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ABSTRACT  

The ultimate goal of various fields is to directly generate molecules with desired properties, 

such as finding water-soluble molecules in drug development and finding molecules suitable 

for organic light-emitting diode (OLED) or photosensitizers in the field of development of 

new organic materials. In this respect, this study proposes a molecular graph generative 

model based on the autoencoder for de novo design. The performance of molecular graph 

conditional variational autoencoder (MGCVAE) for generating molecules having specific 

desired properties is investigated by comparing it to molecular graph variational autoencoder 

(MGVAE). Furthermore, multi-objective optimization for MGCVAE was applied to satisfy two 

selected properties simultaneously. In this study, two physical properties- logP and molar 

refractivity were used as optimization targets for the purpose of designing de novo molecules, 

especially in drug discovery. As a result, it was confirmed that among generated molecules, 

25.89% optimized molecules were generated in MGCVAE compared to 0.66% in MGVAE. 

Hence, it demonstrates that MGCVAE effectively produced drug-like molecules with two 

target properties. The results of this study suggest that these graph-based data-driven models 

are one of the effective methods of designing new molecules that fulfill various physical 

properties, such as drug discovery. 
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INTRODUCTION 

Finding new molecules with desired properties for de novo drug design is a significant and 

challenging task [1]. However, it is almost impossible to find these molecules in the high-

dimensional chemical space of all molecules without prior knowledge. Recently, 

computational biologists have extensively integrated machine learning and deep learning into 

drug design and discovery processes [2], [3]. Primarily, the computational modeling along 

with those algorithms provides a promising way to identify and validate drug toxicity and 

drug monitoring of compounds [4]. 

The computer-based molecular design has received much attention as a solution to overcome 

experimental limitations [5]–[8]. High-throughput virtual screening can find molecules with 

desired physical properties through massive calculations with high accuracy and low cost. 

Such a method can aid in selecting appropriate molecules from the millions of molecules in 

the database, and then experiments can be followed for verifying them [9]. It is also interesting 

to note that the generative model, which recently emerged with the development of deep 

learning, encouraged application to new molecular designs that use generative models to 

propose new molecules likely to have ideal properties. Specifically, some successful long 

short-term memory (LSTM) network architectures have been demonstrated and validated for 

in silico screening by generating molecules with desired properties [10]–[12]. The computer-

based molecular design has received much attention as a solution to overcome experimental 

limitations [5]–[8]. High-throughput virtual screening can find molecules with desired 

physical properties through massive calculations with high accuracy and low cost. Such a 

method can aid in selecting appropriate molecules from the millions of molecules in the 

database, and then experiments can be followed for verifying them [9]. It is also interesting to 

note that the generative model, which recently emerged with the development of deep 

learning, encouraged application to new molecular designs that use generative models to 

propose new molecules likely to have ideal properties. Specifically, some successful long 

short-term memory (LSTM) network architectures have been demonstrated and validated for 

in silico screening by generating molecules with desired properties [10]–[12]. 

Recurrent neural networks (RNN) still play an essential role for a molecular generation. 
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SMILES (Simplified Molecular-Input Line-Entry System) is a line notation for describing 

molecules using strings; thus, text generation models were developed [13]–[15]. In particular, 

RNN architectures based on LSTM achieve excellent results in natural language processing 

tasks, in which input is a token sequence of different lengths. Some implemented LSTM-based 

conditional variational autoencoder (CVAE) [16] or reinforcement learning strategies to 

generate molecules with specific properties [17], [18]. However, it is unfortunate that creating 

SMILES expressions of molecules often becomes unstable, resulting in a misconstruction. 

Generating a valid SMILES string requires the model to learn rules unrelated to molecular 

structure, such as SMILES grammar and atomic order, which adds unnecessary burden to the 

training process; Thus, making SMILES strings a less preferred representation [19]. Applying 

graphs to describe the molecules has been suggested to be more natural for data structures to 

overcome such issues. Compared to generating a grammatically valid SMILES string, graph-

based molecular generation could be more efficient because the atoms constituting each node 

and the bonds constituting each edge are first determined so that all outputs are valid 

molecules after that [20], [21]. 

The graph-based generation models are generally presented with a sequential and an entire 

graph generation method. For example, some models produce final graphs, constructing 

additional nodes and edges [22]–[24]. Johnson et al. [25] proposed a sequential generative 

approach for graphs, and this framework is potentially applicable to molecular generation. 

JT-VAE [26] generates a tree of molecular fragments based on variational autoencoder (VAE) 

and then determines the final molecular graph through the subsequent assembly of the 

fragments, allowing the molecule to be progressively expanded while maintaining chemical 

validity at every step. In addition, MolecularRNN [27] uses the policy gradient algorithm to 

generate molecules with desired lipophilicity, drug-likeness, and melting point for drug 

development. Other examples include GCPN [28] based on reinforcement learning, assuming 

a sequential order of graph expansion steps, reported as models for generating molecules with 

desired properties. On the other hand, the method for generating whole graphs has been 

successfully applied to generating small molecule graphs. GraphVAE [29] using a graph 

convolution algorithm and MolGAN [30] based on reinforcement learning are representative 

models generating graphs simultaneously. 
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Optimization simultaneously of molecules concerning multiple properties remains a 

significant challenge [31]. Especially in the design of de novo molecules, for a molecule to act 

as a drug, certain conditions must be considered. In this study, as a case where multi-objective 

optimization is applied, the models were examined by generating molecules whether they 

satisfy the requirements for drug development. Since graph generation is still challenging to 

create large sizes, in this study, small molecules with less than 16 atoms (molecular weight < 

200 g/mol) were generated; we note that compared to other generative models using QM9 [32], 

this is not a small number. In Figure 1, molecules with the desired log octanol-water partition 

coefficient (logP) and molar refractivity (MR) were generated using a molecular graph 

conditional variational autoencoder (MGCVAE). To verify the model performance, the results 

of a molecular graph variational autoencoder (MGVAE) without conditions and the results of 

MGCVAE using given specific conditions were compared. Finally, this study proposes and 

verifies the feasibility of generating molecules that satisfy two desired properties based on 

large amounts of data. 

 

 

METHOD 

Molecular graphs 

The graph representation of molecules corresponds to atoms by nodes and bonds by edges, 

represented by an annotation matrix and an adjustment matrix. The annotation matrix (𝑁 × 𝑋, 

𝑁 is the number of atoms, 𝑋 is the number of types of atoms) represents each row as the one-

hot encoding of atoms, and the adjacency matrix (𝑁 × 𝑁) represents how each row and column 

corresponding to the atoms are binding. As shown in Figure S1, Supporting Information (SI), 

the initial graph matrix of current models is reconstructed into the annotation matrix and the 

adjacency matrix to generate a complete molecular graph. The shape of the initial graph 

matrix is (𝑆, (1 + 𝐴 + (𝑆 × 𝐵))), where 𝑆 is the maximum number of atoms (the maximum 

graph size), 𝐴 is the number of atom types, and 𝐵 is the number of bond types.  

The initial graph matrix is reconstructed into a molecular graph is illustrated in Figure S1, SI. 
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In Figure S1, the initial graph matrix for generating the molecular graph consists of the 

annotation matrix, and the adjacency matrix is transformed as follows: (1) "a" is the result of 

one-hot encoding of the number of atoms in the molecule, and the row below is not used based 

on this. Here it can have up to seven atoms, meaning that the molecule has six atoms. (2) "b" 

is an annotation matrix resulting from one-hot encoding for what each atom is. (3) "c-1" to "c-

7" are one-hot encoding results for each row of the adjacency matrix. Therefore, it is 

reconstructed to form the annotation matrix and adjacency matrix, and it is converted into 

SMILES of the appropriate molecular graph. 

 

Conditional variational autoencoder (CVAE) 

The core of this study is applying multi-objective optimization based on graph description 

rather than string-based, and a data-driven autoencoder was implemented. Such an approach 

is dissimilar to the reinforcement learning-based generative model [32], [33] that predicts or 

calculates and rewards for the physical properties of molecules generated in the training 

process. This reinforcement learning-based optimization method is also powerful under the 

condition that it can give appropriate rewards when the properties of the generated molecules 

are measured or predicted. However, it is highly dependent which of predictive models is 

used. It is important to note that the autoencoder-based optimization method can overcome 

this limitation because it uses data and known physical properties. 

For this reason, MGVAE and MGCVAE were implemented to generate molecules and 

compare their performance. As a molecular generative model, MGVAE produces molecules, 

which are physically (logP and MR in this study) similar to a given dataset. In the meanwhile 

MGCVAE is beneficial in producing molecules physically similar to a given dataset with a 

given specific condition. As shown in Figure 1, the model architecture of the current study 

starts with the encoder, which receives an initial graph matrix to generate an adjacency matrix 

and annotation matrix representing the molecule along with specific condition vectors. Then 

the latent space again receives the condition vectors. Finally, the decoder generates a graph of 

molecules with particular properties. 
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The significant difference between the two models is originated from different objective 

functions. The objective functions of each MGVAE and MGCVAE are as follows: 

𝐸[𝑙𝑜𝑔𝑃(𝑋|𝑧)] − 𝐷𝐾𝐿[𝑄(𝑧|𝑋)||𝑃(𝑧)] 

𝐸[𝑙𝑜𝑔𝑃(𝑋|𝑧, 𝑐)] − 𝐷𝐾𝐿[𝑄(𝑧|𝑋, 𝑐)||𝑃(𝑧|𝑐)] 

where 𝐸  represents the expectation value, 𝑃  and 𝑄  indicate the probability distribution,  

represents the Kullback-Leibler divergence, 𝑋 , 𝑧 , and 𝑐  are the data, latent space, and 

condition vectors, respectively, and 𝑃(𝑋|𝑧) represent encoder and decoder in autoencoder, 

respectively. Specifically, the formula for MGVAE is known as the Evidence Lower Bound 

(ELBO). 

The main differences between these two models are originated from different objective 

functions according to condition vector 𝑐. In this study, the molecular properties to control 

corresponded as condition vectors, which are numerical one-hot encoded vectors. Therefore, 

the decoder of the trained model generates molecules with desired properties according to 

the given condition vector along with the latent vector. As a result, MGCVAE can generate 

molecules with target properties imposed by condition vectors. 

 

Dataset 

This study selected 1,363,452 molecules with 16 or fewer elements (nodes) obtained from the 

ZINC database [34], as shown in Figure 2. Molecules are composed of 12 types of atoms (B, C, 

N, O, F, Si, P, S, Cl, Br, Sn, and I) and four types of bonds (single, double, triple, and aromatic 

bonds). In addition, by RDKit [35] calculation methods, these molecules also have logP 

between -6 -6 and 5, where P is defined as the ratio of the concentrations between two solvents 

of a solute [36]. MR between 5 and 95, which is an important criterion to measure the steric 

factor and related to the size and molecular weight of molecules [37].  In particular, in this 

study, molecules suitable for graph generation (e.g., SMILES without ‘+’, ‘-’, and ’.’) were 

collected from the ZINC database. This ZINC dataset was divided into a training set and a 

test set as a ratio of 9:1, and the training process was confirmed as shown in Figure S2, SI. The 

input initial graph matrix and output initial graph matrix of the autoencoder was trained in 
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the direction of decreasing the loss so that they could be the same as possible. According to 

Lipinski’s rule of five (RO5) [38], drug-like molecules have logP between -0.4 and 5.6 and MR 

between 40 and 130; hence it was investigated to generate molecules that have logP between 0 

and 3, and MR between 20 and 60, including both a meaningful range as a drug and a range 

in which the model can be generated by the distribution of the given dataset. 

 

 

RESULTS AND DISCUSSIONS 

Multi-objective optimization 

By training the distribution of logP and MR for molecules of selected ZINC dataset using 

MGVAE and MGCVAE, the logP and MR values of molecules generated by MGVAE and 

MGCVAE are obtained. The two models were trained with the same dataset, and 10,000 

molecules were generated with each model to compare their performance. While MGVAE 

generated 10,000 cases without any constraints, MGCVAE generated molecules with the first 

condition (logP, 𝐶1 = {0, 1, 2, 3}), and with the second condition (MR, 𝐶2 = {20, 30, 40, 50, 60}). 

10,000 molecules are generated from each condition, leading to a total of 200,000 molecules 

are suggested. 

To optimize the two target properties, the performance was evaluated by checking how many 

generated molecules were satisfying the properties within the target range when the 

conditions within the corresponding range were respectively given. To confirm the 

performance of MGCVAE more clearly, molecules generated from MGVAE, in which no 

condition is applied, are counted whether they are matched the range of each condition. First 

of all, as shown in Figure 3 and Table 1, when logP was close to 3 and MR was close to 20, no 

molecules satisfying both conditions were generated; we note that even in the ZINC dataset, 

there was no data that satisfies both of these conditions. However, except for this, it was clearly 

validated that MGCVAE generated more optimized molecules than MGVAE in all conditions. 

For visualization purposes, the MGCVAE results of Table 1 are converted into 3D in Figure 

S3, SI. Except for 𝐶1 = {3} and 𝐶2 = {20}, when using MGCVAE, the molecular conditions 
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were satisfied from a minimum of 23.46% (13.99% in MGVAE) to a maximum of 44.12% (30.90% 

in MGVAE) for logP, and from a minimum of 38.57% (0.11% in MGVAE) to a maximum of 

82.72% (36.66% in MGVAE) for MR. In addition, the cases where both conditions were 

satisfied ranged a maximum of 32.78% (16.90% in MGVAE). It can be seen that this is an 

effective optimization compared to the case where the MGVAE satisfies both conditions at the 

same time from a minimum of 0.00% to a maximum of 16.90%. In addition, the difference in 

the degree of optimization between MGCVAE and MGVAE was 26.86% in logP, 58.30% in MR, 

and 25.23% in both, with MGCVAE being more effective. Such remarkable performance in 

MGCVAE suggests that it is suitable for generating new organic materials or drugs with two 

desired properties, such as logP and MR. 

In this study, the performance of the single-objective optimization was not solely verified. Still, 

the degree of optimization of a single property could be confirmed from the results on the 

multi-objective optimization. Thus, among the cases where 𝐶1 = {0, 1, 2, 3}  and 𝐶2 =

{20, 30, 40, 50, 60} , in the case of 𝐶1 = {0}  and 𝐶2 = {20, 30, 40, 50, 60} , the generated 

molecules were checked together to confirm how much 𝐶1 = {0} was optimized. As a result, 

as shown in Figure S4, SI, a maximum of 38.89% at 𝐶1 = {2} and a maximum of 78.65% at 

𝐶2 = {60}, better results were confirmed in MR than logP.  

 

Molecular library similarity 

Comparing the chemical space between the generated molecules and the molecules in the 

dataset is a way to visually compare how chemically similar the generated molecules are to 

the dataset and is often attempted [39]. This comparison shows how the two sets of molecules 

cover similar chemical spaces. For this, molecular fingerprints and dimensionality reduction 

algorithms were used to visually analyze the similarity between the generated molecules and 

the molecules of the training set, as shown in Figure 4. Thus, MACCS molecular fingerprints 

(167-bits) [40] and Morgan molecular fingerprints (1024-bits) [41], which are typically used for 

in silico screening, were implemented for randomly selected 50,000 molecules from ZINC 

dataset, 5,000 molecules generated from MGVAE, 50,000 molecules out of all molecules 

generated for all conditions of MGCVAE, respectively. Each molecular fingerprint was 
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reduced and visualized in two dimensions using principal component analysis (PCA). In the 

case of MGVAE, the generated molecules were located relative to the left, but overlapped in 

the clusters formed by the molecules in the ZINC dataset. In particular, in the case of 

MGCVAE, the results and distribution of ZINC were different because the molecules 

generated according to the conditions were different. For example, MGVAE was almost 

similar to the histogram of ZINC, whereas in MGCVAE, the positions and distributions of the 

formed peaks were different. As a result, the positions and clusters of each generated molecule 

by MGVAE and the positions of bright areas appeared similar to those of the molecules from 

the ZINC dataset, but the molecules generated by MGCVAE showed different distributions 

in the positions of the corresponding clusters. This suggests that both generative models 

generate molecules similar to the existing datasets, especially in MGCVAE, which allows more 

molecules to be generated at specific locations. 

 

Model performance evaluation 

It is imperative to check the following metrics for the generative model because the chemical 

space is limited when the model trained on a particular dataset generates molecules. Therefore, 

to evaluate the performance of MGVAE, validity (the ratio between the number of valid and 

all generated molecules), novelty (the ratio between the set of valid samples that are not in the 

dataset and the total number of valid samples), and uniqueness (the ratio between the number 

of unique samples and valid samples and it measures the degree of variety during sampling) 

were measured together. As shown in Table 2, the results were confirmed with full marks for 

validity, novelty, and uniqueness. In the case of uniqueness, it is remarkable because it is an 

indicator that did not reach a perfect score in previous studies. Furthermore, in the case of 

MGCVAE, metrics were also measured for 𝐶1 = {3} and 𝐶2 = {60}, which are the conditions 

that generate the most optimized molecules, and the results showed that only the uniqueness 

was slightly lower than that of MGVAE. Example molecules from ZINC dataset and generated 

by MGCVAE are randomly chosen and shown in Figure S5, SI. 

Finally, in this study, the performance of MGVAE and MGCVAE, which are proposed for the 

purpose of multi-objective optimization, were compared and analyzed according to particular 
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conditions. The results confirmed that desired molecules were well generated in MGCVAE. 

In addition, the molecular fingerprints of the generated molecules were visualized to verify 

that they were similar to the dataset, and the model was evaluated through three evaluation 

metrics. 

 

 

CONCLUSION  

In this study, MGVAE and MGCVAE were proposed as graph-based deep learning molecular 

generation models restructured from the initial graph matrix. In addition, in the case of 

MGCVAE, multi-objective optimization was performed for drug development. To evaluate 

this, results were compared with MGVAE, and molecules with the desired target properties 

(logP and MR) were directly generated by simultaneously controlling multiple target 

properties by assigning them to condition vectors in this model. As a result, when logP is close 

to 3 and MR is close to 60, it was confirmed that MGCVAE generated 32.78% of molecules 

when MGVAE generated 9.01% of molecules, and the chemical spaces of the generated 

molecules and the latent spaces of the models were visually examined. Therefore, the models 

in this study have the potential to be applied to efficient de novo drug design. However, 

improvements and future work in this study include generating and validating large graphs 

of 20 nodes or more with sizes suitable for drug-like molecules and optimizing three or more 

properties. 
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Figure 1. Architecture of the MGCVAE model. 
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Figure 2. Histograms of logP and MR of the molecules and related information of the molecules included in the ZINC dataset used in this 

study. 
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Figure 3. Comparison of multi-objective optimization results using MGCVAE, ZINC dataset, and MGVAE results in this study. Detailed 

figures are shown in Table 1. 
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MGCVAE MGVAE 
Difference between MGCVAE and 

MGVAE 
Condition 

logP (%) MR (%) Both (%) logP (%) MR (%) Both (%) logP (%) MR (%) Both (%) logP MR 

44.12 47.23 21.73 17.26 0.11 0.08 26.86 47.12 21.65 0 20 

43.38 45.32 18.73 30.90 0.11 0.02 12.48 45.21 18.71 1 20 

34.14 39.93 8.73 28.73 0.11 0.00 5.41 39.82 8.73 2 20 

5.14 38.57 0.00 13.99 0.11 0.00 -8.85 38.46 0.00 3 20 

40.66 59.60 25.89 17.26 1.72 0.66 23.40 57.88 25.23 0 30 

41.59 57.07 24.19 30.90 1.72 0.62 10.69 55.35 23.57 1 30 

40.05 56.98 20.12 28.73 1.72 0.15 11.32 55.26 19.97 2 30 

23.46 60.02 11.58 13.99 1.72 0.06 9.47 58.30 11.52 3 30 

36.39 58.25 22.84 17.26 12.50 3.83 19.13 45.75 19.01 0 40 

41.26 56.82 25.85 30.90 12.50 4.40 10.36 44.32 21.45 1 40 

42.31 55.59 23.18 28.73 12.50 2.30 13.58 43.09 20.88 2 40 

33.88 56.10 16.92 13.99 12.50 0.57 19.89 43.60 16.35 3 40 

32.43 72.22 26.71 17.26 48.59 10.44 15.17 23.63 16.27 0 50 

36.61 67.04 27.81 30.90 48.59 16.90 5.71 18.45 10.91 1 50 

40.68 63.90 26.97 28.73 48.59 13.31 11.95 15.31 13.66 2 50 

40.78 65.94 26.80 13.99 48.59 4.36 26.79 17.35 22.44 3 50 

26.85 72.78 15.54 17.26 36.66 2.25 9.59 36.12 13.29 0 60 

33.11 78.98 24.24 30.90 36.66 8.97 2.21 42.32 15.27 1 60 

37.62 82.72 31.58 28.73 36.66 12.97 8.89 46.06 18.61 2 60 

38.08 80.72 32.78 13.99 36.66 9.01 24.09 44.06 23.77 3 60 

 

Table 1. The multi-objective optimization results. The results of MGCVAE and MGVAE are displayed along with each property and the result 

that satisfies both. Each result is the percentage of the number of molecules that, rounded up, have the same value as the given condition. 
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Figure 4. A two-dimensional reduced visualization using PCA of the MACCS and Morgan molecular fingerprints of the ZINC dataset and 

generated molecules, respectively. Each property is shown after rounding, and based on ZINC, the larger the number of data, the darker the 

color is drawn on the back side. 
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Model Valid Unique Novel 

GrammarVAE [42] 0.310 0.108 1.000 

ChemVAE [43] 0.170 0.310 0.980 

GraphVAE [44] 0.140 0.316 1.000 

CGVAE [45] 1.000 0.998 1.000 

MG2N2 [46] 0.753 0.107 1.000 

MGVAE 1.000 1.000 1.000 

MGCVAE 1.000 0.998 1.000 

 

Table 2. Validity, Uniqueness, and Novelty of generated molecules assessing the quality of GCVAE, MGCVAE and the baselines on the 

ZINC dataset. 
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