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Abstract

In their previous work , Srinivas et al. 1 have shown that implicit fingerprints cap-

ture ligands and proteins in a shared latent space, typically for the purposes of virtual

screening with collaborative filtering models applied on known bioactivity data. In this

work, we extend these implicit fingerprints/descriptors using deep learning techniques

to translate latent descriptors into discrete representations of molecules (SMILES),

without explicitly optimizing for chemical properties . This allows the design of new

compounds based upon the latent representation of nearby proteins, thereby encod-

ing drug-like properties including binding affinities to known proteins. The implicit

descriptor method does not require any fingerprint similarity search, which makes the

method free of any bias arising from the empirical nature of the fingerprint models.1

We evaluate the properties of the novel drugs generated by our approach using physical

properties of drug-like molecules and chemical complexity. Additionally, we analyze

the reliability of the biological activity of the new compounds generated using this

method by employing models of protein ligand interaction, which assists in assessing
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the potential binding affinity of the designed compounds. We find that the generated

compounds exhibit properties of chemically feasible compounds and are likely to be

excellent binders to known proteins. Furthermore, we also analyze the diversity of

compounds created using the Tanimoto distance and conclude that there is a wide

diversity in the generated compounds.

Introduction

The field of virtual screening, a constituent part of the modern drug discovery process2,3 has

been entrenched in the pharmaceutical industry for years and has developed into a sophisti-

cated tool.4–6 A number of successful virtual screening strategies to identify novel hits have

been reported, which serves as starting point for further investigation7–9 . Many state-of-

the-art protein-ligand interaction (PLI) models use machine learning that relies on abstract

descriptors of compounds/proteins as input features.10–15 Virtual screening in drug discov-

ery that use these models, while high performing, is not free of deficiencies—the limitations

of representing drug compounds and targets abstractly also limits our ability to infer their

binding properties.16,17

We argue that a critical barrier is the lack of a universal fingerprinting model that can

amass knowledge about drug compounds, protein targets, and assay characteristics in a

shared latent space that can be used by a variety of machine learning models, visualization

tools, and compound design tools. We further argue that if the representation is completely

abstract, even if it performs well at PLI prediction, it is fundamentally limited because

researchers cannot systematically create candidate compounds based on the featurization of

the target.18–20

In their previous work Srinivas et al. 1 , proposed the conception and development of an

implicit mathematical representation that allows for a more accurate characterization of the

drug compound and protein target in the same numeric latent space (as opposed to the

current practice of separate descriptors for the compound and target), thus narrowing the
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model-associated bias down to that of the assay, i.e., real clinical (albeit in vitro) envi-

ronment.21 Additionally, to facilitate the ability to discover the physical structure of new

compounds, in this work we propose decoding methods that map from the implicit repre-

sentation of the candidate compounds to their physical structure. We believe this expanded

capacity of the fingerprinting model will have significant impact on virtual screening and,

consequently, drug discovery, as it will render drug discovery less dependent on costly clinical

facilities and services. Moreover, the representation will provide new methods for creating

and testing candidate drug compounds.

Several recent works have investigated the use of neural embedding on compound struc-

ture representations such as SMILES codes, showing this embedding is effective for exploring

the chemical properties22 and generating novel compounds. Gómez-Bombarelli et al. 23 refer

to these embedded fingerprints as implicit representations. However, their methods work

upon the raw SMILES textual representation and are therefore limited in their ability to

discern more complicated relationships encoded by graphical fingerprints. The recent years

have seen a plethora of deep learning based generative models for de-novo drug genera-

tion.24–29 The common theme in these techniques is to provide as input to the deep learning

model, the molecules only to produce the same or similar molecules as output. The continu-

ous vector representations of the input molecules in the intermediate layers produce a larger

chemical property space, which is then sampled to produce novel molecules. In this work,

we design and train deep learning methods that leverage the implicit compound fingerprints

obtained from collaborative filtering based on the past bioactivity/assay data to map back to

the physical structure of compounds. The implicit encoding of compounds are a continuous

vector-valued representation and thus lend itself to the use of continuous optimization to

generate novel compounds. We further assess the properties of the novel ligands generated

in terms of the drug-like physical properties of molecules, chemical complexity and biological

activity. We observed that our compounds exhibit properties similar to the known ligands

even though our approach does not explicitly train the neural network for optimizing spe-
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cific properties. Additionally, we compare our work to the prior work of Gómez-Bombarelli

et al. 30 on a set of chemical compounds with known binding affinities to cancer targets from

the ChEMBL23 database.31 This comparative analysis investigates not only the potential

binding affinity of the generated compounds to selected protein targets, but also the diversity

of compounds generated. We provide evidence that our method is superior in both binding

affinity and compound diversity. Finally, we conclude with a discussion of how our method

could be integrated into a compound design tool and explore some of the advantages and

limitations that such a tool would provide.

Implicit Fingerprints from Collaborative Filtering

In their previous work, Srinivas et al. 1 investigated implicit fingerprinting models that extend

the existing virtual screening mechanisms by incorporating collaborative filtering. Collab-

orative filtering algorithms are used for designing recommendation systems such as movie

recommendation engines.32,33 In general, collaborative filtering is a method for making au-

tomatic predictions (filtering) about the interests of a user by collecting preferences or taste

information from other users (collaborating). When applied to the field of virtual screen-

ing, this approach relies on modeling predictions based on assays measuring the interactions

between compounds and targets.34,35 To intuit this,one can imagine building a recommen-

dation system for matching movies to people. The direct approach might try to extract

features specific to the person, like genre preferences and preferred actors, and features of

the movie, like genre and runtime, to classify a match. This is the approach that is most

similar to virtual screening where researchers directly featurize the compounds and targets

based on their geometry and physicochemical properties. A more implicit approach groups

users based on the movies they liked and groups movies based on the users that have seen

them. Users and movies in similar groups could be implicitly found without attempting to

featurize aspects of the users or movies directly.

In their previous work, Srinivas et al. 1 elucidated the performance of the collaborative
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filtering against the traditional approaches using evaluation criteria such as 1% enrichment

factor (EF1%)36 for its ability to address specific properties of the early recognition problem

specific to virtual screening, Boltzmann enhanced discrimination of the receiver operating

characteristic (BEDROC20),37 and area under the curve (AUC) of the receiver operating

characteristic.38 The collaborative filtering algorithm was found, at that time, to consis-

tently and significantly outperform all the other methods using the evaluation criteria. Fur-

thermore ,the utility of the implicit continuous representation of the ligands obtained from

collaborative filtering was illustrated in an example with cancer related targets as described

in the next section.

Figure 1: tSNE Plots of Implicit Ligand Fingerprints: Plots for two cancer targets are
shown where each point represents a compound assayed from the ChEMBL database. The
concentration results of the assays are color coded. tSNE plots of the 50 dimensional implicit
representations, reduced to 2 dimensions preserving distance.

Representation of Ligands and Proteins in Implicit Fingerprint Space

To help intuit the inherent properties of the implicit latent space, we randomly selected two

cancer related targets from the ChEMBL23 database. We selected targets with ChEMBL23

IDs CHEMBL4899 and CHEMBL2150837 along with all the ligands with assays for these

targets as shown in Figure 1. The 50-dimensional implicit fingerprints of the compounds are
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reduced into a 2-dimensional space using stochastic neighbor embedding (t-SNE).39 We visu-

alize all compounds with available assays for the three selected cancer related protein targets

in the ChEMBL23 database. The compounds are color-coded as either having demonstrated

binding affinities to the target or not, on the basis of their standardized concentration levels

in the assays, where a decreasing concentration level indicates stronger binding affinity. For

the t-SNE plots, the ideal result would be perfect clustering for each concentration level,

which would indicate the compounds cluster based on their binding affinity. Interestingly,

the implicit ligand fingerprints in figure1 demonstrate a very clear separation between the

compounds based on the concentration levels required to trigger binding affinities with the

respective targets. This visual separation is striking for assays with excellent binding affinity

(standard value below 100nM), indicating that the implicit representation is excellent in its

ability to capture properties of similar compounds using an Euclidean distance.

Figure 2: tSNE Plots of Implicit Protein Fingerprints1 (Left) t-SNE plot reducing the dimen-
sions of the 50-dimensional implicit fingerprints into two dimensions for a subset of targets
in the ChEMBL database. The method successfully clusters many known cancer related
targets close to each other. (Right) A zoomed version of the largest cluster of cancer targets.

In order to further elucidate the power of implicit fingerprints for representing protein
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targets, we employed the t-SNE technique to embed 50 implicit protein target fingerprints

into a 2-dimensional projection. That is, the fingerprints of protein targets are visualized,

not compounds. Figure 2 illustrates the distribution of the protein targets when mapped

into a 2-dimensional space, with the cancer related target proteins highlighted in blue. The

graph demonstrates the presence of three potential clusters of known cancer related targets

appearing close to each other. These cancer-related targets are visually separated from other

biological targets in the latent space.

Neural Network Architecture

Our method to generate novel ligands is comprised of two steps. (1) We generate implicit

ligand and protein fingerprints using collaborative filtering and (2) train a neural network to

generate the SMILES string from the implicit representation (i.e., a decoder that can map to

a conventional representation from the implicit space). The first step involves generating the

implicit fingerprints using known assays by applying the collaborative filtering algorithm.1

This step yields the implicit fingerprint representations for both ligands and protein targets,

as described above. The implicit fingerprints are continuous vectors that represent a point

in 50 dimensional space.

The Implicit fingerprints of the ligands are then fed into a Gated Recurrent Unit (GRU)40

neural network to map the corresponding SMILES string encoding. The neural network is

trained to minimize the error in reproducing the relevant SMILES string for each input

implicit fingerprints of the ligands. The key aspect of the neural network is to learn the

function to map the fixed-length continuous vector representation to the SMILES string.

This architecture is illustrated in Figure 3. Additional details of the neural network design

are discussed under the methods section.

As with other methodologies utilizing generative deep learning algorithms,30 the neural

network should ensure that the points in the latent space decode to valid SMILES strings.

In order to avoid the latent space from being sparse and resolve to large “dead-areas” (areas
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in the space that are never trained to decode from and therefore behave unpredictably), we

performed input data augmentation. The data augmentation involved adding randomness

to the input layer of the neural network (i.e., adding random perturbations to the implicit

vector). The data augmentation incentivizes the decoder to more fully represent the areas

in the implicit latent space of the ligands, such that they can successfully resolve to the

corresponding SMILES string. The intuition is that adding noise to the encoded molecules

forces the decoder to learn how to decode a wider variety of latent points and find more robust

representations. This approach follows the intuitions made popular by the variational auto-

encoders(VAEs)41 by Bowman et al. The VAEs, instead of decoding from a single point in

the latent space, sample from a location centered around the mean value and with spread

corresponding to the standard deviation, before decoding. This ensures that a sample from

anywhere in the area is treated similar to the original input. Even so, there are differences

between the VAE approach and ours. In our approach, the latent space if fixed from the

collaborative filtering; it is not trainable like in the VAE. Importantly, this means that the

sampling incentivizes the decoder to reconstruct similar SMILES scores from given set of

similar points. It does not incentivize the collaborative filtering algorithm to change its

implicit representation.

The sequential nature of the output SMILES string required us to consider neural network

architectures that are adept at handling such data. The application of neural network

architectures such as recurrent neural networks and their enhanced variations such as gated

recurrent neural networks (GRUs) for problems involving sequential data such as speech

recognition, language translation have been very successful.40,42–44 The GRU neural networks,

with their innate abilities of learning long-term dependencies in sequences, are especially

useful for handling SMILES strings.
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Figure 3: Deep learning based Ligand Design using Implicit Fingerprints from Collaborative
Filtering - Architecture

Tools for bioactivity prediction

Bioactivity of a drug is of critical importance to highlight the applicability of generated

ligands. SSnet15 and smina45 were utilized to obtain a relative bioactivity of ligands towards

various targets tested in this work.

SSnet

SSnet is a deep neural network based framework that requires a protein target in pdb for-

mat and a ligand as SMILEs string to predict their bioactivity (probability for binding).

The protein structure is formatted to extract curvature and torsion patterns of the protein

backbone that contains compact information about the fold information. The protein fold is

a consequence of multitude of atomic interactions including the side chains and thus holds

information about potential ligand interaction. SSnet had outperformed state-of-the-art ma-

chine learning models like Atomnet,12 3D-CNN,46 and GNN-CNN13 and classical force field

and knowledge based methods employed by Autodock Vina47 and smina45 in identifying
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positive protein-ligand pairs (protein ligand complex with high binding affinity). SSnet be-

ing pre-trained has fast execution time (18 minutes for 1M protein-ligand pairs) to curate

high affinity ligands from a pool of large libraries such as ZINC (1+ billion ligands). SSnet

is made available for public use on https://github.com/ekraka/SSnet.

Smina: Scoring and Minimization of Ligand Conformation

To perform virtual screening and docking, smina45 was used on a subset of ligands converted

to 3D structures via openbabel.48 The docking was performed on the centre of a known

ligand in a protein-ligand complex with a box size of 32Åx32Åx32Å, and exhaustiveness of

36 on the default scoring function. The box size defines the space to consider in a protein

for optimizing a ligand conformation resulting to a binding score. The exhaustiveness is

an indication of the computation time for optimization. The exhaustiveness is required as

Smina utilizes Monte Carlo method for optimization.

Results and discussion

In this section , We present the details of the experiments conducted with their results. We

begin with an exhaustive description of the data used for the experiments.

Dataset Description

Our method involves translating the implicit ligand fingerprints into its corresponding SMILES

string. The implicit fingerprints, however are derived from the ligand - target bioactivity

data from the ChEMBL database (Version 23). The bioactivity data, keeping in line with

previous studies49,50 was focused only on human targets. We restricted bioactivities to three

types of binding affinities. The included half maximal inhibitory concentration IC50, max-

imal effective concentration (EC50), and inhibitory constant(ki). Following the precedence

with previous works,1,49,50 we converted the data into the binary active-inactive using the
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following conversation thresholds: lesser than 100 nM for “actives” and greater than 1000

nM as “inactives.” Furthermore, in order to be consistent with Srinivas et al. 1 , we retained

only ligands which have at least two prior assays. This resulted in a bioactivity matrix of

size 241,260 (ligands) by 2,739 (targets). The bioactivity matrix was subjected to the collab-

orative filtering method as described in Srinivas et al. 1 . The resultant implicit fingerprints

were then used as inputs to our deep learning model, with the goal to produce the respective

canonical SMILES string as the output. Figure 4 illustrates the data distribution of the

number of ligands against the known number of prior assays and known number of prior

assays with known positive affinities. As evident from the plots, close to 50% of the ligands

have only 2 prior assays. Additionally close to 62% of the ligands have only 1 prior assay

with positive affinity. We also wish to note that the number of ligands ( 241k) used to model

the deep learning model is comparable to previous works.24

Considering that our approach relies on the prior assay history to determine the implicit

ligand fingerprints, having more numerous examples of prior assays for each ligand may

also result in better quality implicit fingerprints. This statement is further evidenced by

results from the next section: (1) the ability of the decoder to accurately translate implicit

fingerprints into the corresponding SMILES and (2) the abilities of the ligands to yield more

novel ligands are both influenced by the number of available assays per ligand, as described

next.

De-novo generation of molecules from latent space

In this section, we discuss the outcomes of our method in the context of 5,000 randomly

selected ligands from the validation set. Additionally we also present the outcomes of a

scaffold analysis from novel ligands generated from ligands with known affinities to cancer

targets from the ChEMBL23 database. To further analyze the practical applicability of our

approach,the resulting novel ligands, specifically from approved cancer related drugs were

further evaluated for their viability to be valid drugs with enhanced biological activities.
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Figure 4: Data Distribution: The first figure illustrates the number of molecules against
number of assays, binned at specified values or ranges. Close to 50% of the molecules have
only 2 prior assays. The second figure illustrates the number of ligands against the number
of known assays with positive affinities. It can be observed that 62% of the ligands with
only one assay with positive binding affinity.

The complete list of ligands is made available as a part of the supporting information.

Our method samples around the implicit latent space of the known ligands, or “anchor

ligands” to generate (potentially novel) compounds. In our testing, we randomly sampled

100 points across the 50 dimensions in the implicit space around our anchor ligands. Each

point was then processed through our neural network to obtain the corresponding SMILES

string. The SMILES string was then validated using the RDKIT library. This process is

discussed in more detail in the methods section.

We ran the aforementioned sampling and validation exercise on the 5,000 ligands (hence-

forth referred to as anchor ligands). A total of 4,632 out of the 5,000 (92.64%) anchor ligands

resolved to at least one valid ligand, although not all resolved ligands were novel. As men-

tioned earlier, 100 points are randomly sampled for each anchor ligand. Depending on the

information encoded in the continuous implicit vector space, multiple points around a given

anchor ligand may resolve to the same ligand. Only those ligands that are generated at least
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twice, and can be resolved to a valid compound using the RDKIT library, are considered

to be “valid” generated ligands. The frequency constraint of “at least twice ” is enforced

to help ensure that the generated ligand is not generated spuriously. Additionally, 1,332

anchor ligands out of the 5000 yielded a total of 1,103 novel ligands (3,079 unique SMILES

strings). We define a “novel ligand” as one which did not have sufficient similarity with

the 1.2 million compounds from the ChEMBL23 database and the 1.3 billion compounds

from the ZINC database. The similarity between compounds were measured by the Tani-

moto Coefficient (TC) which measures a distance between fingerprints resulting in a score

ranging from [0,1] (0 corresponds to least similar and 1 to exactly same).51 We obtained the

TC based on 512 bit Morgan Fingerprints.52 1,103 compounds were observed to have TC

of less than 0.85, signifying 24 % of all anchor ligands to be novel. The entire list of TC

scores for ChEMBL23 and ZINC database for the enumerated compounds are provided in

the supporting information. These numbers are reproduced in table 1 for easier readability.

Table 1

Number of anchor ligands from validation set : 5,000
Number of anchor ligands yielding atleast 1 valid ligand : 4,632
Number of novel ligands generated from anchor ligands : 1,103
Number of anchor ligands yielding atleast 1 novel ligand : 1,332

It was also observed that sampling around certain anchor ligands resulted in numerous

novel ligands being generated, while sampling around other anchors did not yield any novel

ligands. To further investigate this phenomenon, we analyzed the abilities of the associated

anchor ligands to yield novel compounds by grouping according to known prior assays. Figure

5 (left) illustrates the relationship between the presence of assays of the anchor ligands and

their ability to generated novel ligands. As can be seen, anchors that generated novel ligands

tended to have a greater number of known assays. In Figure 5 (right), we can also observe

that this relationship holds for the number of anchor ligands with positive affinities. Anchors

with a more numerous positive assays also tended to generate novel ligands. This observation

is perhaps not surprising considering that the implicit fingerprints are derived from the known
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assays. This provides evidence that the implicit fingerprints for anchor ligands encode more

meaningful information when there are more numerous assays. One potential explanation

for this is that the implicit representation can encode many desired properties that are

difficult to measure as the number of assays increases, thereby giving a better blueprint for

the decoder to generate novel ligands. However, because the implicit representation does not

explicitly model chemical or experimental parameters, this hypothesis must be investigated

through observation of known ligand properties, as discussed next.

Figure 5: Correlation of the ability to generate novel ligands with prior assays: Box plots
show the co-relation between the two sets of anchor ligands - one set from 1 or more novel
ligands were generated and the second set which yielded no ligands when sampled in the
implicit fingerprint latent space. The first figure visualizes the total number of known assays
that exists for each set. The second box-plot visualizes the total number of positive binding
affinities already recorded for each assay.

Physical Properties of Novel and Anchor Ligands

In order to explore the similarity of novel and anchor ligands, we evaluated the proper-

ties of the compounds using a number of scoring measures. More specifically, we used the

quantitative estimation of drug-likeness (QED), n-octanol water partition coefficient (LogP),

synthetic accessibility score (SAS), and used the number of benzene rings as an indicator of
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Figure 6: Property Distribution between anchor ligands and generated ligands: (A) Quan-
titative Estimate of DrugLikeness(QED) (B) Partition Coefficient (LogP) (C) Synthetic
Accessability Score (SAS) (D) Number of Benzene rings. The figure demonstrates that
the property distributions of the anchor ligands is similar to the novel ligands generated
from the corresponding anchors across all 4 properties.

the chemical complexity. Our approach to ascertain the similarities in the physical proper-

ties between the anchor ligands and its corresponding novel ligands considered the following

approaches

• Compare the distribution of the populations of property values of the anchor ligands

with the distribution of the generated ligands. This comparison is standard practice

when evaluating the quality of generated ligands.22,53

• Additionally, to investigate similarity of generated ligands with their respective anchor

ligand, we evaluated the magnitude of the difference in the values between the ligands

for each of the 4 aforementioned properties. A residual value, which is the difference

between the property values is calculated for each pair of anchor ligand and its corre-

sponding generated ligand. A mean residual is then obtained for each anchor ligand
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Figure 7: Lipinski’s Rule of 5 valuated on the novel ligands generated from implicit finger-
prints. The figure demonstrates that 80% out of the 1,103 novel ligands satisfy 3 or more
rules , signifying that the generated ligands have properties to be an effective drug.

as described in equation 1. The magnitude of the mean residual value was used as a

method to determine the deviation of the properties between anchors and its generated

ligands.

Rm =

∑N
n=1

√
(pa − pn)2

N
(1)

Rm:mean residual property value for each anchor ligand

N :number unique novel ligands generated for each anchor ligand

pa : property value (QED,LogP,SAS and NumRings) for the anchor ligand

pn : property value (QED,LogP,SAS and NumRings) for nth novel ligand for the cor-

responding anchor ligand.

The QED ranges between 0 and 1. The ligands with higher value indicate that the

molecule is more drug-like. Additionally, the method also claims to capture the abstract

notion of aesthetics in medicinal chemistry.54 We leveraged the python based RDKit library
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Table 2: Properties of anchor and novel ligands.

Anchor Ligands Novel Ligands t-test

QED Mean 0.69 0.57
t-stat = .99
p-value = .35

Stddev 0.20 .22

LogP Mean 3.41 3.43
t-stat = 0.33
p-value = .74

Stddev 1.69 1.95

Benzene Rings Mean 3.45 3.12
t-stat = -8.23
p-value = 2.34e-16

Stddev 1.24 1.33

SAS Scores Mean 2.67 3.18
t - stat = 21.62
p-value. = 6.7e-99

Stddev 0.55 0.85

to determine the QED scores of the generated novel compounds. As illustrated in Table 2,

the average QED score of the novel ligands was found to be 0.57. Figure 6-A(i) illustrates the

comparison of the distributions of the QED scores from the novel ligands with their anchors.

It can be observed that the two distributions are very similar. The student t-test statistic of

0.99 with a p-value of 0.35 also confirms that there exists no statistical difference between

the two distributions. Table 2 tabulates the mean, standard deviations and t-test scores

of all the properties calculated as a part of our experiments. Additionally, figure 6-A(ii)

illustrates the similarities of the QED scores between the anchor ligands and their respective

generated ligands by measuring the mean residual value as described in equation 1 . It is

evident from the plot that a large number of mean residuals are less than .1 units. This

indicates the QED scores of close to 80% of the anchor ligands are within .1 units of their

generated novel ligands, and close to 96% of the anchor ligands have QED scores within .2

units of their generated ligands.

The water–octanal partition coefficient (LogP) was an other property used to quantify the

physical properties of the novel ligands. LogP describes the propensity of ligand to dissolve

in an immiscible biphasic system of lipid (fats, oils, organic solvents) and water.55 A negative

value for logP means the ligand has a higher affinity for the aqueous phase(hydrophilic);when
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logP = 0 the ligand is equally partitioned between the lipid and aqueous phases; a positive

value for logP denotes a higher concentration in the lipid phase(lipophilic). The novel ligands

tended to be more lipophilic with a mean LogP value of 3.43 with a standard deviation of

1.94. Figure 6-B(i) illustrates that distributions of LogP scores between the novel and anchor

ligands. The two distributions appear to be visually similar and the student t-test score of

.33 with p-value = .74 also confirms the same. Additionally figure 6-B(ii) illustrates the

similarities of the LogP scores between the anchor ligands and their respective generated

ligands by measuring the mean residual score as described in equation 1. It is observed that

close to 87% of the anchor ligands have their LogP scores within 1 unit of their generated

ligands.

The synthetic accessibility score (SAS), a method that is able to characterize molecule

synthetic accessibility as a score between 1 (easy to make) and 10 (very difficult to make)56

was another property that was evaluated for the novel drugs generated by our method.

The mean score was found to be at 3.17 with a standard deviation of .85. While the SAS

scores between anchors and their novel ligands appear to be similar visually (6-C(i)), the

t-statistic score of 21.62 with p-value=6.7e-99 indicate that the two distributions are statis-

tically different. Nevertheless the mean score of 3.17 of the novel ligands indicate that the

novel ligands are synthesizable to generate valid drugs. Figure 6-C(ii) further compares the

individual SAS Scores between the generated ligands and their respective anchor ligands.

It is observed that 87.3% anchor ligands have SAS Scores within 1 unit of the generated

ligands. This indicates that an overwhelming majority of the anchor ligands share similar

SAS Scores with their generated novel counterparts. Additionally the number of Benzene

rings was evaluated as a measure of chemical complexity of the novel ligands. Figure 6-D(i)

demonstrates that the complexities of the novel drugs are comparable to the complexities of

their corresponding anchor ligands. Figure 6-D(ii) compares the similarities in the number

of benzene rings between the anchor ligands with their respective generated novel ligands.

It was observed that approximately 83% of the anchor ligands had the exact same number
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of benzene rings as their respective generated novel ligands.

We further evaluated the Lipinski’s rule of 5 (LR5) for all the generated ligands.57 The

LR5 describes critical properties of a ligand in the human body such as absorption, distribu-

tion, metabolism, and excretion. The rule states that a ligand to be effective for therapeutics

should have less than 5 hydrogen bond donors, less than 10 hydrogen bond acceptors, a molec-

ular mass of less than 500 daltons and the LogP less than 5. The LR5 score was computed

for all generated ligands based on Yao et al. 58 . We observed that 68% of generated ligands

completely satisfies the LR5 rule and 22% of generated novel ligands satisfy atleast 3 out of

the 4 rules. This is further illustrated in figure 7. The percentage of matches to Lipinski’s

rule of 5 signifies that the generated ligands have properties to be an effective drug.

Now that it is established that the novel and anchor ligands are likely to have similar

and comparable physical properties, we turn our attention to answering whether the novel

ligands are also likely to similarly bind to known targets.

Binding Affinity predictions of novel ligands

The biological activities of the novel ligands were evaluated by inferring their binding affini-

ties with 102 DUD-E protein targets.59 The DUD-E targets consist of a variety of proteins

exhibiting different mechanism of protein-ligand interactions. The relationship of bioactiv-

ities within the anchor ligand and generated ligands over the DUD-E targets will highlight

the versatility of our model. Thus we used the anchor ligands to test their binding affinities

with the DUD-E targets.

In order to validate the similarities of the binding affinity properties of the novel ligands

with their respective anchors, the binding affinity scores were determined from SSnet for the

anchor ligands with the 102 DUD-E proteins. Each ligand (anchor and novel ligands) yielded

a distribution of binding affinity scores against each target from the set of 102 DUD-E protein

targets. The similarities in the binding affinities of the novel and their respective anchor

ligands were evaluated by comparing the aforementioned binding affinity distributions. Out

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the total 1,332 unique combinations of novel and respective anchor ligands, approximately

84% demonstrated similar binding affinity behaviors. The similarity score or the measure of

Intersection over Union,60 in this exercise is calculated by evaluating the proportion of DUD-

E targets to which both the ligands demonstrate binding or lack of binding. An SSnet score

of 0.5 or less is considered lack of binding, and a score greater than 0.5 as binding. Figure

8 illustrates this for 1,332 unique pairs of novel ligands and their anchor ligands. Each data

point on the x - axis in figure 8 represents a unique anchor-novel ligand combination. The

y-axis represents the Intersection over Union score calculated between the 2 distributions of

binding affinity scores, the first distribution being binding affinity indicator of anchor ligand

with 102 DUD-E proteins and the second distribution, the binding affinity indicator of the

novel ligand with 102 DUD-E proteins. The figure further illustrates that a large majority

of the anchor-ligand pairs exhibit similar binding affinities.

Figure 8: Pairwise binding affinity scores: The plot illustrates the similarities in the bio-
activity between each pair of anchor ligands and their corresponding generated ligands to the
102 DUDE protein targets. The large regions of dark blue hue in the heat map demonstrate
a strong co-relation between the binding affinities for most pairs with the DUDE targets.
The scatter plot illustrates two sample pairs, with the top right plot representing a pair with
very similar affinity scores, with the bottom right plot illustrating a pair where the affinities
differ between the anchor and generated ligand.
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Figure 9: Scaffold analysis. A pseudo-hilbert curve is plotted for anchor ligands and gen-
erated ligands. The color denotes SSnet scores. Similarity between anchor and generated
pseudo-hilbert curves and the low difference among them, signifies that our method retains
scaffolds from the anchor ligands while also predicting similar bioactivities.

The analysis on QED, LogP, and SAS provided an intuitive relationship of generated lig-

ands and drug-likeliness. However, for a drug to be effective for specific target and show se-

lectivity among other targets, should preserve the scaffold (core structure of a molecule61–63).

To analyze if the generated ligands have similar scaffolds, we sorted all the anchor ligands

by Tanimoto Coefficient (TC). The sorting was performed by recursively finding next most

similar ligand from the anchor ligands starting from a random anchor ligand. The sorted list

was then mapped to a pseudo-Hilbert space filling curve. The pseudo-Hilbert curve was used

to observe molecular scaffolds directly from the map as pseudo-Hilbert curve preserves the

spatial proximity of the sorted list. The pseudo-Hilbert map for the generated ligands were

made similarly. Each anchor ligands were repeated to the same number of generated ligands

in order to match one-to-one when comparing pseudo-Hilbert curve for generated ligands

and anchor ligands. Figure 9a and 9b shows the pseudo-Hilbert map for anchor ligands and

generated ligands respectively. The pseudo-Hilbert map is colored based on the SSnet scores
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obtained by docking the ligands with the DUD-E targets with PDB ID 1B9V and 3KBA. The

pseudo-Hilbert map for all 102 DUD-E targets are provided in the supporting information.

We observe that the clusters are majorly retained for the generated ligands when compared

to the anchor ligands. This is further highlighted in Figure 9c, that shows the difference in

SSnet scores for generated and anchor ligands. The map is mostly blue which represents a

mere difference of SSnet scores in generated and anchor ligand of less than 0.1. The results

highlight that the novel molecules generated preserves the scaffold that is essential in protein

ligand binding.

Comparison with FDA Approved Drugs

In order to further hone in on the practical applicability of our methods and the novel

drugs generated, we conducted analysis on novel drugs generated on known cancer related

ligands. For this exercise we shortlisted 10 drugs approved for treating various forms of

cancer also available in the ChEMBL23 database. We present detailed analysis of the novel

ligands generated around a known cancer drug, DASATINIB. Sampling around the implicit

fingerprint space of this anchor ligand yielded 10 novel ligands. Figure 10 illustrates the

10 novel ligands. The novelty of the compounds were tested from the ChEMBL23 dataset

(1.4 million compounds) and the ZINC dataset (1.3 billion compounds). Across the 10 novel

compounds, the maximum similarity score were 0.88 for ligands in the ChEMBL23 dataset

and 0.92 for ligands in the ZINC dataset. Table S1 shows the largest TC obtained for

each novel compounds. Interestingly, in this particular case, we observe that the scaffold

for the anchor ligand is retained in most of the generated ligands. The results are in line

with the scaffold analysis performed for the DUD-E protein targets provided in the previous

section (Figure 9). Retention of scaffold is crucial for ligand binding as the protein pocket

in general has confined space for docking. The scaffold provides both size and imperative

interactions such as hydrogen bonding, π interactions etc. that contributes to the stability

of the protein-ligand complex.
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Figure 10: Novel ligands generated around known cancer drug, DATASINIB: Need to expand
after analysis on Binding affinities.

To test the bioactivities for the novel ligands generated, we sorted 9 known targets for the

anchor ligand, the details of which is provided in Table S2. We conducted a docking method

Smina45 and a deep neural network based model SSnet15 for bioactivity score prediction.

Figure 11 shows the results obtained by the two methods. The first five targets are labeled

active and the remaining four as inactive for the anchor ligand used in the ChEMBL dataset.

We observe that the generated ligands have similar Smina scores as the anchor ligands. A

similar behaviour is observed when comparing the SSnet scores for anchor and generated

ligands. It is important to note that both Smina and SSnet are sensitive to ligand and their

complex interaction with a protein target. Many factors such as functional group, size of

the molecule, molecular weight etc. govern the bioactivity. The fact that all the 10 novel

generated ligands have similar bioactivities provides evidence that our ligand generation

method produces ligands with similar binding characteristics to the anchor ligand.

We further compared the bioactivities of 6 FDA approved drugs and their corresponding

generated ligands from the implicit fingerprint and latent space generated from the varia-

tional autoencoder (VAE) work from Gómez-Bombarelli et al. 30 respectively. Each of the 6
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Figure 11: Sample test on various active/inactive targets for anchor ligands. The first 5
targets 2FO0, 1PKG, 1AVZ, 1GQ5 and 1MQB are active and the rest inactive. The red
color denotes the anchor ligands and the black denotes generated ligands respectively.

ligands were docked towards their original intended target, the details of which is provided

in Table S3. We observe high similarity in predicted bioactivities for implicit fingerprints

compared to the latent space generated from VAE for both the Smina and SSnet scores

shown in Figure 12 (Table S5-10). A visual inspection of the compounds generated from our

method and the latent space from VAE shows that both retain the scaffold of the original an-

chor ligand (Figure S1-6). However, bioactivity is sensitive to small changes in the chemical

structure such as a functional group. Our method is perceptive towards functional groups

due to the way collaborative fingerprints was modeled, i.e. by considering the bioactivities.
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Methods

The recent years have seen numerous deep learning based generative models for de-novo drug

generation. The common theme in these techniques is to provide a deep learning model with

anchor ligands to produce novel ligands with similar properties. Often the canonical SMILES

notation of the ligand or a graphical-based fingerprint is used as input to these deep learning

models. This representation is then translated into a continuous vector representation(s) of

the input ligand, whereby the intermediate layers in the deep learning model are slightly

perturbed (i.e., with additive noise) to produce novel molecules. Many previous works exist

with the main distinguishing characteristic among the works being the architecture of the

deep learning model and classification task employed for training. Some popular methods

have been Recurrent Neural Networks,24 Variational AutoEncoders (VAEs),25 Generative

Adversarial Networks (GANs),26,27 and graph-based neural networks.28,29 A survey of recent

work is available from Chen et al. 64 .

Our approach stands apart in that we use the implicit ligand fingerprints obtained from

the prior assay information (collaborative filtering) as inputs to a deep learning model, with

the objective of producing the corresponding canonical SMILES representation as the output.

This implicit representation can have a number of advantages because it is based solely on the

observed behavior of the compound, rather than inherent measures of physical properties.

Thus, formulating a decoding procedure from this implicit representation may have distinct

advantages over previous methods. The implicit fingerprint, because it is a continuous vector

of fixed length (50), also lends itself well to statistical sampling with simple procedures. We

employ data augmentation of the input vector by employing a vector of means µ and another

vector of standard deviations, σ. The input vector (implicit fingerprint vector) serves as the

vector of means, which is then added to another vector,which is a random normal distribution

centered at 0 with standard deviation σ, to yield a statistically sampled point around the

implicit fingerprint. The stochastic sampling process ensures that the actual vector will vary

on every single iteration due to sampling, while keeping the mean and standard deviations
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the same. Intuitively, the mean vector controls where the implicit fingerprint of a ligand is

centered around, while the standard deviation controls the “area,” how much from the mean

the encoding can vary. The decoder, hence learns that not only is a single point in latent space

referring to ligand, but all nearby points refer to the same ligand. The decoder is exposed

to a range of variations of the encoding of the same input during training. This process is

illustrated in the decoder architecture, as shown in figure 13. The approach adopted here is

similar to the data augmentation employed with Variational auto-encoders.65

In order to generate the SMILES string from the implicit fingerprint, we are motivated

to use recurrent neural networks (RNNs) because of their success in modeling sequential

data such as natural language. The SMILES strings lend themselves well to this model

considering the sequential nature of the notation. Each unit in the RNN attempts to capture

state information of the sequence by transforming all the elements that appeared before it.

It does so by encapsulating this information in a hidden state vector, that is passed from

one unit back into itself, recurrently. The hidden state ht of the RNNs can be represented

as

ht = tanh
(
xtwxh + whhht−1

)
where xt represents the input at timestep t, wxh represents the weight from input node

to the hidden node, whh represents the weight on the feedback loop from the hidden node

to itself, and ht−1 represents the previous hidden state. As evident from the equation,the

hidden states from the earlier time steps get diluted over long sequences. This problem

gets compounded with SMILES considering the long term dependencies (such as matching

brackets etc.) that need to be maintained in order to resolve to a valid chemical compound.

The Gated Recurrent Neural Network attempts to address this problem by introducing two

gates called the “update” gate and a “reset” gate along with a memory which governs how

much of the previous state is retained. Each of these units (update gates, reset gate, and

memory) have their own trainable weights. The Update Gate at each unit decides the amount
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of new information to be added to the hidden states. The reset gate determines the past

information to be forgotten or retained at each unit.

r = σ
(
xtwxr + ht−1whr

)
where σ represents a logistic or sigmoid function. These sigmoid values of the reset gate

range from 0 to 1 and determine how much of the previous hidden node value is retained. A

value of r = 0 implies the none of the previous node value is retained and a r = 1 ensures the

entirety of the previous node is retained. This memory m, can be signified by the following

equation:

m = tanh
(
xtwxm + (r � ht−1)whm

)
where � represents the Hadamard (or element-wise) multiplication of two vectors. Addi-

tionally the update gate is governed by the following equation:

u = σ
(
xtwxu + ht−1whu

)
The update gate, with values ranging from 0 to 1, determines if the new hidden state should

use the previous value or the new value. Tying all these together, hidden state is governed

by the equation:

ht = u�m+ (1− u)� ht−1

Intuitively, the GRUs are better suited than the RNNS to our problem considering the

long term dependencies between symbols that must be maintained in the SMILES string.

The Ring structures, for example, are represented by matching numeric symbols typically

separated by two or more atoms within the SMILES string. The neural network should be

able to remember these long term dependencies for effectively decoding to a valid SMILES
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string. Figure 13 illustrates multiple GRU layers that make up the decoder in order to

effectively map to the SMILES code. These “layers” shown in the figure are visualized

compactly—that is, they are actually two stacked sequences of GRU nodes .

Neural Network Design

We performed extensive training and validation of the vanilla RNN and GRU models with the

continuous implicit fingerprint vector as the input and the one hot encoded SMILES string

as the output. We measured the outcome of the models by evaluating the categorical cross

entropy loss and the accuracy. As a part of training, we explored a variety of architecture

options with respect to the depth and the width of the deep learning models. We also

trained with different composition of the training sets based on ligands with varying counts

of past assay data. Across all training iterations, we noticed that the GRU based model

performed better with,lower cross entropy and higher accuracy. We also noticed that the

training loss converged faster compared to the validation loss. Our architecture comprised

of a series of dense layers followed which consume the 50 vector wide implicit fingerprint

representation of the ligands, followed by the GRU layers returning sequential information

to map to the SMILEs representations. The exact makeup of the deeplearning architecture

with the trainable parameters are provided in the supporting information.

Figure 14 illustrates the performance of the 3 different models trained with different

datasets. The first dataset comprised of all the 241K ligands from the dataset. We addition-

ally trained with training set comprised only of ligands with atleast 1 positive binding affinity

(121k ligands) and another iteration comprising of ligands with atleast 5 positive binding

affinities (8.5k ligands). As evident from the figure, the training and the corresponding

validation loss was lower when trained with the filtered data sets as opposed to the entire

population of 241k ligands. This can be attributed to the fact that the implicit fingerprints

of the ligands that exhibited positive binding affinities in prior assays tend to encode more

information on the ligands, and hence decodable into the explicit SMILES representations.
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While this implies that approximately half the ligands in our dataset do not resolve back

to its corresponding SMILES representation, it does not however dent the utility of our ap-

proach. This is due to the fact our approach is able to resolve the implicit fingerprints of the

ligands which have demonstrated bioactivities in the past, and hence such ligands are more

desirable to be used as anchor ligands from which to generate novel ligands.

Conclusions

We conclude that our approach of marrying the proven collaborative filtering approach with

generative deep learning models is a promising new method for de-novo drug generation.

Our work shows that the implicit fingerprinting has a number of advantages in terms of

encoding the desired properties of the ligands, including binding affinities to known proteins

without explicitly optimizing for said chemical properties. The compounds from the im-

plicit space also demonstrated a wide diversity when measured using the Tanimato distance.

The collaborative filtering approach allows for the implicit fingerprints to be generated for

any novel ligand with desired binding affinities to known target proteins. Leveraging these

implicit fingerprints with encoded SMILES representations as the basis to generate useful

novel drug-like compounds could further advance this exciting field of drug discovery using

generative deeplearning models. We also note that our approach fundamentally relies on

having training data for a particular anchor ligand and particular target. In order to create

an implicit finger- print, the factorization employed in collaborative filtering requires assay

examples. This requirement limits the scalability of the approach to ligands and targets

for which assays are available or can be completed. We also point out that our analysis

was completed on a large subset of the ChEMBL database, Version 23. Therefore, the

consistency of the approach for ligands across different bio-activity databases needs to be

further evaluated. Additionally,we note that we considered the implicit fingerprints based

on binding affinities alone in this study,there are numerous desired properties (absorption,
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distribution, metabolism, excretion, toxicity, promiscuity, and pharmacovigilant properties)

for which a ligand could be screened. These are typically referred to as secondary screens

because they are most often (but not always) screened after affinity has been established.

The cumulative generative capabilities by combining implicit fingerprints from these assays

could also be evaluated in the future. We also note that further studies need to be conducted

on the cumulative generative powers of the SMILES based generative algorithms and the

implicit fingerprints generated from collaborative filtering. Future work in this space could

leverage the implicit fingerprints with the other popular methods of sampling around the

dense continuous representations of the SMILES vectors. T
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Figure 12: Comparison of Implicit and latent fingerprints on FDA approved drugs and their
corresponding targets. The red color denotes the anchor ligand and the black color denotes
generated ligands respectively. The latent label and implicit label shows the binding affinities
for generated ligands from the method developed by Gómez-Bombarelli et al. 23 (in blue) and
our method (in green).
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Figure 13: Implicit Fingerprints to SMILES Decoder: The deeplearning network learns
ligand representations by employing data augmentation technique at the input layer.The
continuous representation obtained is then fed into a series of dense layers followed by a
Gated Recurrent Unit Neural Network to obtain the corresponding SMILES string.

Figure 14: Train and Validation Losses of the Neural Network: Training and validation losses
across multiple runs of the neural network.
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Supporting Information Available

The supporting information is available for this project in SupportingInformation ImplicitFPtoSMILESṗdf.

Additionally the source code and the trained deeplearning model is available at https:

//github.com/rsrinivas-repo/deepbind_molgen
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(30) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-

Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.;

Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous represen-

tation of molecules. ACS central science 2018, 4, 268–276.

(31) ChEMBL23. https://www.ebi.ac.uk/chembl/, Accessed: 2020-09-30.

(32) Goldberg, D.; Nichols, D.; Oki, B. M.; Terry, D. Using collaborative filtering to weave

an information tapestry. Communications of the ACM 1992, 35, 61–70.

(33) Aggarwal, C. C. Recommender systems ; Springer, 2016; pp 29–70.

(34) Erhan, D.; L’Heureux, P.-J.; Yue, S. Y.; Bengio, Y. Collaborative filtering on a family

of biological targets. Journal of chemical information and modeling 2006, 46, 626–635.

(35) Dahl, G. E.; Jaitly, N.; Salakhutdinov, R. Multi-task neural networks for QSAR pre-

dictions. arXiv preprint arXiv:1406.1231 2014,

(36) Empereur-Mot, C.; Guillemain, H.; Latouche, A.; Zagury, J.-F.; Viallon, V.; Montes, M.

Predictiveness curves in virtual screening. Journal of cheminformatics 2015, 7, 52.

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/


(37) Truchon, J.-F.; Bayly, C. I. Evaluating virtual screening methods: good and bad metrics

for the “early recognition” problem. Journal of chemical information and modeling

2007, 47, 488–508.

(38) Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.-P.; Bertrand, H.-O. Virtual screening

workflow development guided by the “receiver operating characteristic” curve approach.

Application to high-throughput docking on metabotropic glutamate receptor subtype

4. Journal of medicinal chemistry 2005, 48, 2534–2547.

(39) Maaten, L. v. d.; Hinton, G. Visualizing data using t-SNE. Journal of machine learning

research 2008, 9, 2579–2605.

(40) Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 2014,

(41) Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefowicz, R.; Bengio, S. Gener-

ating sentences from a continuous space. arXiv preprint arXiv:1511.06349 2015,

(42) Tang, Z.; Shi, Y.; Wang, D.; Feng, Y.; Zhang, S. Memory visualization for gated

recurrent neural networks in speech recognition. 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). 2017; pp 2736–2740.

(43) Santur, Y. Sentiment Analysis Based on Gated Recurrent Unit. 2019 International

Artificial Intelligence and Data Processing Symposium (IDAP). 2019; pp 1–5.

(44) Zulqarnain, M.; Ishak, S.; Ghazali, R.; Nawi, N. M.; Aamir, M.; Hassim, Y. M. M.

An improved deep learning approach based on variant two-state gated recurrent unit

and word embeddings for sentiment classification. International Journal of Advanced

Computer Science and Applications 2020, 11, 594–603.

(45) Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons Learned in Empirical Scoring

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/


with Smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013,

53, 1893–1904.

(46) Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. Protein–Ligand Scoring

with Convolutional Neural Networks. J. Chem. Inf. Model. 2017, 57, 942–957.

(47) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking

with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput.

Chem. 2009, 31, 455–461.

(48) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchi-

son, G. R. Open Babel: An open chemical toolbox. J. Cheminformatics 2011, 3 .

(49) Reker, D.; Schneider, P.; Schneider, G.; Brown, J. Active learning for computational

chemogenomics. Future medicinal chemistry 2017, 9, 381–402.

(50) Lenselink, E. B.; Ten Dijke, N.; Bongers, B.; Papadatos, G.; Van Vlijmen, H. W.;

Kowalczyk, W.; IJzerman, A. P.; Van Westen, G. J. Beyond the hype: deep neural

networks outperform established methods using a ChEMBL bioactivity benchmark set.

Journal of cheminformatics 2017, 9, 1–14.

(51) Maggiora, G.; Vogt, M.; Stumpfe, D.; Bajorath, J. Molecular Similarity in Medicinal

Chemistry. J. Med. Chem. 2013, 57, 3186–3204.

(52) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model 2010,

50, 742–754.

(53) Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug

design. Science advances 2018, 4, eaap7885.

(54) Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying

the chemical beauty of drugs. Nature chemistry 2012, 4, 90–98.

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/


(55) Wildman, S. A.; Crippen, G. M. Prediction of physicochemical parameters by atomic

contributions. Journal of chemical information and computer sciences 1999, 39, 868–

873.

(56) Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like

molecules based on molecular complexity and fragment contributions. Journal of chem-

informatics 2009, 1, 8.

(57) Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov.

Today Technol. 2004, 1, 337–341.

(58) Yao, Z.-J.; Dong, J.; Che, Y.-J.; Zhu, M.-F.; Wen, M.; Wang, N.-N.; Wang, S.; Lu, A.-

P.; Cao, D.-S. TargetNet: a web service for predicting potential drug–target interaction

profiling via multi-target SAR models. J. Comput. Aided Mol. Des. 2016, 30, 413–424.

(59) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys,

Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med.

Chem. 2012, 55, 6582–6594.

(60) Nowozin, S. Optimal decisions from probabilistic models: the intersection-over-union

case. Proceedings of the IEEE conference on computer vision and pattern recognition.

2014; pp 548–555.

(61) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs. 1. Molecular Frame-

works. J. Med. Chem. 1996, 39, 2887–2893.

(62) Hu, Y.; Stumpfe, D.; Bajorath, J. Lessons Learned from Molecular Scaffold Analysis.

J. Chem. Inf. Model. 2011, 51, 1742–1753.

(63) Hu, Y.; Stumpfe, D.; Bajorath, J. Computational Exploration of Molecular Scaffolds

in Medicinal Chemistry. J. Med. Chem. 2016, 59, 4062–4076.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/


(64) Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep

learning in drug discovery. Drug discovery today 2018, 23, 1241–1250.

(65) Kingma, D. P.; Welling, M. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 2013,

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/


Graphical TOC Entry

Some journals require a graphical entry for the Table
of Contents. This should be laid out “print ready”
so that the sizing of the text is correct.
Inside the tocentry environment, the font used is
Helvetica 8 pt, as required by Journal of the American
Chemical Society.
The surrounding frame is 9 cm by 3.5 cm, which is
the maximum permitted for Journal of the American
Chemical Society graphical table of content entries.
The box will not resize if the content is too big: in-
stead it will overflow the edge of the box.
This box and the associated title will always be
printed on a separate page at the end of the doc-
ument.

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.18.389213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.389213
http://creativecommons.org/licenses/by-nc-nd/4.0/

