2.5% 4.9594 (1.2853) 1.225 (0.5847) 6.425 (0.9704) 3.6938 (0.9691) 1.8938 (0.4834) 4.6531 (1.1985) 5.15 (1.144)
Mean Sim. 3.3188 (1.2253) 6.4 (0.8517) 4.2938 (1.4087) 3.7375 (1.0499) 6.1531 (0.7677) 1.2969 (0.7224) 2.8 (1.1247)

Table 26: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254 when included during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 1.5562 (1.1183) 5.325 (2.1344) 3.9406 (1.3805) 4.9406 (1.1715) 2.5969 (1.1997) 5.7688 (1.1313) 3.8719 (1.395)
EF1% 4.7969 (1.3227) 1.5781 (1.1646) 6.4906 (1.0485) 3.8812 (1.215) 3.0562 (1.6825) 3.2969 (1.4964) 4.9 (1.412)
EF2.5% 4.6469 (1.531) 1.725 (1.3525) 6.2812 (1.1613) 3.9906 (1.1955) 2.5562 (1.4711) 4.1438 (1.7338) 4.6562 (1.4899)
Mean Sim. 3.5438 (1.3338) 5.5875 (1.5054) 4.8062 (1.5871) 3.5719 (1.1636) 6.0875 (1.0455) 1.4 (1.0223) 3.0031 (1.4074)

Table 27: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254 when excluded during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6969 (0.0442) 0.6718 (0.1038) 0.6301 (0.0482) 0.6294 (0.0593) 0.7133 (0.0774) 0.604 (0.0503) 0.632 (0.0502)
EF1% 6.4273 (5.4834) 17.4081 (14.927) 5.3393 (4.8846) 8.1632 (7.7244) 12.7796 (11.2379) 7.9292 (7.6529) 6.5469 (5.8295)
EF2.5% 3.9184 (2.4352) 9.9987 (7.1789) 3.4637 (2.4133) 4.8412 (3.6451) 7.9113 (5.5725) 4.3726 (3.2898) 3.9855 (2.7332)
Mean Sim. 0.3325 (0.0613) 0.2611 (0.0394) 0.3194 (0.0638) 0.3249 (0.053) 0.2712 (0.0442) 0.372 (0.0417) 0.3374 (0.0562)

Table 28: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254 when included during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6969 (0.0442) 0.6111 (0.081) 0.6315 (0.0472) 0.618 (0.0533) 0.66 (0.0595) 0.604 (0.0503) 0.632 (0.0502)
EF1% 6.4273 (5.4834) 11.4568 (10.2393) 5.3209 (5.0244) 7.2046 (6.4526) 8.253 (7.1874) 7.9292 (7.6529) 6.5469 (5.8295)
EF2.5% 3.9184 (2.4352) 6.7569 (5.0808) 3.4619 (2.4589) 4.2877 (3.007) 5.3542 (3.7783) 4.3726 (3.2898) 3.9855 (2.7332)
Mean Sim. 0.3325 (0.0613) 0.2953 (0.059) 0.3177 (0.065) 0.3307 (0.0579) 0.2948 (0.0583) 0.372 (0.0417) 0.3374 (0.0562)

Table 29: Average Mean(SD) of the Similarity Search Performance Measures with a Fingerprint
size of 254 when excluded during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.
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MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 2.1562 (1.166) 3.0312 (2.0248) 6.3219 (0.9692) 4.6281 (1.0587) 2.0781 (0.7499) 5.7594 (0.9082) 4.025 (1.2417)
EF1% 3.9344 (1.0658) 1.0969 (0.3052) 6.85 (0.5275) 4.6688 (1.1308) 2.2031 (0.7983) 3.9 (1.0932) 5.3469 (1.0267)
EF2.5% 3.7594 (1.0548) 1.1719 (0.4957) 6.7438 (0.7228) 4.7406 (1.154) 2.0188 (0.5879) 4.5719 (1.2103) 4.9938 (1.133)
Mean Sim. 2.4781 (0.8921) 5.7875 (1.3292) 5.3125 (1.5694) 3.7594 (1.0825) 6.0375 (0.74) 1.3188 (0.7645) 3.3062 (1.1746)

Table 30: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024 when included during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 1.5281 (0.977) 4.4312 (2.2064) 5.8219 (1.3009) 4.6688 (1.2516) 2.925 (1.1767) 5.2906 (1.1954) 3.3344 (1.3872)
EF1% 3.2812 (1.1483) 1.4875 (1.0985) 6.7594 (0.774) 5.0062 (1.1536) 3.3312 (1.5931) 3.25 (1.3389) 4.8844 (1.297)
EF2.5% 3.1875 (1.1619) 1.5188 (1.1216) 6.6594 (0.8827) 5.1344 (1.2287) 2.925 (1.4722) 4.0188 (1.4992) 4.5562 (1.3325)
Mean Sim. 2.6781 (1.0784) 4.9062 (1.5425) 5.7906 (1.6173) 3.7688 (1.2748) 5.8 (1.1038) 1.4188 (1.0192) 3.6375 (1.3264)

Table 31: Average Rank (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024 when excluded during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6779 (0.049) 0.6777 (0.0961) 0.589 (0.0415) 0.621 (0.0512) 0.6848 (0.0687) 0.604 (0.0503) 0.632 (0.0502)
EF1% 7.5112 (6.6055) 15.2025 (13.0442) 4.726 (4.5044) 7.197 (6.6415) 10.4608 (9.4026) 7.9292 (7.6529) 6.5469 (5.8295)
EF2.5% 4.4164 (2.9585) 9.0239 (6.5004) 3.0841 (2.1521) 4.225 (3.0779) 6.4953 (4.6746) 4.3726 (3.2898) 3.9855 (2.7332)
Mean Sim. 0.3496 (0.0508) 0.2859 (0.0391) 0.3077 (0.0645) 0.332 (0.0561) 0.2906 (0.0469) 0.372 (0.0417) 0.3374 (0.0562)

Table 32: Average Mean (SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024 when included during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.

MLP generic MLP MT GCN generic GCN MT Freeze MT ECFP4 CDDD

AUC 0.6779 (0.049) 0.6258 (0.075) 0.591 (0.0415) 0.6099 (0.0486) 0.6443 (0.0576) 0.604 (0.0503) 0.632 (0.0502)
EF1% 7.5112 (6.6055) 10.9072 (9.3638) 4.5517 (4.1088) 6.501 (6.0679) 7.5994 (6.4745) 7.9292 (7.6529) 6.5469 (5.8295)
EF2.5% 4.4164 (2.9585) 6.4804 (4.6945) 2.9974 (1.9874) 3.8456 (2.7433) 4.8364 (3.3044) 4.3726 (3.2898) 3.9855 (2.7332)
Mean Sim. 0.3496 (0.0508) 0.3139 (0.0535) 0.3053 (0.066) 0.3345 (0.0593) 0.3054 (0.0574) 0.372 (0.0417) 0.3374 (0.0562)

Table 33: Average Mean(SD) of the Similarity Search Performance Measures with a Fingerprint
size of 1024 when excluded during training. The Standard Deviation presented here is the average
Standard Deviation across the targets, not the 5-folds of the Cross-Validation.
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Hyperparameters

Parameter Range Optimal MLP (gen/MT) GCN (gen/MT)
Learning Rate 10−6–0.05 (log-scale) 5.9 · 10−5/ 4.6 · 10−5 1.7 · 10−4/ 1.8 · 10−4

Dropout 0.0–0.4 0.21/0.33 0.2/0.22
N. of Convolution layers (GCN only) [1, 2, 3] - 3/3
Size of Embedding (GCN only) [50, 100, 200] - 200/200
N. of Hidden Linear Layers [1, 2, 3, 4] 2/2 1/1
Size of Linear Layer [254, 512, 1024] 1024/1024 -/-
Fingerprint Size [64, 254, 1024] 64/1024 64/1024

Table 34: Hyperparameters and their Ranges.
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