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Abstract 

As only 35% of human proteins feature (often partial) PDB structures, the protein structure 

prediction tool AlphaFold2 (AF2) could have massive impact on human biology and medicine 

fields, making independent benchmarks of interest. We studied AF2's ability to describe the 

backbone solvent exposure as a functionally important and easily interpretable "natural 

coordinate" of protein conformation, using human proteins as test case. After screening for 

appropriate comparative sets, we matched 1818 human proteins predicted by AF2 against 7585 

unique experimental PDBs, and after curation for sequence overlap, we assessed 1264 comparative 

pairs comprising 115 unique AF2-structures and 652 unique experimental structures. AF2 

performed markedly worse for multimers, whereas ligands, cofactors and experimental resolution 

were interestingly not very important for performance. AF2 performed excellently for monomer 

proteins. Challenges relating to specific groups of residues and multimers were analyzed. We 

identify larger deviations for lower-confidence scores (pLDDT) and exposed residues, and polar 

residues (Asp, Glu, Asn e.g.) being less accurately described than hydrophobic residues. Proline 

conformations were the hardest to predict, probably due to common location in dynamic solvent-

accessible parts. In summary, using solvent exposure as a metric, we quantify the performance of 

AF2 for human proteins and provide estimates of the expected agreement as a function of ligand 

presence, multimer/monomer status, local residue solvent exposure, pLDDT, and amino acid type. 

Overall performance was found to be excellent.  
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Introduction 

The deep-learning protein-structure prediction tool AlphaFold2 (AF2)1 has generated enormous 

excitement in broad areas of biology and medicine2 due to its accurate prediction of protein 

structure from sequence, an outstanding challenge in biology 3. With very many protein structures 

still experimentally undetermined, such high-quality predicted structures are relevant to drug 

design, understanding protein evolution and pathogenic mutations, protein-or-peptide-based 

therapeutics, and structure-guided rational protein design4–10. 

AF2 combines multi-sequence analysis with advanced structural pattern recognition that 

accounts for intra-protein epistasis (amino acid correlations in space not captured by the sequences 

directly that modify each amino acid's structure and substitution likelihood11,12). With additional 

vast amounts of structural and sequence data available for training, such deep learning of the 3D 

residue correlations has created unprecedented descriptive performance5,6,13. Critical assessment 

of AF2 requires curated test sets that e.g., separate multimer and monomer proteins, compare the 

same structures (i.e., without gaps or substitutions e.g.), account for data-bias towards proteins 

more represented by experimental structures, and quantify performance on a per residue-level for 

focused application. As independent assessments emerge, a high accuracy of AF2 seems to be 

confirmed.14 Performance is naturally best for structured parts, but this is not critical since dynamic 

coils and loops are likely less-well described by any static structure. The method is more accurate 

for protein structures best covered empirically, and work remains to determine confidence for 

structurally rare proteins with less coverage, membrane proteins, multimeric proteins15, proteins 

with ligands, cofactors or modifications, and intrinsically disordered proteins5. 

Given its importance to human health applications, the AF2-predicted structures of the human 

proteome were recently fully documented.16 The present work constitutes a complimentary 

external validation of these data focusing on the local solvent exposure of a residue, which 

provides important information on protein compactness, function, site evolution rates, and protein 

stability effects, which directly depend on residue solvent exposure17–19. Accurate residue solvent 

exposure via AF2 could lead to improved estimates of structure-informed substitution frequencies 

and protein stability effects19 making this parameter a natural and interpretable coordinate in 

comparison to e.g. XYZ coordinates or Ramachandran torsion angles, and perhaps more suitable 

for external validation as not directly considered in the training of the method.1 Below we report 

this analysis for human proteins.  
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Methods 

Structures used in the test set 

There are three reasons for our focus on human proteins: 1) They are of particular interest from a 

health perspective (the motivation in the AF2 paper on the human proteome, Tunyasuvunakool et 

al.16); 2) the human proteome has a high coverage of experimental structures making validation 

meaningful, and mixing organism orthologs would potentially add noise and representation bias; 

3) we wanted a focused external validation of the fully published AF2 data.16  

The AF2 predictions for 20,504 proteins of the Homo sapiens reference proteome (UniProt 

proteome ID UP000005640) were downloaded from https://AlphaFold.ebi.ac.uk/download on 

September 16, 2021 (version v1, Data availability statement)20. AF2 predictions are improved 

continuously based on feedback from the community, producing new versions regularly. The 

version tested is published and documented,16 in contrast to newer versions. Our study should thus 

be seen as a test/validation in direct comparison to Tunyasuvunakool et al.16 In addition, PDB files 

for all human protein structures solved by X-ray crystallography with a resolution ≤ 2.0 Å (19,710 

PDB structures) were retrieved from the protein data bank21,22 (https://www.rcsb.org) in .pdb 

format on October 1, 2021. These structures were then further curated into relevant non-biased test 

sets and subsets to account for performance confounders, as described below. 

 

Matching AF2 structures to experimental structures 

To compare protein structures predicted by AF2 to protein structures solved experimentally, we 

first needed to match each experimental structure to the AF2 prediction of the protein. This was 

done in a two-step process in which each AF2 structure was first paired to one or more 

experimental PDBs by matching UniProt numbers, if possible, and then the correct experimental 

chain structure was identified by sequence alignment as outlined in Figure 1. We disregarded all 

structures with R > 2 Å, as lower-resolution structures could impact the benchmarking. 

To match by UniProt number, the unique UniProt number of each AlphaFold structure was 

used to search through the retrieved PDBs described above. This resulted in 3930 AF2-structures 

being matched to 18,389 unique experimental PDBs. Some AF2-structures were matched to 

several PDBs, and some PDBs were matched to more than one AF2-structure, if the PDB 

represented the structure of a heteromultimer (Figure 1A). All PDBs with multiple chains were 

classified as multimers, since even shorter chains (peptide binders etc.) would make the chemical 

composition of the compared states different and potentially confound comparison.   
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Figure 1. Protocol for matching AlphaFold structures to experimental structures. (A) Each 

AlphaFold structure was matched to experimental PDBs by UniProt number. AlphaFold structures 

can match none, one or more PDBs. PDBs can match one or more (i.e., heteromultimer) AlphaFold 

structures. (B) Examples of alignments of AlphaFold and experimentally solved sequences (from 

the ATOM field of the PDB file). Pair alignments with internal gaps, insertions or mutations (upper 

panel) were discarded, while gaps or insertions at ends were tolerated. (C) Four different pairs 

with different degrees of sequence overlap (exemplified by indicated percentages). Numbers inside 

circles indicate UniProt ID. Checkmarks indicate pairs that are part of the final dataset. 

 

To 1) identify the correct experimental chain structures for each AF2-structure and 2) assess 

how much of the protein chain was actually solved in the crystal structure, the resolved amino acid 

sequences were extracted from the PDB files using the residue information in the ATOM field, 

not the SEQRES field, of the PDB. The resolved amino acid sequence of each chain was then 

aligned by pairwise alignment to its UniProt-paired amino acid sequence. Alignments were 

performed with the pairwise2 BioPython module with the settings: global, no penalization of end 

gaps, +2 for identity, -1 for mismatch, -2 for gap opening, and -1 for gap extension. Experimental 

sequences that had either internal gaps, internal insertions, or mutations compared to the UniProt 

(and thus AF2) sequence were excluded from further analyses (Figure 1B). This resulted in 16,036 

pairs, each pair consisting of one AF2 structure and one experimental chain structure (in the 

following referred to as data pairs).  

The set of comparable pairs resulting from this protocol comprised 2249 unique AF2 

structures, 12,520 unique experimental chains, and 7585 unique experimental PDBs. In the AF2 

dataset, proteins longer than 2700 amino acid residues are split into 1400 amino acid long, 
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overlapping structure fragments that may all match the same experimental chain given the 

described matching protocol20. Therefore, in this dataset, the number of data pairs exceeds the 

number of experimental chains, and the number of unique AF2 structures exceeds the number of 

unique human proteins (1818). This dataset thus emphasizes the experimental structures with 

either 100% sequence identity to the AF2 sequence or with gaps or insertions only in the beginning 

or end of the sequence compared to the AF2 sequence (Figure 1C). We consider this curation 

important, since experimental PDB structures with missing or modified parts could erroneously 

affect performance. 

Next, we reduced this dataset further to include only comparable pairs of structures for which 

the overlap between sequences comprised >99% of the experimental and the AF2/canonical 

sequence length. The proportion of sequence overlap was calculated as the length of overlap 

divided by the length of sequence, and the data pairs were restricted to those whose length of 

overlap constituted >99% of both the UniProt sequence and the experimental sequence. This last 

exclusion step resulted in a final dataset consisting of 1264 data pairs comprising 115 unique AF2 

structures and 652 unique PDBs (Table S1, provided as a separate file). The length of overlapping 

sequence in the data pairs ranged from 68 to 888 residues with an average length of 197 residues. 

The above procedure was performed with Python using BioPython v.1.78 modules23. 

 

Calculation of solvent accessible surface 

The relative solvent accessible area (RSA) is a descriptor of local conformation in the context of 

the overall protein structure that is functionally relevant for e.g., substitution frequencies and 

protein stability.17–19 An additional reason for using this metric is that we wanted a strong external 

validation of the AF2 human proteome data16, and local backbone XYZ coordinates and 

Ramachandran torsion angles were trained by the AF2 procedure or refined in the force field step.1 

RSA was computed using the open-source software FreeSASA available as a Python module using 

the classifier configuration option “naccess”24. We only used the solvent accessibility of the 

backbone (i.e., including the C atom) without the side-chain, as the prediction of side-chain 

orientation will have less certainty1 and confound the analysis unfairly, as side chain 

conformations are inherently dynamic and not necessarily important to be accurately described vs. 

a crystal structure (the solution dynamics of surface residue side chains can be studied by other 

non-static methods such as molecular dynamics and NMR).   

The RSA is defined as the ratio of the absolute solvent accessible area of a residue divided by 

that within an Ala-X-Ala tripeptide, where X is the residue studied. For each data pair, the RSA 
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values for each residue in the AF2-structure (RSAAF) and the experimental structure (RSAExp), 

respectively, were computed with FreeSASA. Then, each residue in the overlapping portion of the 

two sequences were matched using residue number and residue type, and the RSAAF and RSAExp 

values were assigned to each common residue. Because the numbering of residues in the 

experimental PDBs may not be consistent with the numbering in the AF2-structures, a temporary 

common number, derived from the pairwise sequence alignments, was assigned to each residue to 

allow unambiguous matching of residues. The first and last residue in each structure, both AF2 

and experimental, were excluded from the analyses due to the risk of overestimated RSA values.  

The typical RSA is between 0 and 1, i.e., a residue with RSA = 0 is fully buried with no access 

to water molecules, and RSA = 1 is highly exposed. However, since the RSA is calculated as the 

SASA relative to a reference SASA for X in Ala-X-Ala tripeptides in a stretched conformation24, 

a residue X may sometimes be more exposed in a specific protein structure, and thus RSA values 

will sometimes be larger than 125. This effect would not affect the benchmark except by a simple 

scaling of the RSA of X in both the AF2 and experimental PDB, and thus also scale the deviation 

correspondingly, typically up to 20%25, although for a very few cases, the effect can be larger. 

 

AlphaFold per-residue confidence values 

AlphaFold predicts residue coordinates with different confidence using a per-residue estimate 

called predicted lDDT-Cα (pLDDT), which has numbers on a scale from 0 to 1001,26. In the 

AlphaFold DB, pLDDT values for each residue are stored in the B-factor fields of PDB files20, 

and to assess the effect of pLDDT, the B-factor fields were extracted from the PDB files using 

BioPython v.1.78 modules. 

 

Ligands 

Experimental structures can have non-covalently bound ligands such as metabolites, inhibitors, 

drugs, cofactors, and ions27. To assess the effect of such co-solutes on performance, the 

experimental structures in the dataset were classified according to ligands. Ligand information was 

extracted from the HET field in the PDB files using Python, and experimental structures with no 

ligands or only water or the small ions Na+, Cl-, K+, F-, Li+, Br-, I-, SO4
2-, or PO4

3- (HET codes 

HOH, NA, CL, K, F, LI,  BR, I, SO4, and PO4) were classified as having no ligands.  
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Dataset subsets 

The dataset (Table S1) was divided into six disjointed subsets based on 1) proportion of sequence 

overlap (100 %, or >99% and <100%), 2) resolution of the experimental structure (<= 1.5 Å, or 

>1.5 Å and <=2.0 Å), and 3) whether the experimental structure is a monomer. Since the number 

of pairs with 100% sequence identity was small, this group was not split based on resolution. The 

six data subsets are shown in Table 1.  

 

Identification of chain-interface residues in multimers 

In multimeric proteins, residues from one chain may be in close contact to residues from another 

chain, potentially affecting the solvent accessibility of these residues. To analyze the effect of these 

chain-interface residues, all experimental multimeric structures in the dataset were analyzed with 

BioPython to identify chain-interface residues in the chains that were paired to an AF2-structure. 

For each atom of each residue in the chain, the distance to atoms belonging to other chains in the 

structure was calculated, and residues that contained an atom that were less than 3.5 Å from atoms 

in other chains were classified as chain-interface residues.  
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Results and discussion 

Performance of AF2 as measured by relative solvent accessibility 

Since only 35% of human proteins feature (often partial) PDB structures16, AF2 could have major 

impact for understanding human diseases in protein-structural context. There are multiple ways of 

assessing a structural prediction by AF2, including various metrics of the accuracy and precision, 

and various target descriptors14. In this work we emphasized RSA as a directly interpretable 

endpoint of evaluation, or a "natural" coordinate" of each residue in the context of the protein fold 

with direct implication for function and evolution, with the further advantage from an external 

validation perspective that it was not directly optimized by the AF2 procedure.  

We compared AF2 predictions of proteins in the human proteome as fully documented 

previously16 to their experimentally solved structures. We limited the comparison to structures 

solved by X-ray crystallography with a resolution of 2.0 Å or better. Of the 23,391 human protein 

chains predicted by AF216,20, 115 were successfully matched to 1264 experimental chain structures 

from 652 PDBs. In order to avoid erroneous effects, we excluded experimental structures with 

internal gaps, insertions or mismatches (mutations) compared to the UniProt sequence (i.e. only 

100% sequence identity or experimental structures with gaps or insertions only in the beginning 

or end of the sequence) (Figure 1B). For pairs of AF2- and experimental structures with less than 

100% sequence identity, we only included overlaps between sequences of more than 99% of the 

sequence length (Figure S1). The final dataset included 1264 pairs comprising 115 unique AF2-

structures and 652 unique PDBs (Table S1). The overlapping sequences ranged from 68 to 888 

residues with an average length of 197 residues. 

We then calculated the RSA for each residue backbone in both the AF2-generated (RSAAF) 

and experimental structures (RSAExp), and compared the RSA values for each matched residue in 

each structure pair. AF2 generally predicts side-chain coordinates with less accuracy than 

backbone coordinates1, but the dynamics expected in a solution state makes the exact coordinates 

of exposed side-chains in a static PDB structure less significant; accordingly, we compared only 

backbone RSA values. Scatter plots showing the correlation between RSAAF and RSAExp for each 

of the 1264 analyzed data pairs are shown in Figure S2. In order to understand AF2's performance 

in detail, we divided the data pairs into six non-overlapping groups based on 1) length of sequence 

overlap, 2) resolution of experimental structure, and 3) monomer vs. multimer structures. We 

compared the RSA for each matched residue in the structure pairs belonging to the six groups 

(Figure 2A). For each group, we calculated the mean absolute error (MAE), the mean signed 

deviation (MSD), and the standard deviation of the absolute errors (SAAbs, Table 1).  
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Table 1. Characteristics of the six groups of data pairs 

 
Sequence 

overlap (%) 

Resolution 

(Å) 

Mer NResidues NPairs NAF2 MAE MSD SDAbs 

Not 

weighted 

100% <=2.0 Mono 10597 55 14 0.044 0.003 0.077 

100% <=2.0 Multi 15071 100 23 0.068 0.033 0.126 

>99% <100% <= 1.5 Mono 13370 59 19 0.047 0.001 0.077 

>99% <100% <= 1.5 Multi 35876 214 30 0.067 0.032 0.124 

>99% <100% >1.5 <=2.0 Mono 38888 129 31 0.043 0.000 0.071 

>99% <100% >1.5 <=2.0 Multi 133113 707 66 0.070 0.037 0.132 

Weighted 

100% <=2.0 Mono 3167 - 14 0.047 0.003 0.082 

100% <=2.0 Multi 3556 - 23 0.072 0.032 0.127 

>99% <100% <= 1.5 Mono 4213 - 19 0.044 0.000 0.072 

>99% <100% <= 1.5 Multi 6249 - 30 0.059 0.021 0.106 

>99% <100% >1.5 <=2.0 Mono 7936 - 31 0.045 0.000 0.074 

>99% <100% >1.5 <=2.0 Multi 15428 - 66 0.062 0.026 0.112 

 

The MAE, the MSD, and the spread of absolute deviations are very dependent on the 

monomer-multimer status of the experimental structure, but not on the length of the sequence 

overlap or the resolution of the experimental structure (Table 1). The higher MAE, MSD, and 

spread of differences for multimeric structures is likely caused mainly by residues that have low 

RSA values in the experimental structure but high RSA values in the AF2 structure (Figure 2A, 

lower panels). This illustrates why caution should be exercised when deducing surface structure 

for multimeric proteins based on AF2 predictions for a single monomer, especially at the 

interfaces. After establishing this, we restricted further analysis mainly to monomer comparisons. 

There was very large variation in the number of experimental structures matching individual 

AF2-structures (Table S1). Some AF2-structures matched only one experimental structure 

whereas a few (such as hemoglobin subunit alpha, UniProt ID P69905) matched hundreds of 

experimental structures (Figure S3). This variation may potentially skew the error metrics (MAE, 

MSD and SDAbs) towards those of highly represented structures. To adjust for this bias, we 

calculated the average RSAExp for each residue that were paired to the same AF2 structure if the 

pair belonged to the same overlap-, resolution- and monomer/multimer group described above 

(Figure 2B). Similar to the first analysis (Table 1, upper half), the absolute and signed deviations 

calculated from the averaged RSAExp values resulted in MAE, MSD, and SDAbs values that 

depended highly on the monomer-multimer status, but not on the length of sequence overlap or 

resolution of the experimental structure (Table 1, lower half).  
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Table 2. The effect of ligands in the experimental structure. Ligands are heteromolecules 

that are not H2O, Na+, Cl-, K+, F-, Li+, Br-, I-, SO4
2-, or PO4

3-. 

Sequence 

overlap (%) 

Resolution 

(Å) 

Mer Ligands NResidues NPairs NAF2 MAE MSD SDAbs 

100 <=2.0 Mono No 1306 7 6 0.044 0.000 0.079 

100 <=2.0 Mono Yes 9291 48 10 0.044 0.003 0.077 

100 <=2.0 Multi No 1624 11 4 0.080 0.043 0.153 

100 <=2.0 Multi Yes 13447 89 21 0.066 0.032 0.122 

>99 <100 <= 1.5 Mono No 558 4 3 0.040 0.005 0.065 

>99 <100 <= 1.5 Mono Yes 12812 55 19 0.047 0.001 0.077 

>99 <100 <= 1.5 Multi No 603 4 4 0.075 0.022 0.139 

>99 <100 <= 1.5 Multi Yes 35273 210 26 0.067 0.032 0.124 

>99 <100 >1.5 <=2.0 Mono No 3980 25 7 0.044 0.002 0.075 

>99 <100 >1.5 <=2.0 Mono Yes 34908 104 26 0.043 -0.001 0.071 

>99 <100 >1.5 <=2.0 Multi No 8165 39 12 0.070 0.039 0.137 

>99 <100 >1.5 <=2.0 Multi Yes 124948 668 60 0.070 0.037 0.132 
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Figure 2. Experimental vs. AF2 RSA values. Each panel shows results grouped based on 

sequence overlap, resolution of the experimental structure, and monomer-multimer status of the 

experimental structure (indicated above and to the right). The six groups are disjointed from each 

other. The orange line represents the ideal where the RSAAF are equal to RSAExp. The correlation 

coefficient R is indicated for each group. (A) Each dot represents a residue belonging to a data 

pair. (B) Each dot represents the average of experimental residues belonging to the same AF2-

structure and the same overlap-, resolution- and monomer/multimer group.  
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The effect of non-covalently bound ligands on prediction performance 

Many experimental protein structures in the PDB have non-covalently bound ligands such as 

metabolites, inhibitors, drugs, cofactors, ions, and solvent27. We therefore tested whether the 

observed differences between RSAAF and RSAExp correlated with the presence of ligands, by first 

classifying the experimental structures in the dataset as being with or without ligands, and then 

measuring the RSA prediction accuracy separately on these two subsets. For this analysis, water 

or the small ions, Na+, Cl-, K+, F-, Li+, Br-, I-, SO4
2-, or PO4

3- were not counted as ligands. We 

found no apparent correlation between the MAE, the MSD, or SDAbs and the presence of ligands 

(excluding water and small ions, Table 2); the performance for the monomer structures was very 

similar regardless of ligand presence. Since ligands vary substantially in their chemical structure, 

size and binding pockets, we did not want to speculate on the reason, especially as such analysis 

would be biased towards the ligands favored in the human proteins and PDB, but suggest that this 

is explored in future work. We therefore continue our analysis below without separating out ligand-

containing structures.  

 

Larger disagreement for lower-confidence scores and exposed residues  

In order to determine the factors that affect the accuracy of RSA predicted by AF2, we first 

hypothesized that residues with high prediction confidence or residues buried in the core of the 

protein were predicted more accurately. To test this hypothesis, we only analyzed data pairs in 

which the experimental structure is a monomer. AF2 produces an estimate of confidence for each 

residue, predicted lDDT-Cα (pLDDT)  based on the Local Distance Difference test, on a scale from 

0–100, where 100 indicates the highest possible confidence1,16,26. Regions with pLDDT > 90 are 

expected to be modelled to high accuracy, whereas regions with pLDDT < 50 are most likely either 

unstructured or only structured as part of a complex20. We hypothesized that the confidence of 

AF2-predicted residue coordinates correlates with the ability to predict the RSA of a residue. If so, 

the MAE or the SDAbs between RSAAF and RSAExp would be lower for residues with high pLDDT 

values and vice versa. To test this hypothesis, we divided the residues of all AF2-structures that 

were matched to a monomeric experimental structure into pLDDT bins as shown in Figure 3A, 

and calculated the MAE, MSD, SDAbs, and SDSigned for each group (Table S2). As can be seen in 

Figure 3A (and Figure S4 and S5), the MAE and the SDAbs are indeed dependent on pLDDT with 

both values increasing substantially for residues with <90 pLDDT scores. The MSD is less 

dependent on pLDDT, i.e., there is no tendency for RSAAF to be either under- or overestimated for 

residues with low pLDDT values. 
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Figure 3. Deviations in relation to pLDDT and RSA. Data pairs are grouped by sequence 

overlap and resolution of the experimental structure (only monomers). Gray circles indicate the 

absolute or signed deviation for the average RSAExp for each unique AF2-structure belonging to 

the same overlap-, resolution- and monomer/multimer group. The mean deviations for each 

pLDDT or RSAExp group are shown as horizontal black bars and one standard deviation (SD) of 

the mean errors as vertical black bars. (A) Deviation as a function of pLDDT. The pLDDT values 

are grouped in 10 percent-point bins. (B) Deviation as a function of RSAExp. The experimental 

RSA values are grouped in 0.4 RSA bins. Data for this plot are in Table S2 and Table S3. 
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Figure 4. Agreement between experimental and AF2 structures depending on residue type. 

Left: MAE. Right: MSD (RSAAF – RSAExp). Only pairs with monomeric experimental structures 

included. The standard deviations are shown as blue dots.  

 

Next, to test if the ability of AF2 to predict RSA depended on experimentally determined 

solvent accessibility of the residues (RSAExp), we divided the residues of all AF2-structures that 

were matched to a monomeric experimental structure into RSA bins, as shown in Figure 3B, and 

calculated the MAE, MSD, SDAbs, and SDSigned for each group (Table S3). As can be seen in 

Figure 3B (and Figure S6 and S7), the MAE and the SDAbs are dependent on the experimental 

RSA values: Residues with low RSA, i.e. buried residues were predicted more accurately by AF2 

than surface exposed residues. There is a tendency for the MSD to be more negative for high RSA 

residues, meaning that AF2 tends to underestimate the RSA for more surface exposed residues. 

The observation that disagreement is larger for exposed residues, and for residues with lower 

confidence, is of course correlated and expected, but the numbers in Figure 3 gives an estimate of 

the magnitude of the deviations that can be expected for each class of residue. The outliers are 

relatively few in both cases, and the tendency of many outliers at low exposure or high confidence 

relates to the fact that there are many data points in total of these types. 
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Figure 5. Examples of proteins with larger disagreements of residue solvent exposure. Green: 

AF2. Cyan: experimental. (A) Glu-40 of Human cyclin dependent kinase 2 (UNIPROT: P24941; 

PDB: 2B54). (B) Thr-47 of human interferon-induced protein with tetratricopeptide repeats 

(IFIT5) (UNIPROT: Q13325; PDB: 4HOR). (C) Glu-108 of human pirin (UNIPROT: O00625; 

PDB: 4EWE).  

 

Larger disagreement for polar residues and proline 

The accuracy of AF2-predicted RSA could also depend on amino acid type. In order to understand 

this, the same analysis as above (Figure 3) was performed but with all groups combined, and errors 

divided into amino acid type (Figure 4). The effect of amino acid type was remarkably large, more 

than 100% even after averaging errors across all pair comparisons. The best-described amino acids 

tend to be isoleucine, leucine, methionine, phenylalanine, tryptophan, cysteine, and valine, which 

are hydrophobic. The worst-described amino acids are polar, such as aspartate and glutamate, 

lysine, asparagine, and serine. However, proline is clearly hardest to predict. These observations 

can be explained by polar residues and proline being more often located in less-well-described 

surface areas of the proteins, i.e., with a correlation to the pLDDT/RSA in Figure 3.  

To put these tendencies into context, Figure 5 shows examples from some PDB structures of 

residues in proteins that displayed largest disagreement with AF2, marked in blue circles. These 

tended to locate in loops either on the surface or in cavities of the proteins. Figure 5A shows Glu-

40 of Human cyclin dependent kinase 2 (UNIPROT: P24941; PDB: 2B54) in a loop-dominated 
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part of the protein that is generally less well-described (absolute RSA deviation: 0.90). Figure 5B 

shows Thr-47 in a partly solvated cavity of the RNA-binding protein human interferon-induced 

protein with tetratricopeptide repeats (IFIT5) (UNIPROT: Q13325; PDB: 4HOR); giving an 

absolute RSA deviation of 0.52, and Figure 5C shows Glu-108 in human pirin (UNIPROT: 

O00625; PDB: 4EWE), which produced an RSA deviation of 0.38.  

While expected, Figure 3 and Figure 4 quantify the expected differences vs. experimental 

PDB structures in a prediction for each type of residue, and Figure 5 gives examples of large 

errors, of interest to applications. Despite these deviations, it is encouraging to see that the overall 

magnitude of the MAEs is in the range of 0.02-0.08. With RSA-values averaging to ~0.2, i.e., the 

expected deviation in RSA from an AF2 prediction is typically of the order of 20%, which we 

consider a relevant "natural" measure of the conformational uncertainty. A corresponding analysis 

including multimers (Figure S8), although confirming the challenge of proline conformations, 

produced more variable results due to some hydrophobic residues poorly described due to location 

on multimer interfaces (i.e., exposed hydrophobic residues). 

 

AF2 prediction of residues in multimeric structures 

The AF2 predictions are all single chains whereas most of the experimental structures are 

multimeric, either homomultimers or heteromultimers. We showed above that the correlation 

between RSAAF and RSAExp values is substantially stronger for experimental monomers compared 

to multimers, and that the difference seems to be caused by residues that have low RSAExp but high 

RSAAF (Figure 2). This makes intuitive sense as residues located in the interface between two 

chains may have lower solvent accessibility.  

To test if the lower correlation between RSAAF and RSAExp values observed in multimeric data 

pairs are caused by residues in chain interfaces, we identified such residues in the experimental 

structures and removed them from analysis. Chain interface residues were defined as residues 

whose atoms had a distance <3.5 Å to atoms in other chains. As can be seen in the left panels of 

Figure 6, the correlation between RSAAF and RSAExp for interface residues is weak. The average 

RSAAF for all identified interface residues in the multimer dataset (n = 2751) is 0.323 whereas the 

average RSAExp (using the per-AF2-averaged RSAExp values) is 0.135.  
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Figure 6. Experimental vs. AF2 RSA values in multimeric experimental structures. 

Correlation of RSAAF and RSAExp for interface residues (left) and for non-interface residues 

(right). Orange lines represent the ideal where the RSAAF are equal to RSAExp. (A) Each dot 

represents a residue belonging to a data pair. (B) Each dot represents the average of experimental 

residues belonging to the same AlphaFold structure. 

 

Thus, AF2 predictions on single chains substantially overestimate the solvent accessibility of 

these residues. If interface residues are removed from the multimeric data pairs, the average RSAAF 

of the remaining residues (n = 17,895) becomes 0.199 compared to an average RSAExp (using the 

per-AF2 averaged RSAExp values) of 0.190. This also results in a stronger correlation between 

RSAAF and RSAExp that mimics the correlation of monomeric data pairs (compare right panels of 

Figure 6 to upper panels of Figure 2). In summary, because the AF2 predictions are based on 

single protein chains, it overestimates the solvent accessibility of the ~10% of residues in the 

dataset that are in close contact (by the above definition) to other protein chains, and this should 

always be accounted for in predictions. 
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Variation in RSA values among experimental structures of the same protein chain 

Some AF2-structures are matched to many experimental structures (Figure S3). The different 

experimental structures representing one particular protein chain (and therefore one AF2-structure) 

can be compared to each other to determine the amount of variation in RSA values that exists for 

each residue among experimental structures. To evaluate the variation within the experimental 

dataset used to assess the prediction accuracy of AF2, we calculated the per-residue spread in 

RSAExp and compared it to the per-residue MAE for AF2-structures matched to five or more 

monomeric experimental structures (n = 10).  

An example is shown in Figure S9 for peptidyl prolyl cis/trans isomerase A (UniProt ID 

P62937) for which there are 52 monomeric experimental structures in the dataset. Figure S9A 

shows the SD of RSAExp (SDExp) for each residue in the chain. Although the experimental 

structures are all monomers, and variation caused by chain interactions are therefore not relevant, 

some residues have very different RSA values in the 52 structures while others only show little 

RSA variation. For comparison, Figure S9B shows the absolute deviations between RSAAF and 

RSAExp for each residue along the protein chain.  

To better understand how experimental variation affects the performance benchmark, Figure 

7A shows correlation between the per-residue variation in RSAExp (measured as SDAbs) and the 

per-residue MAE for the 2636 compared residues. The outliers in Figure 7A can be interpreted in 

terms of confidence in the RSAAF prediction. Residues for which the RSA is similar among the 

experimental structures (low SDAbs) but different from the AF2-predicted RSA (high MAE) can 

be interpreted as residues that are unlikely to be predicted accurately. In contrast, residues for 

which there is a high variation in RSA among the experimental structures (high SDAbs) but a low 

MAE when compared to the AF2-prediction, indicate residues for which some experimental 

structures may be problematic.  

Furthermore, Figure 7B shows that the variation in RSA among experimental structures 

depends to some extent on RSAExp with more surface exposed residues exhibiting more variation. 

This structural heterogeneity in experimental structures not only puts a limit on the accuracy 

expected from a prediction method but also emphasizes the need to consider the experimental 

structure quality and heterogeneity in an assessment, e.g., by sensitivity analysis or precision 

estimates using multiple experimental structures in the study. 
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Figure 7. Internal variation among experimental structures. Each point indicates one residue 

in the monomeric data pairs for which there are 5 or more experimental structures per AlphaFold 

structure A) Correlation of SDAbs and MAE, B) correlation between SDAbs and RSAExp. Linear 

regressions and correlation coefficients (R) are shown.  

 

Concluding remarks 

We analyzed the performance of AF2 applied to human proteins, using the local residue's relative 

solvent exposure as a "natural" residue coordinate of functional and evolutionary importance. We 

carefully curated data sets by sequence overlap to avoid incomplete or erroneous comparions and 

explored the dependence of AF2 performance on monomer/multimer status (important), presence 

of cofactors and ligands, experimental resolution, exposure, and amino acid type.  

AF2 performed excellently once comparing specifically to monomer proteins. However, 

notable challenges persist relating especially to proline and exposed residues. We identify larger 

disagreement for lower-confidence scores (pLDDT) and exposed residues on average, which also 

correlates with polar residues (Asp, Glu, Asn e.g.) being substantially less well described than 

hydrophobic residues. Polarity correlates with solvent exposure which correlates with being more 

dynamic and less well-described, but effects of the electrostatic treatment in the force field 

relaxation step of AF2 are also possible, since small variations in electrostatic point charge models 

of the polar residues affect hydration free energies28 and thus interaction energies and 

conformations. In the paper, we provide estimates of such expected deviations divided into amino 

acid type, exposure, and pLDDT value, and also emphasize the structural heterogeneity and 

representation bias of experimental data themselves in such benchmarks. 
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An important point of caution is that in the application to real proteomes, the predictions of 

AF2 are likely worse due to training on usually unmodified or specifically modified proteins from 

the PDB, whereas many eukaryotic protein chains are heavily modified (truncated, glycosylated, 

etc.) sometimes in very diverse ways in their physiologically relevant forms29. Also, the protein 

structures used for training and assessment represent crystal state in vitro conditions not 

necessarily applicable to the pH, temperature, and macromolecular cellular environment where the 

protein is located. Thus, we are still far from in vivo predictability of protein conformational 

ensembles - but we are possibly close to understanding in vitro protein conformational ensembles, 

as this study has hopefully helped to document. 
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Supporting Information. Table S1 (separate file) contains data and performance metrics. The 

supporting information pdf file contains additional tables and figures with information relevant to 

analysis. This information is available free of charge at http://pubs.acs.org 

 

Data availability. The structures benchmarked correspond to the first AF2 prediction release for 

the human proteome which is fully documented (in contrast to later version) by Tunyasuvunakool 

et al.16 and thus serves as a complementary external validation of these data, in direct comparison. 

https://ftp.ebi.ac.uk/pub/databases/alphafold/v1/UP000005640_9606_HUMAN_v1.tar 

All data analyses were performed with Python v.3.8 or R v.4.0.5 and the code is available at 

https://github.com/ktbaek/AlphaFold. 
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