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Abstract

The 20S proteasome is a macromolecule respon-
sible for the chemical step in the ubiquitin-
proteasome system of degrading unnecessary
and unused proteins of the cell. It plays a cen-
tral role both in the rapid growth of cancer cells
as well as in viral infection cycles. Herein, we
present a computational study of the acid-base
equilibria in an active site of the human protea-
some (Caspase-Like), an aspect which is often
neglected despite the crucial role protons play
in the catalysis. As example substrates, we take
the inhibition by epoxy and boronic acid con-
taining warheads. We have combined cluster
quantum mechanical calculations, replica ex-
change molecular dynamics and Bayesian opti-
mization of non-bonded potential terms in the
inhibitors. In relation to the latter, we pro-
pose an easily scalable approach to the reeval-
uation of non-bonded potentials making use of
the hybrid Quantum Mechanics Molecular Me-
chanics (QM/MM) dynamics information. Our
results show that coupled acid-base equilibria
need to be considered when modeling the in-
hibition mechanism. The coupling between a
neighboring lysine and the reacting threonine
is not affected by the presence of the studied
inhibitors.

Introduction

The human body operates through a series of
interconnected cycles. Proteins are created and
destroyed by a sensitive and meticulous chain of
regulation processes which we only have come
to grasp in the last few decades. One of the key
players in this cycle is the proteasome, an enzy-
matic complex responsible for the degradation
of unneeded or damaged proteins.! In case the
unused or damaged proteins are not efficiently
removed from the cell, it is known that the cell
will commit apoptosis.?™* In cancer, abnormal
cells exhibit uncontrolled growth, requiring a
speeding up of the cycle and the proteasomes to
work at very high rates.® Thereby, its inhibition
emerges as an effective road to treatment. %7 It
is also a pharmaceutical application of inter-
est in the fight against coronaviruses, with the
ubiquitin-proteasome system being identified as
a central aspect of the infection cycle.® Despite
best efforts, the development of reliable descrip-
tors for inhibition capabilities has been slug-
gish,? while in silico simulations are still heavily
dependent on empirical data of small candidate
inhibitor libraries.

Different kinds of proteasome inhibitors have
been proposed, those that interact with the ac-
tive site by non-bonded interactions and the
ones that covalently bind to an active residue
in the pocket.!® The inhibitors that cova-



lently bind to the active pocket are commonly
seen as the ones with largest pharmaceutical
potential, showing higher efficiency at lower
dosages, and so lowering the side effects.!! On
the other hand, inhibitors which do not form
any covalent bond can be also of great inter-
est in long term therapies. The only cova-
lent binding inhibitors available on the mar-
ket are epoxyketone (Carfilzomib) and boronic
acid based (Bortezomib and Ixazomib) com-
pounds. Other inhibitors under these two fam-
ilies are being considered or currently under
clinical trial. The mechanism of inhibition is
discussed later in the text. We have focused
on four different molecules chemically similar
to the most promising drugs available or on
trial for the proteasome, i.e. Ixazomib and
Bortezomib (containing boronic acid warheads,
the only market inhibitors in this study) and
Oprozomib and Dihydroeponemycin (contain-
ing epoxy warheads), which are presented in
Figure 77.12°17

The 20S proteasome contains three different
active sites: Caspase-Like (81), Chymotrypsin-
Like (5), Trypsin-Like ($2), see Figure 77.1%20
It has been postulated that each site is spe-
cific to particular substrates and so it has been
accepted that Chymotryptsin-Like performs
cleavage after hydrophobic residues, Trypsin-
Like after basic residues and Caspase-Like after
acidic residues. However, one should bear in
mind that this selectivity has also been placed
in doubt. Studies on real proteins showed that
the active sites are less specific than expected.?!

All of these sites contain a terminal Threo-
nine (Thrl) residue, which reacts with the sub-
strates or the inhibitors by a nucleophilic at-
tack through the alcohol at the side chain of
the mentioned residue. Fig. 77 shows tentative
mechanisms for both boronates and epoxyke-
tone inhibitors. The chemistry at hand is quite
clearly acid-base catalysis and as such the un-
derstanding of solvation within the site, pro-
tonation states before and during the reaction
should be carefully assessed. Acid-base equilib-
ria could offer a sensible explanation to the se-
lectivity observed, and why it might change be-
tween in vivo and in vitro. Despite all this, the
role of protons in enzyme communication and

catalysis is often times neglected. Protons are
extremely labile and mostly invisible in crys-
tal structure data. NMR can be better used to
monitor these particles, but the time resolution
of such experiments is limited. Also in com-
putations the role of protons in different mech-
anisms tend to be undervalued. Usual set up
protocols in theoretical biophysics involve the
estimation of pK, values through fast (partly)
empirical methods??* and keeping such config-
urations fixed. There is an inherent risk to this
approach, specially, if the pK, values are esti-
mated for the end chain, in close proximity to
drug molecules or in residue groups which might
share proton charges among them. One should
also be careful about only evaluating protona-
tion states for one step of the mechanism, since
as a reaction proceeds, shifts in the electronic
density at the pocket might induce also signif-
icant pK, shifts. Several cases can be found
in the literature where proton shifts are an in-
tegral part of the reaction mechanism and the
catalytic machinery. Significant pK, shifts of
residues in the interior of enzymes have been
reported, which would come to explain the low
optimal pH observed for several enzymes.?*2¢
Through the process of adding and /or removing
protons, enzymes may form suitable environ-
ments for reactions to take place, and modulate
different sites.?” Indeed, there are examples of
extreme electric fields being caused by shifting
protons, leading to the catalysis.?® Some of the
authors have recently shown how two different
thiamine diphosphate dependent enzymes can
make use of hydrogen bond networks to com-
municate local changes in potential.?’

In the reaction at hand, the initial nucle-
ophilic attack requires the deprotonation of the
alcohol in Thrl. Given that the optimal pH
value of the proteasome is around 7,303% it
is counter intuitive how such a deprotonation
could be linked to the optimal pH, as the pK,
value of Thr OH groups are much higher and
the deprotonated states should not be popu-
lated. Under this assumption, at around neu-
tral pH, the activity of the site should not be
modulated unless it is coupled to other proto-
nation changes in nearby residues. Previous
studies have suggested a natural zwitterionic



state for the Thrl residue, which would partly
solve the conundrum.3? At the same time, it
has been argued that the residues concomitant
to Thrl, i.e. Lys33 and Aspl7, do not partici-
pate in the reaction.?? This seems counterintu-
itive given that the latter are highly preserved
across different proteasomes and the acid-base
character of the reaction. Previous computa-
tional simulations actually hinted at an active
role of the two residues in the nucleophilic at-
tack of Thrl.20:33

In this work, the mechanism of the reaction of
different inhibitor (or inhibitor-like) drugs with
the Caspase-Like active center of the protea-
some is investigated with theoretical calcula-
tions. We focus on computational pK, esti-
mations and the modelling of protons in the
nucleophilic attack. This will constitute the
only chemical step in boronic acid inhibitors.
We show that our computational findings fall
in accordance with the experimentally observed
optimal pH at which the sites work if one con-
siders a coupling between a neighboring lysine
and the reacting threonine.

Computational methods

Cluster calculations. Our cluster models
include only up to Thrl, Aspl7 and Lys33
residues, which were capped at the backbone
N and C atoms, and saturated with H atoms
and the warhead of the inhibitor (Figure S2).
Microsolvation has been applied whenever men-
tioned. We have performed geometry and fre-
quency calculations, in the native (PDB code
5LES), bortezomib (PDB code 5LF3) and di-
hydroeponemycin containing structures (PDB
code 5LF1), constraining the a-carbons to
their crystallographic positions. The Gaus-
sianl6 software package (RevA.03)3* was em-
ployed for all density functional theory (DFT)
calculations, using the B3LYP functional?5:3
and dispersion corrections,?” together with
the def2-SVPD basis sets for geometry opti-
mizations.3*3 Harmonic vibrational frequen-
cies were computed by analytical differentia-
tion of gradients. The frequencies were used to
evaluate the Gibbs free energy in the harmonic

oscillator approximation. Single point calcu-
lations have been carried out with the def2-
TZVPD basis set. All calculations were done
employing the SMD continuum model with the
permitivity of water at 298 K.4°

Bayesian Optimization (BO) is a machine
learning technique tailored for efficient multidi-
mensional optimizations. It has found previous
application in force field optimizations, but to
the best of our knowledge this is the first time it
is applied to refit potential parameters accord-
ing to a target QM /MM quantity. The BO pro-
cedure was performed with GPyOpt.'42 The
underlying model was a Gaussian Process Re-
gression with a Matérn52 kernel.

We have employed radial distribution func-
tions of the inhibitor molecules in water as the
target for the fit, computed at the PM6/TTP3P
level of theory. The purpose of the BO proce-
dure was to scale the original GAFF parame-
ters to obtain the best possible similarity be-
tween the mentioned QM /MM radial distribu-
tion functions and the one from the BO opti-
mized MM parameters. The actual target func-
tion was the standard deviation of the radial
distribution function given by the difference be-
tween MM and QM /MM results.

The non-bonded parameters have been op-
timized with this procedure, departing from
the Lennard-Jones parameters given by GAFF
and the point charges obtained through RESP.
This corresponds to the default parameterisa-
tion of the drug. Given the importance of hy-
drogen bond interactions of the warhead with
the residues in the active site, the object of op-
timization were the non-bonded parameters of
the polar atoms in the warhead. In order to pre-
serve the overall neutral charge of the molecules
the charges were scaled under the constraint:

Z)‘q%' =0 (1)

in the same way, the Lennard-Jones parameters
were scaled as

Vis(r) = 4he [(A;’f’)m - (%)1 . (@)

The procedure is iterative, see Figure ?77.




One starts by collecting MM radial distribution
functions in a grid for different scaling factors.
The first ten points per optimization dimension
are given by the Latin Hypercube sampling in
order to gain insight of the surface that we are
exploring.*® Then, the expected improvement
acquisition function is the one responsible to se-
lect the following point, by which the standard
deviation is minimised.

Reference QM /MM dynamics. The stud-
ied drugs were simulated in a periodic box
which extends 20 A away from the drug with
TIP3P water molecules. The parameters were
assigned by GAFF and the warheads were in-
cluded in the QM region employing PM6. We
have employed a cutoff of 8 A for the non-
bonded interactions, using particle-mesh Ewald
summation with a fourth-order B-spline inter-
polation and a tolerance of 107°. The non-
bonded list was updated every 50 fs and the
time step was set up to 2 fs, employing SHAKE
to constrain bonds involving hydrogen atoms.

The system was minimised for 2000 cycles,
1000 with steepest descendent and 1000 with
conjugate gradient. Then, the system was
heated for 400 ps using a NVT ensemble, in-
creasing the temperature from 0 to 300 K in
the first 300 ps with the equal intervals, using
Langevin dynamics with a collision frequency
of 2.0 ps™!. The system was then equilibrated
for 400 ps using a NPT ensemble with isotropic
position scaling and a relaxation time of 5.0 ps.
The production phase was then performed for
5 ns saving snapshots every 50 steps.

MM dynamics. The molecular dynamics
were performed in a periodic box which ex-
tends 20 A away from the drug with TIP3P
water molecules. The initial parameters were
assigned by GAFF. We have employed a cut off
of 8 A for the non-bonded interactions, using
particle-mesh Ewald summation with a fourth-
order B-spline interpolation and a tolerance of
107°. The non-bonded list was updated every
50 fs and the MD time step was set up to 2
fs, employing SHAKE algorithm to constrain
bonds involving hydrogen atoms.

The system was minimised for 2000 cycles,
1000 with steepest descendent and 1000 with
conjugate gradient. Then, the system was
heated up for 1 ns using a NVT ensemble, in-
creasing the temperature from 0 to 300 K in the
first 800 ps with equal intervals, using Langevin
dynamics with a collision frequency of 2.0 ps™!.
The system was then equilibrated for 1 ns using
a NPT ensemble with isotropic position scaling
and a relaxation time of 5.0 ps. The produc-
tion phase was then performed for 3 ns saving
snapshots every 10 steps.

For the following points given by the Bayesian
Optimization, the previous last structure was
taken, heating it up for 400 ps from 0 to 300
K in the last 340 ps with equal intervals, using
Langevin dynamics with a collision frequency
of 2.0 ps!. The system was then equilibrated
for 100 ps using a NPT ensemble with isotropic
position scaling and a relaxation time of 5.0 ps.
It is then, when the production phase was set
to run.

Replica-Exchange set up. The performed
simulations correspond to a single monomer
(Caspase-Like monomer, chain N of the ref-
erenced PDB) which was initially protonated
according to the computed pK, values by the
PROPKA algorithm and taking into account
the crystalization pH of 6.7. Different proto-
nation states of Thrl were parametrized using
the Gaussian09 software package (RevD.01).4
We have selected the Thrl residue capping at
C atom and substituting the following N atom
by a H atom. Different protonation states were
optimized at B3LYP/def2-SVP and the point
charges were computed within RESP at HF/6-
31G* level, using the AMBER atom types.
The inhibitors were optimized constraining all
the heavy atoms only allowing the H atoms and
the warhead to move (Figure S1). The point
charges were computed within RESP at HF /6-
31G* level, using the GAFF atom types. The B
atom was assigned with Lennard-Jones param-
eters of sp? ¢ atom type. The bonded parame-
ters of the boronic containing warheads, bond
and angle, were obtained through the Seminario
approach.“® For this purpose we have optimized
the inhibitor without any constraints and per-



formed a frequency calculation at B3LYP /def2-
SVP, which is then used to obtain the men-
tioned bonded parameters.

Replica-Exchange simulations. All replica
exchange constant pH simulations were carried
with the AMBER software package,%*" using
sander or pmemd, employing the FF14SB force
field*® for the protein and the GAFF force field
for the ligand,***° whose point charges were
estimated with RESP. The protein-ligand com-
plex was set in a periodic cuboid box of 8 A,
between the protein and the periodic box wall,
of TIP3P water molecules and neutralized with
Na*t and CI~ counterions. The cut off for non-
bonded interactions was set to 8 A, employing
particle-mesh Ewald summation with a fourth-
order B-spline interpolation and a tolerance of
10~°. The non-bonded list was updated every
50fs and the MD time step was set up to 2fs,
employing the SHAKE algorithm®! to constrain
bonds involving hydrogen atoms.

The hydrogen atoms of the system were first
minimized for 2000 cycles (1000 with steepest
descendent and 1000 with conjugate gradient),
by restraining the rest of the atoms with a
10.0 kcal/mol/A? force constant. Then, the
system was minimized for 3000 cycles (1000
with steepest descendent and 2000 with conju-
gate gradient), restraining the backbone atoms
of the protein with a 10.0 kcal/mol/A? force
constant. Finally, the system was minimized
for 10000 cycles (2000 with steepest descendent
and 8000 with conjugate gradient) without re-
straints (substrate included).

The system was then heated up from 0 to
300K for 800 ps using a NVT ensemble using
Langevin dynamics with a collision frequency of
5.0 ps~1. Followed by another 200 ps at 300K
in the same ensemble. We have then equili-
brated the system for 1000 ps in NPT ensem-
ble at 300 K and with isotropic position scaling
and a relaxation time of 5.0ps. The produc-
tion phase is done using 16 replicas employ-
ing the same ensemble and parameters as in
the equilibration. The production is carried for
128 ns, attempting to change the protonation
every 20 fs and attempting replica exchanges ev-
ery 8 ps. 4”52 The heating and production phase

were performed using GPUs.?3

Results and Discussion

Cluster calculations of the active
site

In a first set of calculations, we have applied
electronic structure methods in the modeling of
the active site. Our intent was to make use of a
cluster approach in order to compute the pK,
values of a few selected residues. The useful-
ness of such cluster approaches in the study of
reaction mechanisms has been previously high-

lighted. 5*

pK, shift. In order to compute pK, values
we have made use of two model systems: the
first one containing only the Thrl residue and
two explicit water molecules and the second one
including Thrl, Aspl7 and Lys33 residues, plus
the two aforementioned water molecules, see
Figure ??7. The last model system is a minimal
representation of the active site, including only
three residues which are preserved along the the
three different active sites, whose electrostatics
may play a crucial role in the activation mech-
anism.® For the estimation of pK, values we
have used a linear regression with two empirical
parameters,®® Cy and C;:

AGY

pKa:CO+Cl'W

(3)

using the Gibbs free energy value of -271.9
kcal/mol for the proton in solvent.®” > The
training set and linear regression used in this
work can be found in the Supporting Informa-
tion (Table S1 and Table S2).

The pK, of the terminal Thr1N atom is doc-
umented to range from 6 to 9. We have com-
puted the pK, only accounting for the Thrl
residue, obtaining a value of 7.4 £+ 1.2. This
value is very close to the aforementioned opti-
mal proteasome pH, which is said to be around
7, at which point there would be a close to
even distribution of protonated and deproto-
nated states. The same procedure was ap-



plied to calculate the p K, value of the Thr1O~,
known to be around 15.%% As it should be ex-
pected, the value will strongly depend on the
protonation of the amine moiety. A value of
15.5+2.6 is obtained for deprotonated NHy and
a lowering of the pK, is achieved by setting it
as NHJ, (pK, = 11.3 £ 1.8). The results are
shown schematically in Figure ?7a.

The pK, values for the Thr1O~ will not only
be connected to the amine protonation state
but will, also be modulated through the pro-
tonation states of the residues nearby. There-
fore, we extended to a minimal model of the en-
vironment, including the neighboring residues
(Aspl7 and Lys33). These are the (potentially)
charged closest residues to the Thr1O~, and
could in turn impact the activation step.

Setting Thrl and Lys33 as NHy we obtain a
pK, of 17.2 for the deprotonation of the alcohol.
Setting any of the two sites as NHJ the pK,
of the alcohol is lowered roughly by 3-5 units.
Finally, if both N atoms are set as NHj, the
pK, of the alcohol is lowered even more, down
to pK, = 10.8. The discussed combination of
protonation states and pK, can be seen in Fig-
ure ?7b. It is interesting to observe that the
protonation of the Lys33 residue has a slightly
stronger impact in the pK, of the alcohol than
the amine in Thrl (difference of 2 units). This
should be taken with some caution, due to the
size of the model employed, but is in line with
the physics of the problem. The Lys33 residue,
due to its location, will interact with the alco-
hol moiety. Therefore, any charge placed there
will be in closer contact than even a charge in
the same molecule.

The pK , values of residue Lys33 are also anal-
ysed. These values are presented later on for a
contrast analysis with replica exchange simula-
tions with the purpose of estimating the trust-
worthiness of the presented methodology for the
pK, estimation. The results again show that
the pK, value shifts up (about 1 unit) upon
the removal of the proton from the terminal N
atom, see Figure 77c.

Inhibition reaction pathway. The cluster
models predict that the pK, value of the termi-
nal N atom is very close to the observed optimal

pH. Now we will analyse the pK, values along
the inhibition reaction coordinate, which will
expectedly also couple with the energetics of
the different protonation states. The results of
cluster models have to be considered with cau-
tion, as they may lack some important interac-
tions at the active site. This is particularly rel-
evant in reactions with a large shift/transfer in
molecular charge (a clear example can be found
in sulfite oxidation). %061
The reaction pathways have been modeled for
both a boronic and epoxyketone warheads, see
Figures 7?7 and ??. In the former case, there is
only one reaction step, the Thr1O~ nucleophilic
attack at the Boron atom, leading to the cova-
lently bound tetrahedral intermediate. In the
case of the epoxyketone, this is followed by the
ring closure reaction, which we had also previ-
ously modeled in another study of the system.?’
The pK, values of the products are observed
to be shifted. In both cases, boronic acid
and epoxyketone containing warheads, the pK,
shift is upwards (about 3 units). Hence, we ex-
pect that the amount of protons along the reac-
tion coordinate will not be necessarily constant,
as the system’s proton affinity increases respec-
tive to the inhibitor present at the pocket.
Combining the information from the cluster
pK , calculations and the reaction paths, we ob-
serve that the optimal pH is connected to both
the Lys33 and the amine in Thrl. By protonat-
ing the amine groups, it is easier for the nucle-
ophilic oxygen to be deprotonated. However,
below the optimal pH, both groups would be
protonated, effectively blocking the reaction.
In the work by Saha et al.®? it is suggested
that both Lys33 and the amino group of Thrl
are uncharged, based on a much lower pK,
for Lys33. We have also calculated the bar-
riers in this case, which change only slightly
(2.2 keal /mol for epoxy containing warhead in-
hibitors and 0.7 kcal/mol for boronic acid con-
taining inhibitors). Given the long-range na-
ture of electrostatic interactions, the conver-
gence of the computed pK, in dependence of
the simulated system size can be difficult to
achieve. Cluster models in many cases will
prove insufficient, since they lack important in-
teractions around the active site. However,



these effects do tend to be additive in nature,
and the relative shifts are less model-dependent
(as the MD results later in the text confirm). In
this work, we have focused on the relative shift
of pK, in the titratable sites, not so much on
their absolute values. For a more conclusive
assignment of the Lys protonation state, one
would require an extension of the models used.

MD simulations of inhibitors and
active site

The model calculations performed in the pre-
vious section provided some important insight,
which requires further confirmation. The re-
sults hint at how the activation step could be
facilitated by a pK, shift of the Thrl residue.
However, it would be important to validate the
pK, values obtained including more residues,
as well as verify if the observed low value for
Lys33 is kept when one includes the inhibitor.
In the following sections, we move away from
cluster models to the inclusion of the enzyme
environment.

In order to study the impact of inhibitor(-like)
molecules, one should be aware that the quanti-
ties we are analysing will react very sensitively
to the parameterization of the compounds in
question. Therefore, to assert the robustness
of the simulations, we constructed two sets
of parameters for each inhibitor molecule. In
one series of calculations, we apply a standard
GAFF parameterization. In a second series,
we make use of refitted potential terms based
on QM/MM simulations of the compounds in
water. The latter fitting procedure is carried
out through Bayesian Optimization. We de-
scribe in the next section the procedure used
and later compare the two parameterizations
in determining pK, values for the active site
in the presence of the non-covalently bound in-
hibitors.

Bayesian Optimization

First of all, we test the proposed method for
epoxyketone containing inhibitors, whose force
field parameters are present in the GAFF li-
brary, with the aim of validating it. Then, the

missing parameters for boronic acid containing
warheads are obtained. All the procedures can
be seen in the Supporting Information (Table
S3 and Figures S3-S10).

BO parameters for epoxyketones Dihy-
droeponemycin and Oprozomib are the two
compounds included in this study containing
an epoxyketone warhead. In this case, the ac-
tivated Thrl alkoxy group attacks the ketone
carbon atom. The starting parameters are pro-
vided by the standard GAFF protocol. Five
parameters were used in total: a scaling factor
for all point charges in the molecule, and four
parameters for the vdW terms of the carbonyl
and the epoxy moieties’ O atoms. There are
two reasons why the whole molecular charge
is scaled and not just a local refitting of the
warhead atoms. First of all, it guarantees
charge conservation by construction. Secondly,
it keeps the molecular dipole orientation as ob-
tained by RESP, albeit changing the magni-
tude. It is thereby possible to alter the lo-
cal interactions while maintaining the pattern
of longer range interactions (to which the ra-
dial distribution function is less sensitive). We
tested two different approaches to the BO. In
a first optimization, we refitted the parameters
iteratively (it.). This procedure is discussed be-
low. In another optimization, we optimized all
5 parameters simultaneously. It is the compos-
ite (com.) approach, which has the potential to
deliver best fitted curves, but is only achievable
by a multivariate approach such as BO.

We start by describing the step-wise BO (it.).
The point charges were first scaled following
ten points given by the latin hypercube sam-
pling. Based on the results of these first MD
runs, the BO algorithm is used with the pur-
pose of obtaining the best scaling factors for the
charge which minimises the radial distribution
obtained by MM, see Figure ??. It is important
to note that the Lennard-Jones parameters are
untouched at this stage of the procedure.

Once the best scaling factor for the charge
is obtained we have used the same strategy
in order to scale the Lennard-Jones parame-
ters. O35 corresponds to the O atom in the
epoxy moiety. The evaluated points and the



surface are shown in Figure 77. If one moves
away from that point, the standard deviation
increases, obtaining a worse representation of
the radial distribution function by MM param-
eters. It is interesting to note that the o pa-
rameter has greater influence on the radial dis-
tributions than the € parameter.

The obtained scaling factors for the charge
and Lennard-Jones are close to unity which in-
dicate that the parameters given by GAFF are
reliable. The comparison between radial distri-
bution functions is shown in Figure ?7.

Boronic acid containing inhibitors

Bortezomib and Ixazomib are inhibitors con-
taining this type of warhead, that upon the ac-
tivated Thrl is being attacked by the formed
alkoxy group. Our goal is to study the non
covalent interactions preliminar to the cova-
lent bond formation. While performing the
parametrization of the drugs, it is common
some parameters not to be available. This is
the case of the boron atom herein, for which
no data can be found in GAFF. In this par-
ticular case, we have used the Lennard-Jones
parameters of sp? C atom for the boron atom,
and Bayesian Optimizations come as an ideal
method in order to obtain reliable parameters.

The results for the multidimensional opti-
mization procedure lead to better results of the
radial distribution function.

Replica exchange constant pH
simulations

In order to verify some of the findings made in
the cluster calculations, we performed molecu-
lar dynamics (MD) simulations of a single chain
(Caspase-Like), as a more realistic model of the
proteasome active site. This is still far from
a description of the whole proteasome which
weights about 750 kDa, but a necessary approx-
imation given the cost of the constant pH sim-
ulations. The simulations were performed with
X-ray structure of the 20S proteasome.

First, we wish to address the effect of differ-
ent protonation states to the activation process
of Thrl. It is not possible to conduct constant

pH simulations for the Thr1O~, since there is
no paramaterisation for the group. Therefore,
we focus on the protonation state of the Lys33,
and if the picture obtained in the cluster calcu-
lations is the same when simulating the larger
system.

We have set up different protonation states
for Thrl, computing the pK , value of the neigh-
boring Lys33 residue. The obtained results, see
Table 1, show that upon the addition of a pro-
ton to residue Thrl, the pK, value of residue
Lys33 drops to a value of 7.79, while the regular
is estimated to be 10.4.%°

The value of 10.76, obtained when the Thrl
amine is deprotonated, is consistent with the
cluster calculations. However, we observe a
much larger drop in the pK, when this amine
group is charged. This would hint at an even
stronger coupling. One of the two residues will
be protonated. If we were to believe that the
nucleophilic attack happens with the Thrl in a
zwitterionic state, this would only be possible
by keeping the Lys33 protonated.

Table 1: pK, and Hill coefficient (n) values of
Lys33 in the Caspase pocket varying the proto-
nation state of Thrl.

NH, OH NH; O~ NH; OH
pK, 10.76 £0.01 10.50 £0.05 7.79 £0.03
n 0.84 £0.01  0.62 £0.04 0.68 £0.03

Replica exchange constant pH with the
drug in the Caspase pocket

In order to test the effect of the drug in the
pK , values we have conducted replica exchange
simulations with four different drugs in the
Caspase-Like pocket. The dynamics were per-
formed employing the non optimized param-
eters and also the parameters optimized by
the multidimensional Bayesian Optimizations
(com.). The results, presented in Figure 7?7,
show little differences in the pK, values of
Lys33 upon the presence of the inhibitors. It
should be noted, however, that this would not
be quite clear with the default GAFF parame-
ters. It seems advisable to carry out such ro-
bustness tests when modeling novel inhibitors.



The results show that the pK, values of the
Lys33 are largely unaffected by the inhibitors.
This would in turn mean that the acid-base cou-
pling between Thrl and Lys33 is likely not dis-
rupted by the studied inhibitors. Similar acid-
base equilibria should be observed before and
after the inhibitor binds.

Conclusions

Theoretical investigations carried out in the
proteasome have made different suggestions re-
garding the chemical bottleneck for inhibition
or proteolysis in the proteasome.32’63’64 Some of
these studies were based on assumptions which
have in the meantime been discarded. One such
assumption relates to the inhibition mechanism
of epoxyketones. % Recent high-resolution crys-
tal data and computational studies have shown
that instead of the expected 6-membered ring
final product, the covalently bound inhibitor
forms a 7-membered ring with Thrl.2%33 On
the other hand, the Thrl residue has often
been assumed to be deprotonated (amine ter-
minal Thrl) based on rough model pK, esti-
mation. 22236667 Surprisingly, the obtained pK ,
value is close to the optimal pH, and so it is
not straightforward to set this residue as de-
protonated. Indeed, it is known that the pK,
value of the terminal N atom ranges from 6.8
to 9.1.% The modulation of the enzymatic ac-
tivity through the shift of protons could also
enable communication processes between active
pockets® based on protonation state changes of
bridging residues, similar to the one observed in
ThDP-dependent enzymes.?

In this work we show that the activation of
Thrl residue to form an alkoxy is strongly con-
nected to the protonation state of a neighboring
lysine (Lys33), part of the catalytic triad. The
positively charged Lys33 significantly increases
the population of charged groups in Thrl. The
coupling has been evidenced by cluster quan-
tum mechanical calculations with a confirma-
tion of the Lys33 pK, values through replica
exchange simulations.

The inhibition reaction pathway is presented
showing that the amount of protons could

change along the reaction pathway. This needs
to be highlighted as it is a common procedure
in current biophysical simulations. This also
opens up the possibility for active site commu-
nication, by pulling/pushing protons from the
catalytic triad.

We have employed a machine learning tech-
nique in order to obtain force field parame-
ters, which we have then been used in molecu-
lar dynamic simulations of inhibitors. We have
obtained parameters for the epoxy-ketone and
boronic acid containing inhibitors, namely Di-
hydroeponemycin and Oprozomib and Borte-
zomib and Ixazomib. Our results agree with
the parameters given by the GAFF library but
also allows more flexibility, providing parame-
ters for atoms which are not present in such
data bank, i.e. boronic acid containing war-
heads. This method, minimises the standard
deviation of the radial distribution obtained by
MM with respect to a reference, in our case
PM6.

The molecular dynamics simulations show
that the studied inhibitors should have little
impact on the pocket acid-base equilibria. We
propose that the activation of Thr1O~y occurs
through acid-base equilibria strongly influenced
by the pK, of Lys33. Although this does not
seem to be a discriminating factor for differ-
ent inhibitors, it could weigh on two important
mechanisms: signaling mechanisms in the pro-
teasome and active site specificity. Further cal-
culations in this direction are currently being
pursued in our lab.
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Table 2: pK, and Hill coefficient (n) values of Lys33 at with four studied drugs in the Caspase
pocket with and without Bayesian Optimized parameters.

GAFF BO
pK, n pK, n
Bortezomib 8.24 +£0.04 0.82 +0.05 | 7.21 £0.04 0.72 +0.05
Ixazomib 6.33 £0.06 0.57 +0.04 | 7.83 +£0.04 0.64 +0.03
Dihydroeponemycin | 7.74 +0.07 0.43 +0.03 | 7.12 +0.03 0.72 +0.03
Oprozomib 7.18 £0.06 0.56 +0.04 | 7.85 £0.08 0.65 £0.07
SU.ppOI‘tiIlg Information Avail- e Figure S7: Normalized standard devia-

tion versus scaling factor for the point
charges of Bortezomib.

able

e Figure S1: constrained atoms of the stud- e Figure S8: Scaling factor for Lennard-

ied inhibitors.
Figure S2: employed cluster model.

Table S1: linear regression of the pK,
training data set.

Table S2: parameters of the linear regres-
sion.

Table S3: BO scaling parameters.

Figure S3: Normalized standard devia-
tion versus the scaling factor for the point
charges of Oprozomib.

Figure S4: scaling factor for Lennard-
Jones parameters, ¢ and ¢, uncertainty
of the obtained points and the follow-
ing point to be evaluated given by the
acquisition function. The upper panel
shows the carbonyl moiety oxygen (010)
of Oprozomib and the lower panel shows
the epoxy oxygen (035).

Figure S5: Normalized standard devia-
tion versus scaling factor for the point
charges of Dihydroeponemycin.

Figure S6: scaling factor for Lennard-
Jones parameters, o and e, uncertainty
of the obtained points and the following
point to be evaluated given by the acquisi-
tion function. The upper panel shows the
carbonyl moiety oxygen (026) of Dihy-
droeponemycin and the lower panel shows
the epoxy oxygen (O6).

10

Jones parameters, ¢ and ¢, uncertainty
of the obtained points and the following
point to be evaluated given by the acqui-
sition function. The upper panel shows
the B atom of Bortezomib and the lower
panel shows the O atoms.

Figure S9: Normalized standard devia-
tion versus scaling factor for the point
charges of Ixazomib.

Figure S10: Scaling factor for Lennard-
Jones parameters, o and ¢, uncertainty
of the obtained points and the following
point to be evaluated given by the acquisi-
tion function. The upper panel shows the
B atom of Ixazomib and the lower panel
shows the O atoms.

GitHub repository for pK, calculations:
https://github.com/jproppe/pka

QM cluster data, inputs and outputs,
are available at: https://doi.org/10.
25625/LC8LUY

Data of the Replica Exchange simula-
tions, inputs, outputs and employed pa-
rameter files are available at: https://
doi.org/10.25625/ZDXSCP

Data of the Bayesian Optimizations
is available at: https://doi.org/10.
25625/CKPBVK



e QM data for the calibration of the pK,

values is available at: https://doi.org/
10.25625/WRZ007
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