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Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries
for Drug Discovery
Yuliana Zabolotna, Fanny Bonachera, Dragos Horvath, Arkadii Lin, Gilles Marcou, Olga Klimchuk,
and Alexandre Varnek*

ABSTRACT: Nowadays, drug discovery is inevitably intertwined with the usage of
large compound collections. Understanding of their chemotype composition and
physicochemical property profiles is of the highest importance for successful hit
identification. Efficient polyfunctional tools allowing multifaceted analysis of
constantly growing chemical libraries must be Big Data-compatible. Here, we
present the freely accessible ChemSpace Atlas (https://chematlas.chimie.unistra.fr),
which includes almost 40K hierarchically organized Generative Topographic Maps
(GTM) accommodating up to 500 M compounds covering fragment-like, lead-like,
drug-like, PPI-like, and NP-like chemical subspaces. They allow users to navigate
and analyze ZINC, ChEMBL, and COCONUT from multiple perspectives on
different scales: from a bird’s eye view of the entire library to structural pattern
detection in small clusters. Around 20 physicochemical properties and almost 750 biological activities can be visualized (associated
with map zones), supporting activity profiling and analogue search. Moreover, ChemScape Atlas will be extended toward new
chemical subspaces (e.g., DNA-encoded libraries and synthons) and functionalities (ADMETox profiling and property-guided de
novo compound generation).

■ INTRODUCTION
With the rapid growth of compound libraries over the last
decades,1 drug discovery campaigns resemble a search for the
proverbial needle in the haystack. One of the most significant
contributors to the expansion of chemical data is combinatorial
chemistry.2 However, many of the early combinatorial libraries
are now considered far from the optimal chemical space of drug
discovery.3 The realization that unbiased library synthesis and
screening cannot revolutionize drug discovery and overshadow
natural products led to the “fall” of combinatorial chemistry.4 In
response, medicinal chemists turned to virtual (also called
tangible) compound libraries in a search for higher diversity,
quality, and novel chemotypes.5 It became the state of the art to
use tangible libraries for virtual screening (VS) in order to obtain
a more extensive and diverse pool of virtual hits, out of which a
subset would be selected for synthesis and experimental testing.
This trend encouraged the creation of numerous and ever larger
virtual libraries,6−13 making it hardly possible to comprehend
the entire scope of all available compounds.
Under such conditions, a deep understanding of the data

currently available for medicinal chemists is of the highest
importance and efficient computational techniques that allow
analysis of the large amount of chemical data now play a crucial
role in the early stages of drug design. Over the last decades,
multiple standalone software tools14−18 embodying the concept
of chemical space19�an abstract space in which points
represent compounds with clearly defined neighborhood

relationships�has been developed. They provide a wide
range of functionalities for chemical space visualization and
analysis. However, they can be difficult to install and maintain.20

Their usage may require technical coding or scripting skills,
making them available mostly to chemoinformatics professio-
nals.21 Therefore, online resources can be a more convenient
choice as soon as they usually are intuitive and relatively easy to
use.

Freely Accessible Web Tools for the Interactive
Chemical Space Visualization. At the moment, there are
about a dozen freely accessible online servers that allow
navigation and analysis of the chemical spaces defined by
different MedChem relevant libraries (see Table S1 in the
Supporting Information (SI)). Almost all of them rely on the
vector-based chemical space representation methods: PCA22

and t-SNE.23 Only the tMap server24 features a graphlike
representation. Most of those tools visualize only previously
processed libraries, but some servers allow users to project a
limited set of user-defined compounds. However, the latter
usually takes a long time and web site crashes are not
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uncommon. The size of the precomputed data sets varies from
102 to 107, which appears to be a current limit for most of
chemical space visualization techniques.
Moreover, the larger the covered collections, the fewer

functionalites are supported. Indeed, the two implementations
that enable navigation among up to 10 M compounds�tMap24

and Faerun25�provide only simple visualization of physico-
chemical properties (and activity in case of tMap) without the
possibility to project new data for analysis. In addition,
interpretability and convenience of navigation expectedly drop
for the largest chemical spaces, for all earlier reported tools
provide only a global “bird’s eye” view of chemical space.
At the same time, more focused navigators like PUMA20 and

ChemMaps21 provide users with broader functionalities
allowing new data set projections and their comparison with
precomputed libraries. In the case of PUMA, diversity analysis
(scaffold and fingerprint diversity plots, etc.) is also available,
and ChemMaps has an option of toxicity prediction. Never-
theless, none of the existing web implementations support
activity profiling, even though the activitymaps can be displayed.
Another significant shortcoming of existing tools is the
availability of only one global view on the chemical space,
without the possibility to analyze the local features of smaller
clusters containing close analogues. It also explains the absence
of structural functionality, such as scaffold and maximum
common substructure (MCS) analysis.
The aforementioned weaknesses of existing tools are mainly

caused by the limitations of the underlying chemical space
representation techniques. For instance, PCA can process
massive datasets only if they have linearly dependent features.
The standard solution, in this case, would be to train the model
using a representative subset and project the remaining data
onto the 2D map. t-SNE is a nonlinear method and thus
overcomes this drawback. However, because of the need to store
a distance matrix for the entire dataset, t-SNE is limited, in terms
of set sizes. Also, adding data to a precursory t-SNE map is not
feasible�a drawback also inherent to the tMaps algorithm.

ChemSpace Atlas Navigator.Considering themain trends
in drug discovery, chemical space navigation cannot be limited
to a simple visualization of similarity relationships for
compounds from predefined libraries. Various property and
biological activity visualization, polypharmacological profiling,
analogue search, and detailed structural analysis should also be
available. Moreover, all of these must be “Big Data”-compatible
in order to cope with hundreds of millions, and even billions, of
compounds. We have repeatedly used Generative Topographic
Mapping (GTM)26 as a highly efficient dimensionality
reduction method that possesses numerous advantages and
overcomes many drawbacks of other approaches. In contrast to
Self-Organizing Maps,27 GTM distributes molecule projections
over the map with node-specific probabilities (responsibilities)
instead of unambiguously assigning each compound to only one
point on the map (see Figure S1 in the SI). This smoothness
enables the creation of GTM landscapes: maps, colored by
average values of different (biological, physicochemical, etc.)
properties (Figure S2 in the SI). These maps can be turned into
potent quantitative structure−activity/property relationship
(QSA/PR) engines.28−31 A single GTM manifold is able to
host more than one predictive landscape. Hundreds of
properties/activities can be predicted simultaneously using
correctly optimized “universal” GTM: a general-purpose map
that can accommodate ligands of diverse biological targets on
the same GTM manifold (for more details, see the SI).28,32

However, not all activities are equally well predicted by a single
universal map. In order to achieve better predictive performance
for maximal number of biological activities, not one, but several
universal maps based on different types of descriptors can be
used (see Table S3 in the SI). Such maps represent
complementary and strongly synergistic views of biologically
relevant chemical space. They can be used not only as a
predictive tool but also as frameworks for the analysis of large
chemical libraries in the medicinal chemistry and drug design
context.
There is no limitation of the number of items that can be

hosted by a GTM, but a 2D map charged with Big Data-level
libraries may only render generic “bird’s eye” views of the
common and specific chemical space zones covered. However,
the hierarchical zooming approach (hGTM)33,34 provides a
“pile” of hierarchical maps connecting the bird’s eye view down
to detailed maps of specific neighborhoods that are easy to
annotate by individual or common (sub)structures (see Figure
S3 in the SI). It provides intuitive, easy-to-use, and highly
interpretable global and local views of the chemical space and
enables efficient structural analysis of the selected areas.
Zooming is achieved by refitting a local manifold to optimally
cover the residents of a chemical space zone defined by the 3× 3
grid of nodes around the user-picked central node. Zones
overlap, so the same node may participate to up to four zones
(see Figure S3). “Residents” of a zone are defined as compounds
with cumulative responsibility over the 9 nodes (sum of
probabilities to be assigned to these nodes) of the zone above
0.85. Moreover, as new information emerges every day, it is a
significant advantage that new data points can be easily
projected onto the existing maps without retraining any GTM.
All of that makes GTM one of the best choices for developing a
new chemical space visualization tool with extended function-
ality.
The herein presented, intuitive web tool ChemSpace Atlas

(https://chematlas.chimie.unistra.fr/) assembles tens of thou-
sands of hierarchically related GTMs based on nine universal
maps (see Tables S2 and S3), covering biologically relevant
chemical (sub)spaces. Seven of them were trained and
optimized using ChEMBL data in a way to host simultaneously
ligands of diverse biological targets and serve as an efficient
activity profiling platform.28 The first universal map was further
used to analyze chemical space defined by biologically tested
compounds from ChEMBL, commercially available molecules
for HTS from ZINC, and DNA-encoded libraries enumerated
using purchasable BBs. Thus, in the ChemSpace Atlas, those
respective sections are based on the first uMap. However, as
soon as there is a limited number of NPs in ChEMBL, a specific
NP-uMap was constructed using compounds from the COCO-
NUT collection of NPs.35 Similarly, a dedicated universal map of
synthons was created (without considering the leaving groups in
actual reagents).36 This map was trained on synthons generated
both from commercially available reagents and ChEMBL
compounds (via their fragmentation).
The hierarchy, obtained as a result of “zooming” of the

universal maps, enables convenient navigation through the
hundreds of millions of compounds from a global bird’s eye view
to structural pattern detection. On each level, there are several
landscapes colored according to the different properties of
corresponding compounds (see Figure S2). ChemSpace Atlas is
based on previously published research, interconnected by an
easy-to-use web interface. It consists of six modules: “Fragment-
Like”, “Lead-Like”, “Drug-Like”, “PPI-Like”, and “NP-like”

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://chematlas.chimie.unistra.fr/
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00509/suppl_file/ci2c00509_si_001.pdf


chemical space Navigators,35,37 and “ChEMBL activity space
Navigator/Activity profiler”.28

■ IMPLEMENTATION
Data. ChemSpace Atlas covers several libraries that are

frequently used in drug discovery. Among them, there are
ZINC,38 ChEMBL,39 and COCONUT40 (Table 1). All those
compounds were standardized according to the procedure
implemented on the virtual screening server of the Laboratory of
Chemoinformatics at the University of Strasbourg (infochimie.
u-strasbg.fr/webserv/VSEngine.html) using the ChemAxon
Standardizer.41 That included:

• dearomatization and final aromatization (heterocycles
such as pyridone were not aromatized)

• conversion to canonical SMILES;
• salts and mixture removal;
• neutralization of all species, except nitrogen(IV);
• major tautomer generation;
• stereochemical information removal.
Stereochemical information has been ignored due to the fact

that ISIDA descriptors,42 used in this work, would not capture it
anyway. All stereoisomer IDs were assigned to only one
stereochemistry-depleted chemical structure.

Biologically Relevant Chemical Space. The biologically
relevant chemical space is represented by ChEMBL�a large-
scale collection of bioactivity data from binding, functional, and

ADMET assays.39 ChemSpace Atlas will regularly update the
implemented ChEMBL release�both in terms of adding new
compounds to the pre-existing maps and updating the links
between (stereochemistry-depleted) SMILES and the associ-
ated compound ChEMBL IDs. Predictive landscapes will
improve as future ChEMBL releases provide more structure−
activity data to “color” the maps, and “near-orphan” targets for
which no such predictive landscapes could be generated,
because of insufficient experimental data, may eventually change
their status and be co-opted into the predictable polypharmaco-
logical profile of ChemSpace Atlas. Reconstruction of under-
lying manifolds of local zoomed maps may also be necessary for
zones witnessing a significant population increase, while the
refitting of the universal manifolds is not necessary unless the
update of the activity landscapes based on the current manifolds
fails to generate new highly predictive landscapes.

Commercially Available Chemical Space. ZINC collection
(versions 15 and 20; see Table 1) was used in this work as a
representation of the purchasable chemical space.11,43 It is a
publicly available database that collects commercially available
compounds from various chemical vendors and annotated
compounds from libraries such as PubChem and ChEMBL. All
compounds in ZINC are grouped into several purchasability
categories:43

• in stock � delivery in under 2 weeks, 95% typical
acquisition success rate;

Table 1. Description of Eight Navigators Composing Chemspace Atlasa

navigator name featured libraries
size of the analyzed chemical space (after

standardization and filtration) main uMap
number of hGTMs in

the hierarchy

Natural Products Navigator COCONUT 253K NP-uMap35 241 hGTMs
NP-Like ChEMBL
(v26)

474K

NP-Like ZINC20 586K

Fragment-Like Chemical Space
Navigator

FL ChEMBL (v25) 15K 1st uMap of
ChEMBL28

880 hGTMs

FL ZINC15 (stock) 103K
FL ZINC15
(tangible)

2.7M

Lead-Like Chemical Space Navigator LL ChEMBL(v25) 363K 1st uMap of
ChEMBL

11 150 hGTMs

LL ZINC15 (stock) 3.2M
LL ZINC15
(tangible)

329M

Drug-Like Chemical Space Navigator DL ChEMBL(v25) 668K 1st uMap of
ChEMBL

22 325 hGTMs

DL ZINC15 (stock) 5.1M
DL ZINC15
(tangible)

516M

PPI-Like Chemical Space Navigator PPIL ChEMBL(v25) 229K 1st uMap of
ChEMBL

3 294 hGTMs

PPIL ZINC15
(stock)

1.2K

PPIL ZINC15
(tangible)

63M

ChEMBL Activity Space Navigator and
Activity Profiler

Visualization:
ChEMBL (v26)

1.7M 1st uMap of
ChEMBL

−

Profiler:
ChEMBL(v24)

1.6M seven uMaps of
ChEMBL28

aFeatured libraries, their size, underlying uMap, and the size of the hierarchy in case hierarchical zooming was performed.
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• procurement agent � in stock, delivery in 2 weeks, 95%
typical acquisition success rate;

• make-on-demand � delivery typically within 8−10
weeks, 70% typical acquisition success rate;

• boutique�where the cost may be high but still likely less
expensive than synthesis from scratch, 70% typical
acquisition success rate.

In ChemSpace Atlas, the first two groups were combined as
“in-stock commercially available” subset. All the rest formed the
tangible subset. Note that ZINC compounds are not employed
for the construction of universal map manifolds, but may serve
to define zoomed local manifolds. The steady increase of the
ZINC database may over time require additional hierarchical
levels being added to ChemSpace Atlas.

Chemical Space of Natural Products. The COlleCtion of
Open Natural prodUcTs (COCONUT) is the most complete
up-to-date dataset of natural products (NPs), containing
406 076 unique compounds with no stereochemistry.40,44

They were extracted from 53 various data sources, like
Traditional Chinese Medicine database,45 Marine Natural
Products,46 Collective molecular activities of useful plants,47

Super Natural II,48 etc. All compounds were curated, registered,
and annotated with various precomputed molecular properties.

Structure of ChemSpace Atlas. ChemSpace Atlas was
designed as a container for several subspace navigators, which
can be accessed from the main page (https://chematlas.chimie.
unistra.fr/):

• Fragmentlike Chemical Space Navigator
• Leadlike Chemical Space Navigator

• Druglike Chemical Space Navigator
• PPI-Like Chemical Space Navigator
• Natural Products Navigator.

In addition, the “ChEMBL activity space Navigator and
activity Profiler” section uses series of compounds with reported
biological activity against all biological targets for which large
enough sets exist. In the current version, this applies to 749
distinct human, rodent, and parasitic targets (please refer to
previous works28,32 for the automated extraction, activity
binning rules, and criteria for rejection or inclusion of such
“large enough” sets in in the activity space Navigator). Fuzzy
activity classs landscapes based on these series are used for
pharmacological profiling using consensus activity class
prediction on seven universal maps28 (see details in the SI).
Each of the navigators listed above is focused on specific

subspaces of the biologically relevant chemical space that differ
in size (Table 1): from 105 in the case of natural products to 108
for druglike structures. Each of the six navigators is based on the
separate hierarchy of maps developed and reported in previous
publications. The universal GTMs were evolved with the help of
a genetic algorithm,49 which allowed optimal descriptor space
and GTM parameters selection. Zoomed maps were then
constructed using the parameters of the main map and frameset
composed of compounds localized in a specific zone (see more
details in the SI). The descriptors defining chemical spaces are
different variations of ISIDA fragment descriptors42 from simple
atom sequencing to complex variations labeled by force-field
constants, formal charges, and pharmacophoric features. Apart
from the libraries that have been already projected onto the

Table 2. Examples of Possible Medicinal Chemistry Questions, Popular in the First Stages of Drug Design and Chemspace Atlas
Solutions

MedChem questions ChemSpace Atlas solutions

I. Unbiased Exploration of the Chemical Space
What kind of compounds populate the analyzed libraries? What are their common structural
features? What are the most represented chemotypes?

Density landscapes of ZINC, ChEMBL, or COCONUT libraries
+ MCS/scaffold analysis

Where can a mapped compound be purchased? Direct links to the ZINC Web site
What biological activity the selected compound is reported to have? Direct links to the ChEMBL Web site
Can the selected compound be found in natural sources (and where)? Direct links to the COCONUT Web site

II. Analysis of the Chemical Space in the Context of a Given Biological Target
What kind of compounds (chemotypes) were tested biologically against a target of interest? What
are the major chemotypes in compounds tested against a given biological activity?

Density landscapes of target-specific ligand series from ChEMBL
+ MCS/scaffold analysis

What is the structural difference between actives and inactives? Binary class landscapes (actives versus inactives of a selected
target) + MCS/scaffold analysis

Which actives have a desired property profile? Property landscapes of ZINC, CHEMBL, or COCONUT libraries
What compounds should be tested next against a given biological target? Consensus activity predictor (for one target)

III. Analysis of the Chemical Space in the Context of Given Compounds (Query Molecules)
Analysis of the knowledge space (ChEMBL Navigator)

Was there anything similar to my query molecules already reported in ChEMBL? “ChemSpace Tracker” functionality for the whole ChEMBL
density landscapes provided in different sections of the tool

Are there any actives of the selected biological target similar to the query molecules? “ChemSpace Tracker” functionality for the target-specific binary
class landscapes

Analysis of the commercially available chemical space
Are there any commercially available compounds similar to the query molecules? “ChemSpace Tracker” functionality for the ZINC density

landscapes
Are there any “scaffold hopping” analogues for the query compounds? “ChemSpace Tracker” functionality for the ZINC density

landscapes + MCS/scaffold analysis
Analysis of the NP and NP-like chemical space (NP Navigator)

Is there any naturally occurring compound similar to the query molecules? “ChemSpace Tracker” functionality for the COCONUT
landscapes

Is there any pseudo-NP similar to the query molecules? “ChemSpace Tracker” functionality for the NP-like ZINC
landscapes

Activity profiling of the given molecules
To which targets may my compounds bind? Consensus activity profiler

https://chematlas.chimie.unistra.fr/
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hGTMs, new collections can be placed on these maps, leaving
numerous possibilities for further ChemSpace Atlas extensions.

Functionality of ChemSpace Atlas. At the early stages of
modern drug design, medicinal chemists are mostly working
with large and ultralarge compound collections as the source of
“hits” leading to future drug candidates. Understanding the
chemotype composition and physicochemical property profiles
of the starting library, as well as physicochemical properties of
composing compounds, is prerequisite for a rational selection
process. Distribution histograms featuring physicochemical
properties and scaffold frequency plots provide a generalized
picture for the entire library, but cannot be backtracked to
underlying chemotypes. This is the strength of ChemSpace
Atlas: hGTM separates�at varying levels of hierarchical
resolutions�the chemotypes on the maps, all while associating
particular properties of interest of local resident clusters, by
means of property landscapes.
There are three main types of chemical space analysis

performed in drug design:
• unbiased exploration;
• target-oriented (with respect to the biological target
responsible for the particular activity); and

• compound-oriented (focused on compounds possessing
particular structural features).

Table 2 summarizes the most popular chemical space-related
questions that appear during each of the above-mentioned types
of analysis and ChemSpace Atlas solutions that allow us to
answer them. Tables S4−S6 in the SI provide a comparative
analysis of our tool with previously existing web implementa-
tions in the context of the questions provided in Table 2.
Moreover, in the SI, one can also find four case studies for each

of the mentioned tasks with detailed instructions of ChemSpace
Atlas interface usage and main insights derived with its help.
From the main page of ChemSpace Atlas (https://chematlas.

chimie.unistra.fr/), one can select the section of the chemical
space to explore. All Navigators support the same set of options.
Almost 20 various physicochemical properties and almost 750
activity landscapes allow users to analyze libraries from different
perspectives:

• physicochemical property visualization (18 calculated
properties);

• activity visualization (749 ChEMBL activities);
• activity prediction (for a selected ChEMBL target);
• activity profiling (749 ChEMBL activities);
• tracking specific areas of the chemical space based on
structural features (“ChemSpace Tracker”);

• analogue search (“ChemSpace Tracker”);
• structural analysis of selected regions of the chemical
space with the help of MCSs and scaffolds;

• precomputed library comparison (ChEMBL vs ZINC,
ZINC vs COCONUT, ChEMBL vs COCONUT, etc.).

In order to facilitate navigation, a small set of “tracking”
compounds can be provided by the user. Thesemolecules will be
projected onto the GTMs, appearing as dots (at the barycenter
of their responsibility “clouds”) on the selected landscapes.
These dots will help to choose the zones of the chemical space
worth exploring in the context of users’ needs. “ChemSpace
Trackers” also allow users to search for analogues of a provided
compound. Apart from simple navigation, ChemSpace Atlas can
be used for efficient analysis of underlying libraries: chemotype
distribution, physicochemical properties, (reported and/or
predicted) biological activity, and commercial availability.

Figure 1. Activity visualization page of the ChEMBL activity space Navigator on the example of CDK4 (CHEMBL331). ① navigation bar; ② target
selection menu; ③ legend of the map; ④ interactive activity landscape; ⑤ zone population information (if green, bars become clickable and
corresponding compounds can be displayed);⑥ buttons for displaying zone-typical scaffolds;⑦ button for downloading compounds from the selected
area of the chemical space; ⑧ compound identifiers/direct links to the source database (here, ChEMBL); ⑨ buttons to display property and density
landscapes in the pop-up window.
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Moreover, activity prediction based on the consensus model of
landscapes based on seven universal maps is also available.

Interface of ChemSpace Atlas Exemplified on Cell
Division Protein Kinase 4 Inhibitor Monitoring. Target-
Oriented Chemical Space Navigation. From the main page of
NP Navigator, one can access the ChEMBL activity space
Navigator and activity Profiler section. On the Activity
visualization page (Figure 1), the user can provide a ChEMBL
identifier of the biological target of interest (“②” in Figure 1). As
a case study, one of the important targets for breast cancer
treatment was used: cell division protein kinase 4 (CDK4,
CHEMBL331). The displayed landscape (“④” in Figure 1) relies
on a compound ligand series from ChEMBL database, tested
against CDK4 and “colored” by the relative prevalence of
“actives” (defined as compounds with IC50 or Ki lower than a
given threshold Thact) versus inactives (compounds with IC50 or
Ki higher than 10×Thact), where Thact is chosen in such a way to
ensure a relative balance of actives versus inactives in this
“coloring” set. Compounds of intermediate activity (Thact <
IC50/Ki < 10 × Thact) and molecules (rendered by a unique
stereochemistry-depleted structure) featuring both some
“active” and some “inactive” stereoisomers as above-defined
are not included in the “coloring” set.
Each node of the map is colored according to the weighted

class ratio of its residents: red regions contain exclusively active
compounds, blue regions contain exclusively inactives, all colors
between encode zones with members of both classes in different
proportions; white areas are empty (see “③” in Figure 1). This
map is interactive and by clicking on the selected area of the

landscape, the detailed information about zone composition (3
× 3 nodes around the selected point) can be displayed (“⑤” in
Figure 1). As mentioned above, zooming zones are overlapping,
so the selected node on the map may belong to one or several
(up to four) neighboring areas. Adjacent zones may contain very
similar compounds, although some of the molecules might be
present only in one of these. Therefore, for the detailed analysis,
it is recommended to explore all zones proposed by ChemSpace
Atlas. Two bars that illustrate the number of compounds
residing in the area are clickable and allow one to display
respective chemical structures in a pop-up window and
download them (“⑦” in Figure 1). The source identifiers
provided for each molecule are hyperlinked to the correspond-
ing library’s web interface, allowing direct access to the detailed
compound’s information (“⑧” in Figure 1). One mapped item
may point to multiple compound identifiers if, in the source
library, there were several stereoisomers.
It is also possible to perform scaffold analysis of the selected

zone (“⑥” in Figure 1) and display Bemis-Murcko scaffolds
specific to actives and inactives separately, as well as shared
scaffolds if any were found (Figure 2). The number of the
compounds corresponding to each scaffold is provided under
each structure, and the text is hyperlinked to the window with
corresponding compounds and their IDs. In addition, the
cumulative scaffold frequency plot is showing the percentage of
compounds that corresponds to the percentage of the most
frequent scaffolds. This graph provides information on the
distribution of molecules over scaffolds and can be used to
estimate scaffold diversity of the analyzed library or compare

Figure 2. Scaffold analysis of ligands CDK4 (CHEMBL331) residing in a mixed zone around Node 949: (A) actives-specific scaffolds and (B)
inactives-specific scaffolds. On the top of the page, the scaffold frequency plot providing information on the distribution of molecules over scaffolds is
given.
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different collections: the closer the curve is to the diagonal line,
themore diverse the library is.50 In Figure 2, actives and inactives
of CDK4 residing in the local zone around Node 949 are
compared.
To obtain the complementary view on the chemical space of

analyzed compounds, one can display density or property
landscapes (“⑨” in Figure 1). See the example of the detailed
analysis of CDK4 ligands with the help of these landscapes in the
SI (case study 2). The major chemotypes of biologically tested
against CHEMBL331 compounds were detected using density
landscape. Their structural features were discussed and
difference between actives and inactives were highlighted
using compound-by-compound comparison (see Figures S12,
S13, and S15 in the SI) and scaffold analysis (see Figures S14
and S16 in the SI) in the low-populated local areas. ChemSpace
Atlas functionality has also allowed an easy detection of an
activity cleaf (Figures S13 and S14 in the SI). With the help of
property landscapes (Figure S17 in the SI), it was concluded that
the main difference between actives and inactives lies in the
number of rings in general and heterocycles in particular and in
the number of H-bond acceptors. At the same time number of
H-bond donors was not really helpful in discriminating actives
from inactives. In addition, it was shown that two main “islands”
of active compounds have different values of molecular weight
and the fraction of sp3-hybridized carbon atoms. In addition, In
case study 3 in the SI, the activity against CDK4 was predicted
for the set of new compounds. The resulting hits were analyzed
with the help of activity landscapes not only of CDK4, but also
three other targets from the same kinase family�CDK1, CDK7,

and CDK9�in order to assess the potential selectivity of those
compounds.
Thus, the Activity visualization page allows users to analyze

the activity space of the selected target, compare actives and
inactives, detect areas of the chemical space enriched with active
ligands, and characterize these areas with respect to the
structural features of the underlying compounds. In addition,
Activity Predictor (see Case Study 3 in the SI) and Activity
Profiler (Case Study 4 in the SI) allow users to predict the
potential biological activities of up to 50 compounds.

Compound-Oriented Chemical Space Navigation. For the
further exploration of the chemical space around the actives of
CDK4, the first ligand from Figure 1 (matching ChEMBL IDs
C H EM B L 3 6 9 1 6 4 0 , C H EM B L 3 6 9 1 6 4 2 , a n d
CHEMBL3691643) was selected as a compound of reference
for the compound-oriented chemical space analysis of the Drug-
Like chemical space of the ChEMBL and ZINC database. This
compound is a potent inhibitor of CDK4 that has slightly
varying IC50 values for its different stereoisomers, from 12 nM to
17 nM.
On the ChemSpace tracker page of the Drug-Like In-Stock

chemical space Navigator, the user can provide a list of up to 50
SMILES (“①” in Figure 3) or draw a molecular structure in the
sketcher window (“②” in Figure 3). These could, for example, be
chosen to include potent CDK4 actives and hence play the role
of chemical “trackers” that allow one to pinpoint the regions of
the chemical space where known inhibitors of CDK4 reside.
Upon compounds submission, they will be standardized,

fragmented to calculate ISIDA descriptor vectors, and projected
onto the first universal map. On the right side of the page, the

Figure 3. Input page on Chemspace Tracker: ① zone of text input (SMILES); ② structure sketcher; ③ selection of up to five landscape types.
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drop-downmenu enables the selection of up to five types of map
coloration, i.e., landscapes (“③” in Figure 3) to be generated.
Meanwhile, the Progress page reports the advancement of the
procedure. In the case where provided compounds are out of the
applicability domain of the map (i.e., situated too far from the
GTM manifold in the initial highly dimensional descriptor
space), an error message will be displayed.
After the projection, the user will be redirected to the main

result page containing one of the selected landscapes (Figure 4).

The colored background of the map corresponds to the library
(libraries) that were selected as a basis for the landscape (in
provided example - ZINC (red regions) and ChEMBL (black
regions); all colors between correspond to the areas occupied by
both libraries). User-defined compounds are displayed as black
dots (see “④” in Figure 4 ).
After clicking on one of the dots, the respective compound

will be shown on the right side of the map (“⑤” in Figure 4).
Similar to the target-oriented chemical space navigation, several

Figure 4.Main level of the landscape visualization: ① legend of the map; ② Plotly toolbar allowing different types of navigation through the plot; ③
hover-activated information about the node composition (absolute density corresponds approximately to the number of compounds residing in the
node, and class probability indicates the proportion of ChEMBL(1) and ZINC(2) compounds); ④ black dots represent user-defined molecules�
ChemSpace trackers�and hover-activated ChemSpace tracker information (index number of compound in the provided list); ⑤ selected tracking
compound; ⑥ the number of closest neighbors of the selected compound on this level of hGTM (if green, bars become clickable and corresponding
compounds can be displayed); ⑦ zoom button enabling display of the next level of navigation focusing on the selected zone of the chemical space.

Figure 5. Zoomed level of the landscape visualization: ① zoomed map with one “tracking” compound projection; ② buttons to display the lists of
common and library-specific MCSs; ③ buttons to display the lists of common and library-specific scaffolds; and ④ buttons to display results of the
ZINC activity profiling with a consensus profiler.
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zooming zones might be proposed to the user for investigation.
Zooming zones are relevant for a tracking compound if its
cumulated responsibility over the 9 nodes of the zone exceeds
0.85. Below the chemical structure, similarly to the activity
visualization, two bars illustrate the proportion of drug-like
ChEMBL and ZINC compounds found in the closest
surrounding of the selected “tracker” (“⑥” in Figure 4). As
long as the bars are yellow, corresponding compounds cannot be
displayed, because there are too many of them in that map zone.
In such a case, the “Zoom” button (“⑦” in Figure 4) appears,

which allows one to visualize the zoomedmap�the next level of
navigation (Figure 5).
Once the bars become green, the closest neighbors of the

selected tracking compound can be displayed for each featured
library: 43 ChEMBL compounds (“①” in Figure 6) and 33
ZINC molecules (“②” in Figure 6). At the last level of zooming,
MCSs (“②” in Figure 5) and scaffold analysis (“③” in Figure 5)
are available. Users can retrieve library-specific and common
MCSs and scaffolds characterizing selected zone. In a given

Figure 6. Pop-up windows demonstrating the content of the selected area:①ChEMBL compounds;②ZINC compounds;③ChEMBL-specificMCSs;
④ ZINC-specific MCSs; ⑤ results of the activity profiler of ZINC compounds; ⑥ predicted hits of CDK4 (the first compound is Ribociclib, recently
approved by the FDA as a drug targeting CDK4).
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example, there are 5 ChEMBL-specific MCSs (“③” in Figure 6)
and 6 ZINC-specific MCSs (“④” in Figure 6).
The consensus Activity Profiler may then predict the

polypharmacological profile of the ZINC compounds residing
in the selected area (“④” in Figure 5). Results of the profiling can
be visualized as shown by “⑤” and “⑥” in Figure 6. In a given
example, out of 33 closest ZINC neighbors of the reference
compound CHEMBL3691640, 3 compounds were predicted as
active against CDK4. Recall that this prediction is much more
robust than the simple “hint” of CDK4 activity due to the
closeness to CDK4-active trackers on the visualized map. It is a
consensus prediction proving that given ZINC compounds are
systematically found to reside in CDK4-active-enriched
neighborhoods in a majority of the seven universal maps, each
based on distinct descriptors highlighting complementary
chemical information. One of those compounds is common to
Z I NC a n d C h EMB L ( Z I NC 0 0 0 0 7 2 3 1 6 3 3 5 ,
CHEMBL3545110, CHEMBL370726). It is Ribociclib, which
was approved by the FDA in 2017 for the treatment of breast
cancer (IC50 against CDK4 is 10 nM).
This example demonstrates that, with the help of ChemSpace

Atlas, it becomes easier to navigate chemical space in a search of
potential drug candidates starting from structural analysis of the
knowledge space (ChEMBL activity Navigator), and finishing
with commercially available analogues search and activity
profiling of compounds similar to known ligands.

Technical Details of Web Implementation. ChemSpace
Atlas runs on a server version of Ubuntu 18.0451 with Apache
2.452 as an open-source HTTP Web server. An Anaconda53

installation with Python 3.6 is linked to the Apache server. All
physicochemical properties, respective landscapes, and MCSs
are precomputed, hierarchically organized, and stored on the
dedicated server. The ChemSpace Atlas front-end is developed
with jQuery,54 which is a fast, lightweight, cross-browser, and
feature-rich JavaScript library. The Bootstrap toolkit55 is used to
design the responsive interface. Chemical structures handling is
done using two libraries: Epam sketcher,56 as a web-based
chemical structure editor, and OpenChemLib-js,57 for com-
pounds visualization in 2D in the results pages.
The ChemSpace Atlas back-end is developed using custom

PHP and Python CGIs that process the data entered by the user
(either list of SMILES or single compound drawn in Sketcher).
Standardization is performed using ChemAxon41 Standardizer
and pKa calculations plugins. Compounds projection followed
by landscapes visualization is performed dynamically with
custom Python scripts in the context of the ChemSpace tracker,
using the Plotly library58 (version 4.8).

■ CONCLUSIONS
Here, we report freely available ChemSpace Atlas, which is a
highly polyfunctional web tool that allows navigating through
the chemical space of unprecedently large libraries. Almost
40 000 hierarchically related GTMs enable intuitive navigation
through hundreds of millions of compounds. The distinctive
feature of the ChemSpace Atlas, compared to other online tools,
is that it is not limited to a simple visualization of the similarity
relationships in the chemical space but it also allows users to
analyze physicochemical properties and biological activities,
perform polypharmacological profiling, perform analogs search,
and perform detailed structural analysis with the help of MCSs
and scaffolds. ChemSpace Atlas is a “Big Data”-compatible tool:
it provides at least a 10-fold increase in the size of the featured
libraries, with respect to the existing tools (and is still growing),

all while preserving high polyfunctionality. This is achieved by
the different scales of chemical space analysis: from a global
bird’s eye view of the entire library to structural pattern
detection in small clusters.
A user-defined compound set can be used to “track” the

chemical space regions containing molecules with specific
structural features. It also can be used for analogues searches.
Almost 20 precomputed physicochemical properties and
thousands of MCSs characterizing each zone enable a detailed
analysis of featured libraries in a different context. Almost 750
biological activities from ChEMBL can also be visualized, and
pharmacological profiling using a consensus of seven universal
maps is available.
In the future, ChemSpace Atlas will not be limited to the

navigators and libraries featured here. They are simply an initial
core that can easily be updated in order to increase functionality,
the scope of analyzed chemical space, or even the domain of its
application. In our previous works, the basis for the DNA-
encoded libraries (DELs) and SynthonsNavigators were created
but have not yet been implemented in the web interface. For the
former, ∼2500 DELs were designed using commercially
available building blocks (BBs) resulting in 2.5B DEL
compounds that were compared to biologically relevant
molecules from ChEMBL using the first universal map.59

GTM-based coverage score allows one to compare each DEL to
ChEMBL and choose several optimal DELs containing the
maximum possible percentage of biologically relevant chemo-
types. In this way, DEL Navigator will have slightly different
functionality−apart from all existing features, it will also allow
one to select the optimal DEL out of 2500 pregenerated libraries
for the particular task, according to the coverage of the desired
chemical space (e.g., all biologically relevant compounds, ligands
of a selected target, etc.).
The secondmentioned navigator featuring the chemical space

of synthons will be based on the universal map of synthons�
fragments of the organic BBs contributed to the final molecules
upon chemical reaction.36 They represent BB without the
leaving groups with their position and reactive centers type
(electrophilic, nucleophilic, radical, etc.) being encoded with
special numeric marks on the “connecting” atoms. Synthons
universal map combined with SynthI (now Synt-On) tool60 for
libraries design will allow one not only to search for already
synthesized analogues of the provided compound, like it is
already possible with currently implemented navigators, but also
to generate libraries that can be synthesized using purchasable
BBs.
Other directions of the future ChemSpace Atlas development

can be the analysis and prediction of ADMETox properties and
de novo compound generation, which was not considered
herein. The autoencoder sequence-to-sequence neural network
has already been combined with GTM in the work by Sattarov et
al.61 The incorporation of such methodology in ChemSpace
Atlas will complement its usage by introducing the guided
rational exploration of the novel regions of the chemical space.

■ DATA AND SOFTWARE AVAILABILITY
The ChemSpace Atlas tool is freely accessible at https://
chematlas.chimie.unistra.fr.
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