
Multi-Task Deep Neural Networks for Ames

Mutagenicity Prediction

María Jimena Martínez,∗,†,@ María Virginia Sabando,‡,¶,@ Axel J. Soto,‡,¶ Carlos

Roca,§ Carlos Requena-Triguero,§ Nuria E. Campillo,§,‖,⊥ Juan A. Páez,# and

Ignacio Ponzoni‡,¶

†ISISTAN (CONICET - UNCPBA) Campus Universitario - Paraje Arroyo Seco, 7000,

Tandil, Argentina.

‡Institute for Computer Science and Engineering, UNS-CONICET, 8000, Bahía Blanca,

Argentina.

¶Department of Computer Science and Engineering, Universidad Nacional del Sur, 8000,

Bahía Blanca, Argentina.

§CIB Margarita Salas (CSIC) Ramiro de Maeztu, 9. 28740, Madrid, Spain.

‖Instituto de Ciencias Matemáticas (CSIC), Nicolás Cabrera, no13-15, Campus de

Cantoblanco, UAM, CP 28049, Madrid, Spain.

⊥CoFounder of AItenea Biotech.

#Instituto de Química Médica. Consejo Superior de Investigaciones Científicas (CSIC),

Juan de la Cierva 3, 28006, Madrid, Spain.

@These authors contributed equally to this work.

E-mail: mariajimena.martinez@isistan.unicen.edu.ar

Abstract
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The Ames mutagenicity test constitutes the most frequently used assay to estimate

the mutagenic potential of drug candidates. While this test employs experimental re-

sults using various strains of Salmonella typhimurium, the vast majority of the published

in silico models for predicting mutagenicity do not take into account the test results

of the individual experiments conducted for each strain. Instead, such QSAR models

are generally trained employing overall labels (i.e. mutagenic and non-mutagenic). Re-

cently, neural-based models combined with multi-task learning strategies have yielded

interesting results in different domains, given their capabilities to model multi-target

functions. In this scenario, we propose a novel neural-based QSAR model to predict

mutagenicity that leverages experimental results from different strains involved in the

Ames test by means of a multi-task learning approach. To the best of our knowledge,

the modeling strategy hereby proposed has not been applied to model Ames mutagenic-

ity previously. The results yielded by our model surpass those obtained by single-task

modeling strategies, such as models that predict the overall Ames label or ensemble

models built from individual strains. For reproducibility and accessibility purposes, all

source code and datasets used in our experiments are publicly available.

Introduction

Genotoxicity is a destructive effect affecting the integrity of the genetic material of the

cells and it is an essential requirement when analyzing the safety of drug candidates and

industrial, chemical and environmental samples. The continuous discovery of new chemical

compounds has led to strengthened regulatory measures to assure the safe use of new and

existing substances. The first recommended approach to assess the genotoxic risk is the Ames

test, which allows the assessment of the mutagenic potential of chemical compounds.1,2 The

test is used as a screening method to determine mutagenic potential of substances and also

for regulatory purposes previous to registration and acceptance of these substances.

The Ames test is an in vitro model that consists in the detection of mutations in different
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Salmonella typhimurium strains in the presence of the compound of interest. The principle of

this test is to detect mutations that reverse the necessity of the bacteria to grow in presence

of histidine and restore the functional capability of the bacteria to synthesize this essential

amino acid, and thus be able to grow. The Organisation for Economic Co-operation and

Development (OECD) Guidelines for the Testing of Chemicals3 points out that at least five

strains of bacteria should be used to conduct an Ames test. Four out of these five strains

(TA1535; TA1537 or TA97a or TA97; TA98; and TA100 ) have GC base pairs at the primary

reversion site and it is known that they may not detect certain oxidizing mutagens, cross-

linking agents and hydrazines. Such substances may be detected by E. coli WP2 strains or

S. typhimurium TA102, which have an AT base pair at the primary reversion site. Therefore,

the use of different strains contributes to detect distinct types of mutagens.1

The development of in silico methods for predicting the result of the AMES toxicity

test is an active field of research in computational toxicology4–7 and several articles have

reviewed the most relevant models and software tools for predicting mutagenicity under

different datasets.8–13 However, the impact that different strains used in the Ames test could

have in the design of QSAR (Quantitative Structure Activity Relationship) methods has

been scarcely studied. QSAR models found in the literature are trained using only overall

values (i.e. toxic and non toxic classes) resulting from the Ames test, without considering

the intermediate results achieved by the experiments individually conducted for each strain.

In addition, although the OECD guidelines define a minimum set of strains that must

be present in the in vivo experiments of the Ames test, in practice it is common to find

differences in the strain sets used in toxicity studies and in public datasets.5,14,15 Further-

more, Williams et al. 16 showed evidence that supports the hypothesis that S. typhimurium

strains TA1535, TA1537, TA102, and E. coli strain WP2 uvrA could be removed from the

recommended set of strains in OECD TG471 with little, if any, loss of sensitivity for the

detection of bacterial mutagens. That study also discussed that there is no absolute consen-

sus about a unique way for conducting the Ames test. Therefore, the research question that
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underpins this manuscript is whether it is possible to design in silico models for predicting

mutagenicity by taking into account the unique contribution of each different strain and their

complementarity. Furthermore, we wonder whether it is possible to attain more accurate

and interpretable computational models for mutagenic toxicity tests by this means.

During the last decade, Deep Learning techniques have become the standard for a wide

variety of tasks in the drug discovery pipeline. In particular, Deep Neural Networks (DNNs)

are nowadays among the most used techniques for QSAR modeling.17–19 Some of the reasons

behind this phenomenon include the increasingly large volumes of molecular data available;

the effectiveness of DNNs in learning complex, high-dimensional, nonlinear functions; and

that recent advances on DNNs have made them less prone to overfit and more successful in

complex predictive tasks. One particular technique, namely multi-task learning (MTL),20 has

shown potential in various domains and it is being increasingly explored as a useful strategy

to model multiple targets simultaneously. MTL could potentially yield QSAR models that

predict an arbitrary combination of properties, consisting of regression or classification tasks.

Although the idea behind MTL is not exclusive to Deep Learning, the neural-based approach

for MTL allows to combine the information of the various properties being predicted during

the learning process, thus potentially leveraging their complementarity while exploiting the

information of each individual predictive task.

In this scenario, we propose the design of a QSAR model to predict mutagenicity based

on the individual experiments with several of the most frequently used strains in the Ames

test. This model is based on DNNs and follows an MTL strategy. This strategy predicts each

individual strain as a separate target property while the information of all strains is jointly

learned by the model. The outcomes of this model are afterwards combined by means of a

consensus strategy to recreate the Ames test. Our hypothesis is that an MTL approach would

prompt the model to leverage the complementarity of the different strains while exploiting

their specific predictive traits. To the best of our knowledge, this is the first time that this

approach has been applied to model Ames mutagenicity.

4



The primary research questions we aim to answer are whether it is possible to model

the mutagenicity Ames test by means of a DNN-based model using an MTL approach, and

whether such model entails any benefits with respect to traditional modeling strategies. The

main challenge behind these questions is to effectively model the contribution of the different

strains to an overall Ames result, while enriching their individual modeling process by a joint

learning procedure.

As part of the experimental workflow designed in order to answer these questions, we

propose the analysis of two different settings. First, we seek to analyze if a QSAR model us-

ing an MTL approach can outperform the performance of single-task QSAR models trained

to predict the overall Ames test results. By this analysis, we aim to shed light onto the

benefits of modeling Ames mutagenicity by using information of individual strains instead

of aggregating them into a single overall value, which is the standard practice. Second, we

examine the performance of the MTL approach against a QSAR model for Ames mutagenic-

ity based on QSAR models developed for individual strains following a single-task learning

strategy. This would give insight on whether the modeling process for each individual strain

is influenced by the joint learning process, thus potentially impacting the Ames mutagenicity

prediction. In the following sections we present a thorough review of the literature related to

our research, as well as a detailed description of our experimental workflow and the results

obtained.

Related work

The development of in silico models for predicting the Ames test has become an active re-

search field during the last decades.21 Ames mutagenicity QSAR models can be classified

in two main groups: rule-based and statistical models.10 The rule-based models qualita-

tively predict particular endpoints by matching identified molecular fragments of the un-

seen compounds to structural alerts, i.e., similar structures with well-known adverse effects
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(e.g. mutagenicity). These rules can be obtained from scientific literature and human expert

knowledge, known as human-based rules, or extracted from large collections of datasets,

known as induction-based rules, or by a combination of both approaches.7 Rule-based mod-

els usually lead to a binary output, because structural alerts are either present or absent

in the compounds. Therefore, these rules only provide qualitative predictions of certain

endpoints (e.g. mutagenic or non-mutagenic). In contrast, statistical QSAR models predict

toxicity by analyzing statistical correlations with molecular descriptors. These methods use

experimental data, such as bacterial mutagenicity, in order to train predictive models using

machine learning methods.22 Even though both methodologies have strengths and draw-

backs, statistics-based models tend to yield better perfomances than rule-based models and,

moreover, can compute predictions even when the mechanism of action is unknown.7

These two approaches have led to the development of several QSAR tools. Honma 10

presented a critical review about the most popular QSAR tools for predicting Ames mu-

tagenicity. Most of these tools participated in the Ames/QSAR International Challenge

Project, where a total of 17 QSAR tools were tested by 12 international vendors across three

phases conducted between 2014 and 2017. The final results of this competition were re-

ported by Honma et al.5 In terms of performance, most tools achieved above 50% sensitivity

(positive prediction among all Ames positives) and accuracy was as high as 80%. In that

competition, only one QSAR tool, known as MUT_Risk ,23 considered the individual contri-

butions of different strains for predicting toxicity. MUT_Risk is explained by Honma 10 as

an ADMET Risk™ score that uses ten models created from data on five individual strains

of S. typhimurium or E. coli (strains 98, 100, 97+1537, 1535, 102+wp2 ), with and without

rat liver S9 metabolic activation. For each positive classification produced by each of the

five ±S9 model pairs (i.e. 98 and M98 ), a point is added to a total score. A threshold value

is set by the user to assess positive toxicity. In particular, they presented two threshold sce-

narios during the competition: MUT_Risk-0 judges whether the chemical compounds are

mutagenic when the score is greater than 0, while MUT_Risk-1 judges whether the com-
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pounds are mutagenic when the score is greater than 1. Flexible thresholds allow balancing

the tradeoff between sensitivity and specificity according to each application. Nevertheless,

the performance of this approach in terms of balanced accuracy and Matthew’s correlation

coefficient was low in comparison with the other competing QSAR tools.5

Beyond the QSAR tools presented in the Ames/QSAR International Challenge Project,

several efforts for improving the performance of QSAR models for toxicity emerged under

the advent of Deep Learning.24 The interest in these technologies has been increasing in the

last few years since the availability of large and complex datasets for QSAR analysis. In

particular, a variety of such models have been developed using an MTL approach, which we

cover in this section.

Regarding toxicity prediction, Tang et al. 25 presented a brief review that included several

MTL-based QSAR models trained to predict different types of toxicity. Mayr et al. 26 con-

structed an MTL-based toxicity prediction model using a large dataset from the 2014 Tox21

data challenge.27 In this challenge, 12,707 chemicals were tested for 12 different toxicity ef-

fects, including stress response and nuclear receptor effects, where most of the compounds

were labeled for several tasks. The authors compared the performance of single-task and

multi-task DNN models on the Tox21 leaderboard set. Additionally, they also computed

a linear SVM for every single task. Multi-task models achieved higher performance than

single-task models and SVM models in 10 out of the 12 toxicity predictions. Nevertheless,

for a strong imbalanced dataset that included only three positive compounds, both the single-

task models and the multi-task models failed. This illustrated how a strong imbalanced data

distribution may affect the performance of deep learning models.

Hughes et al. 28 proposed a multi-task learning model that can predict chemicals re-

activity of molecules with glutathione (GSH), cyanides, deoxyribonucleic acid (DNA) and

proteins. The identification of these kinds of chemical reactions plays a central role in the de-

tection of common mechanisms underlying many types of drug toxicities. For building their

predictive model, they collected 1364 electrophilic molecules reactive with GSH, cyanides,
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DNA or proteins and 1439 nonreactive molecules from the Accelrys Metabolite Database

(AMD).29 Over 200 topological descriptors were employed to build the predictive model.

The authors hypothesized that modeling several types of reactivity jointly in an MTL model

would improve predictions on the smaller datasets. Indeed, the MTL models outperformed

the individual modeling approaches at predicting cyanide and protein sites of reactivity.

They concluded that the high performance attained by their MTL model for such tasks is

likely due to the challenges these particular tasks entail, such as small and diverse datasets,

therefore benefiting from an MTL approach.

Finally, Wu and Wei 30 evaluated multi-task models in a newly proposed set of molec-

ular descriptors, namely the element specific topological descriptors (ESTDs). ESTDs are

constructed via element specific persistent homology (ESPH) for quantitative toxicity anal-

ysis and prediction of small molecules. The authors experimented with multi-task DNNs,

single-task DNNs, random forest, and gradient boosting decision trees, to construct topolog-

ical learning strategies for predicting toxicity. Four benchmark toxicity datasets involving

quantitative measurements were used to validate the proposed approaches. The MTL mod-

eling strategy yielded the best performances, which the authors attributed to the inherent

correlation among the different quantitative toxicity endpoints.

Although none of the published articles was aimed at predicting the Ames test using

an MTL model, they allowed us to positively assess the capacity of MTL DNNs to model

several toxicity tasks. In this scenario, we propose to explore an MTL strategy applied to a

DNN to model the Ames mutagenicity test by means of integrating information of individual

S. typhimurium.

Materials and methods

In this section we present a detailed description of our experimental setup and the data

preprocessing stage. We describe the architecture of the model herein proposed, as well as
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its training and evaluation process. All data and source code used and developed for this

paper can be found in the Supporting Information.

Data preprocessing

In order to conduct our experiments we used the ISSSTY v1-a dataset,31 which contains

publicly available data of in vitro mutagenicity in Salmonella typhimurium (Ames test) for

7367 compounds.32 The dataset was collected and curated by the Istituto Superiore di Sanita’

(ISS) and comprises information about the outcome of the Ames test in a wide variety of

S. typhimurium strains with and without metabolic activation. In addition, it includes an

Overall mutagenicity mark for each tested compound with regard to its outcome from all

available strains. A compound is marked as mutagenic or positive when it exhibited positive

results for at least one strain, regardless of the specific strain and regardless of whether

or not it was under metabolic activation. A compound is marked as non-mutagenic or

negative if two conditions are met: (i) no positive or equivocal results are obtained in any

of the tested strains and (ii) the compound tested negative for at least one strain among

TA1535, TA100 and TA97, and at least one strain among TA1538, TA98 and TA1537,

with and without metabolic activation.33 Compounds can also be marked as equivocal, if no

strain yielded positive results and there is at least one equivocal result in any strains; or as

inconclusive, if not enough experimental data is provided to support one of the previously

described markings.

The initially retrieved 7367 compounds from ISSSTY dataset were screened and sanitized

prior to their use for model generation. We first discarded those compounds having an

inconclusive Overall marking in the dataset, since no information about their mutagenicity

was available for the subsequent Ames modeling task. From the remaining compounds,

mixtures, polymers and metals were excluded. The database was processed using LigPrep34

software implemented on the Maestro Suite,35 removing counterions, ionizing the ligands at

pH 7.2. Stereoisomers (enantiomers R/S, diastereomers, cis/trans isomers) were considered,
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with each compound being defined according to its isomeric form(see SMILES in the dataset).

After this sanitization process, all SMILES strings were canonicalized using RDKit36 and

duplicates among the canonical SMILES were also removed. As a result of this sanitization

process, we obtained 6445 compounds. Subsequently, we computed 0D, 1D, and 2D molecular

descriptors for the compounds using Mordred37 Those descriptors with more than 60% of

missing values were eliminated, which yielded 1360 descriptors per compound. Then, all the

remaining missing values were replaced by the mean value of the descriptor and constant

values were removed.

After the sanitization process, we proceeded to analyze the labels in the ISSSTY dataset

in order to prepare it for the modeling stage. We first aggregated all labels corresponding to

variations of a same strain (i.e., different metabolic activations) into a single label for that

strain. We computed labels for strains TA98, TA100, TA102, TA1535 and TA1537 ,

following the standard OECD-five: TA98, TA100, TA1535, TA1537 (or TA97 ) and E.

coli (or TA102 ).3 As a result, we obtained a dataset comprising 6445 compounds and five

labels per compound, each corresponding to a different strain. Following the labeling criteria

established at the creation of the ISSSTY dataset,33 these labels could be either positive,

negative, equivocal, inconclusive or missing. It is worth noting that, at this point of the data

preprocessing stage, those compounds with an inconclusive label in a certain strain would

necessarily have a different label in at least one other strain.

Afterwards, we changed all inconclusive and equivocal labels throughout all strains to a

new label: undefined. The reason behind this step is that, while inconclusive and equivocal

labels do not provide meaningful information for predicting Ames mutagenicity, they are

treated equally. Compounds having an undefined label in one or more strains, but having

either positive or negative labels in the remaining strains, would still be considered during

training of the MTL model. After this step, a few compounds having undefined labels for all

strains in the dataset were removed, resulting in a final dataset of 5536 compounds, which we
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made publicly available.∗ The strain and label distribution for our dataset are summarized

in Table 1.

Finally, we computed an Overall label which aggregates the labels of the five strains. The

criteria used to compute this aggregation, henceforth dubbed ground-truth labeling criteria,

is the following:

• a compound is labeled positive if any of the strains marks it as positive (mutagenic);

• negative, if all of the strains mark it as negative (non-mutagenic), and

• undefined, if none of the strains exhibit a positive label and at least one of them has

an undefined label.

Table 1: Summary of the contents of the dataset used in our experiments, including the class
imbalance ratios (% positive instances).

Strain # Compounds Positive / Negative (% Positive)
TA98 4.854 1.676 / 3.178 (34.53%)
TA100 5.366 2.096 / 3.270 (39.06%)
TA102 975 226 / 749 (23.18%)
TA1535 2.657 436 / 2.221 (16.41%)
TA1537 2.229 365 / 1.864 (16.38%)
Overall 3.334 3103 / 231 (93.07%)

Model architecture

In order to answer our research questions, we designed a QSAR model that predicts Ames

mutagenicity based on experimental data of individual S. typhimurium strains. As previously

stated, our QSAR model is based on Deep Neural Networks (DNNs) and it was developed

following a multi-task learning (MTL) strategy. In our scenario, the purpose of the MTL

model is to learn to predict the mutagenicity test results of each individual strain based on

the dataset previously described, while at the same time it aims to jointly learn the traits

that make such strains complementary or correlated by means of a shared core of weights.
∗https://data.mendeley.com/datasets/ktc6gbfsbh
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In order to attain such a model, we treated the mutagenicity test results of each strain as

a separate predictive target. We employed an MTL DNN architecture that roughly consists

of two connected DNN cores: (i) a shared core consisting of one feed-forward DNN whose

weights and activation functions are shared for all targets, and (ii) a target-specific core

consisting of five individual sets of fully connected neural layers, one set for each target,

where the targets are the strains involved in the modeling process: TA98, TA100, TA102,

TA1535 and TA1537. The outcome of the shared core feeds the target-specific core, as

it can be seen in Figure 1 (a). The weights of the shared core are learned by iteratively

optimizing all five predictive tasks at once, so the first layers of the architecture are trained

by combining information of all five strains. The target-specific core comprises the output

of the architecture, so our MTL model has five outputs, one per each target or strain.

The target values to be predicted by the MTL model correspond to the labels of each

of the five strains being considered, which can be positive (1), negative (0) or undefined

(-1). The undefined labels were masked during the training process; as a result, a compound

having an undefined label in a certain strain would have no impact in the computation of the

loss function during the training process of that target. The outputs of the MTL model are

finally aggregated through a consensus strategy that computes the Ames test prediction. This

resulting model, depicted in Figure 1(a), is hereafter called MTL-DNNCons. The Overall

labels were used to evaluate the performance of MTL-DNNCons, which were computed by

means of the ground-truth labeling criteria previously described. Finally, as a means to

establish a fair comparison with other approaches to model Ames mutagenicity, we also

provide experimental results for three other models. First, we used a single-task DNN-based

model, as shown in Figure 1(b), that is trained to predict such Overall labels, namely STL-

DNNOverall. Second, a Random Forest baseline model, namely RFOverall, also for the Overall

target. Finally, a consensus model based in single-task DNN-based models for the individual

strains, namely STL-DNNCons depicted in Figure 1(c). All our DNN-based models were

built and developed using Keras and Tensorflow,38 whereas the performance analysis was
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Figure 1: Overview of the three neural models for predicting Ames in this work. (a) Our
newly proposed MTL architecture. Each target corresponds to a strain (TA98, TA100,
TA102, TA1535 and TA1537 ). The architecture consists of two connected DNN cores:
(i) a shared core for all strains and (ii) a target-specific core with individual sets of fully-
connected layers for each strain. (b) Single-task architecture for overall Ames mutagenicity
test prediction. (c) Single-task architectures to model each strain experiment.

conducted using Scikit-Learn.39

Experimental design

Our experimental workflow consisted of several steps to ensure reproducibility and fairness

during model generation and evaluation. An overview of our experimental design can be
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found in Figure 2. The first step in our experimental workflow consisted of a hyperparameter

grid search, i.e., a preliminary search in which we tried different hyperparameters in order

to select those that yielded the best performance. This process was carried out both for

our newly proposed MTL-DNNCons model, as well as for the STL-DNNOverall, STL-DNNCons

and RFOverall baselines models. Since the grid search stage is supposed to help find the

best hyperparameter combination and, therefore, can potentially entail a large number of

experiments, we conducted such a search by splitting the dataset in fixed partitions: 70% for

training, 10% for internal validation and 20% for external validation, which was preserved

until the final evaluation stages. We employed different random initialization seeds for each

run in the grid search. The grid search stage corresponds to Figure 2(a).

Among the hyperparameters tested for our DNN-based models during the grid

search, we randomly varied the L2 regularization coefficient λ ∈ {0.001, 0.005, 0.01},

the architecture of the shared core in terms of number of units per layer n ∈

{(100, 50, 10, 5), (100, 50, 20, 10), (200, 100, 50, 10), (200, 100, 20, 10), (200, 100, 10, 5)} and the

architecture of the target-specific core in terms of its number of layers s ∈ {0, 1, 2}, where

the number of units per layer matched the number of units in the last s layers of the shared

core. We also tested the impact of using weighed cost functions during training, such that

the model loss was adjusted with a weight computed based on the class imbalance. Since the

class imbalance scenarios might be different for each strain, different weights were applied

to each set of fully-connected layers in the target-specific core. This technique, however, did

not yield better results than applying no weighed cost function in any of the models. Other

hyperparameters, such as the activation functions, the batch size and the learning rate, were

varied during preliminary experiments but they showed negligible effects on the learning

process, and thus were fixed further on the grid search. In the case of the RFOverall baseline

model, we varied the number of estimators n_estimators ∈ {100, 500, 700, 1000}, the max-

imum depth of the trees in the forest max_depth ∈ {5, 10, 15}, and we also analyzed the

impact of class weights in order to counteract the effects of class imbalance during training.
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Figure 2: Overview of the experimental design. Fixed partitions were used and 20% of the
data was held out for external validation (a) Random grid search was used to evaluate the
different combinations of hyperparameters. As a result, a single combination of hyperpa-
rameters values was selected. (b) A repeated 5-fold cross validation was performed with 10
random seeds, where the best performing seed is chosen. This yields five models correspond-
ing to each iteration of the cross-validation process (c) Each of the five models obtained from
the cross-validation process were evaluated with the external validation data partition. The
predictions for each strain (MTL-DNN98, MTL-DNN100, MTL-DNN102, MTL-DNN1535, and
MTL-DNN1537) were obtained and aggregated through a consensus strategy to obtain the
final predictive value of the Ames Mutagenicity test.

As a result of the grid search stage, we selected the hyperparameter combination that

yielded the top results. This resulted in one MTL-DNN model, two STL-DNN model, and

one for Random Forest. Full details on the parameterization of these models can be found in

the Supporting Information. From these parameterizations, we conducted a five-fold cross

validation training stage, by merging the train and the internal validation splits to compute

the folds. We used the same five folds for each model and we conducted ten replications

of each experiment using different random initialization seeds, in order to ensure that the

performance observed was not bound to inherent variance in the data partitions or to the

initialization of the model weights. This stage is illustrated in Figure 2(b). The five-fold

cross validation stage yielded 5 × 10 = 50 trained models for each architecture. We then

computed the average performance on the internal validation of each model along with their

95% confidence intervals for each of the ten different random initialization seeds. We selected

the five instances corresponding to the best performing random initialization for each model.
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Finally, we computed the outcomes of the external validation split of the dataset on these

instances.

While the STL-DNNOverall model yielded one outcome per compound, the MTL-DNNCons

model yielded five different outcomes, one per strain. For this reason, the final stage of our

experimental workflow is the consensus evaluation in the MTL-DNNCons model. Based on

the five outcomes of the MTL model, as shown in Figure 2(a), we computed the predicted

consensus value for each compound in the external validation set, following the same criteria

used to compute the Overall labels. The final evaluation was performed by comparing such

predictions, as well as the MTL-DNNCons model predictions, with the Overall labels.

In addition to this experimental workflow, we built and trained a set of five single-task

DNN models, one per each strain. Such models were afterwards combined by means of a

consensus strategy, yielding the STL-DNNCons model. For the development of these models,

we followed all steps described previously, including the hyperparameter grid search and

the five-fold cross validation stage, and trained them using the individual strain labels as

ground truth. The purpose of these models was to provide a means to evaluate the impact of

combining the information of individual strains by means of a multi-task learning approach

compared to multiple single-task learning models for the same strains.

Results and discussion

In this section, we present a discussion of the results obtained from our experimental design.

We analyze different comparison scenarios of the models shown in Figure 1 to answer the

research questions proposed in this work.

The performance of our models was evaluated by seven metrics: Sensitivity (Sn), Speci-

ficity (Sp), Precision, Accuracy (Acc), Balanced Accuracy (BAcc), F1 score, H1 score, and

Matthews Correlation Coefficient (MCC). Sn and Sp measure the ability of the model to

detect mutagenic and non-mutagenic compounds, respectively. Precision indicates the pro-
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portion of mutagenic compounds that were correctly predicted. Acc measures the percentage

of accurate predictions. BAcc is the arithmetic mean of Sn and Sp. F1 score is the harmonic

mean of Sn and Precision, and H1 score is the harmonic mean of Sn and Sp. MCC is a

quality measure of a binary classifier where a value close to 1 indicates that both classes are

correctly predicted. We focus on F1 score and H1 score for model selection.

As explained in Figure 2(b), five models were selected from the five-fold cross validation

stage corresponding to the best results after different random initialization. The perfor-

mances reported in this section correspond to the average results of those five models on the

external validation set and their 95% confidence intervals. For evaluation, we did not take

into account those compounds having an undefined label in either the MTL consensus model

or the Overall model for the evaluation. Tables with the results for each fold can be found

in the Supporting Information.

We first focused on evaluating whether an MTL QSAR model could better capture the

contributions of the different strains than a QSAR model trained to predict the overall Ames

test results. In addition, a question that naturally arises is whether an MTL model could

more efficiently harness shared information between strains to model the Ames test compared

to modeling each strain individually with a single-task architecture. For this analysis, we

compare the performances of our newly proposed MTL-DNNCons model (Figure 1(a)) with

the performances of the STL-DNNOverall and STL-DNNCons models (Figures 1(b) and (c),

respectively). Moreover, we also report the performance of the RFOverall model obtained with

Random Forest as a baseline for the Overall label.

The performances reported in Table 2 were calculated using the Overall labels as ground

truth, and they show that theMTL-DNNCons model surpassed the results yielded by the STL-

DNNOverall model and the STL-DNNCons model. In general, it can be seen that the three

models present high Sn and Precision values, thus correctly detecting a high proportion of

the mutagenic compounds. However, a significant difference is observed in the Sp metric, i.e.,

the ability of the models to detect non-mutagenic compounds. In this sense, the consensus
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Table 2: Average results on the external validation set for MTL-DNNCons, STL-DNNOverall,
STL-DNNCons, and RFOverall along with their corresponding confidence intervals at 95%.
These results were computed by evaluating the external validation set on the five trained
trials resulting from the five-fold cross validation stage of our experimental workflow. As
it can be seen from the best results highlighted in bold, our proposed model significantly
surpass single-task learning strategies.

Sp Sn Precision Acc BAcc F1 score H1 score MCC
MTL-DNNCons 0.86± 0.04 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.93± 0.02 0.99± 0.00 0.92± 0.02 0.89± 0.03

STL-DNNCons 0.72± 0.04 0.99± 0.00 0.98± 0.00 0.98± 0.00 0.86± 0.02 0.99± 0.00 0.84± 0.02 0.82± 0.03
STL-DNNOverall 0.43± 0.06 0.99± 0.00 0.96± 0.00 0.95± 0.00 0.71± 0.03 0.98± 0.00 0.60± 0.06 0.60± 0.04

RFOverall 0.60± 0.04 0.91± 0.01 0.97± 0.00 0.90± 0.01 0.76± 0.02 0.94± 0.01 0.73± 0.03 0.39± 0.02

model MTL-DNNCons yielded the highest Sp value of 0.86. In contrast, the STL-DNNOverall

model obtained an average Sp value of 0.43. Considering that the mutagenic compounds

constitute the majority class, this phenomenon might indicate that the strong class imbalance

scenario presented by the dataset constitutes an additional challenge for the learning process

of the STL-DNNOverall model, which is based on a single overall value.

STL-DNNCons also exhibits lower performance than MTL-DNNCons in terms of Sp, with

an average value of 0.72. In this sense, it can be seen that the consensus from individual

strain models is leaving out relevant information for detecting non-mutagenic compounds

that can be effectively captured in an MTL learning approach. It is worth noticing that

the STL-DNNCons model outperformed the STL-DNNOverall model, suggesting that taking

into consideration the information provided by the individual strains might have a positive

impact in the performance in contrast to modeling an overall value. Since BAcc and H1 score

evaluate the ability of the model to properly perform in imbalanced scenarios, low Sp values

have an impact on those metrics as well. Finally, the RFOverall baselines models exhibited

lower performance with respect to MTL-DNNCons model.

We also analyzed the performances of the individual models per strain shown in Figure

1(c) in order to determine whether an MTL approach would potentially entail any benefits

with respect to modeling Ames mutagenicity by means of individual models for each strain.

In this sense, we conducted a comparison of the results obtained by the MTL-DNN and

STL-DDN architectures on each strain using the individual strain labels as ground truth.
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As it can be seen in Table 3, there are no significant differences in the performance yielded

by the outputs of the MTL-DNN architecture and the individual STL-DNN models.

Table 3: Prediction metrics obtained by theMTL-DNN and STL-DDN architectures on each
of the five strains involved in the modeling process. In most cases, there are no significant
differences between the outcomes of the MTL-DNN model and the individual STL-DNN
models.

Sp Sn Precision Acc BAcc F1 score H1 score MCC

TA98 STL-DNN98 0.85 ± 0.01 0.82 ± 0.01 0.78 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.80 ± 0.01 0.83 ± 0.01 0.66 ± 0.01
MTL-DNN98 0.85 ± 0.01 0.81 ± 0.01 0.78 ± 0.01 0.84 ± 0.00 0.83 ± 0.00 0.80 ± 0.00 0.83 ± 0.00 0.66 ± 0.01

TA100 STL-DNN100 0.83 ± 0.02 0.76 ± 0.04 0.78 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.77 ± 0.01 0.79 ± 0.01 0.59 ± 0.01
MTL-DNN100 0.81 ± 0.02 0.77 ± 0.01 0.77 ± 0.01 0.79 ± 0.00 0.79 ± 0.00 0.77 ± 0.00 0.79 ± 0.00 0.58 ± 0.01

TA102 STL-DNN102 0.82 ± 0.03 0.53 ± 0.04 0.52 ± 0.02 0.75 ± 0.01 0.68 ± 0.01 0.52 ± 0.02 0.64 ± 0.03 0.35 ± 0.02
MTL-DNN102 0.79 ± 0.03 0.55 ± 0.04 0.49 ± 0.04 0.73 ± 0.02 0.67 ± 0.02 0.52 ± 0.03 0.65 ± 0.03 0.33 ± 0.05

TA1535 STL-DNN1535 0.94 ± 0.02 0.57 ± 0.02 0.66 ± 0.06 0.88 ± 0.01 0.76 ± 0.01 0.61 ± 0.03 0.71 ± 0.01 0.54 ± 0.04
MTL-DNN1535 0.93 ± 0.01 0.59 ± 0.02 0.61 ± 0.04 0.87 ± 0.01 0.76 ± 0.02 0.60 ± 0.03 0.72 ± 0.02 0.52 ± 0.04

TA1537 STL-DNN1537 0.94 ± 0.01 0.79 ± 0.01 0.71 ± 0.03 0.91 ± 0.01 0.86 ± 0.01 0.75 ± 0.01 0.85 ± 0.01 0.70 ± 0.02
MTL-DNN1537 0.93 ± 0.01 0.78 ± 0.02 0.68 ± 0.02 0.90 ± 0.01 0.85 ± 0.01 0.73 ± 0.01 0.85 ± 0.01 0.67 ± 0.02

It is interesting to note that despite there are no major differences in the prediction

performances for the methods and strains reported in Table 3, the MTL architecture (MTL-

DNNCons) exhibits a much higher overall prediction performance than the STL counterpart

for most metrics (Table 2). This is specially the case for specificity (Sp), which indicates a

high false positive ratio when STL-DNNCons is used. From the ground-truth labeling criteria

used in the consensus, an underperforming model associated to a strain may lead to false

positives in the overall predicted label for the Ames test. Strains that present class imbalance

or lack of data are likely to negatively affect the predictive performance. For instance, this is

the case of strain TA102, which has the lowest number of labeled compounds of the dataset

(Table 1). However, an MTL approach is more robust to scenarios with little data or class

imbalance, as the shared core is trained jointly from data coming from multiple strains.

Additionally, we conducted an analysis of the results reported by the participants in

the Ames/QSAR International Challenge Project5,10 with the purpose of summarizing the

performances obtained for these single-task models. Since the dataset used in the chal-

lenge is not publicly available for use with our methodology, we compiled such results in a

supplementary table named Table S1 (see Supporting Information section), that shows the
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performance metrics corresponding to the final phase of the competition (Phase III) for each

of the QSAR tools.5 The F1 and H1 scores were calculated from the information available

in that publication, as they were not provided in the original paper. Since the datasets and

the setup of the experimental evaluation applied in this work are not the same as those

used in the competition, performances shown in the Table S1 are not directly comparable

with the values reported in Table 2. In general, the competing models correctly classify

non-mutagenic compounds in a proportion similar to that obtained by the MTL-DNNCons

model (Sp). However, a significant decline is observed in the abilities to detect mutagenic

compounds (Sn) for most of the models. Such low performance in terms of Sn is also related

to the differences observed in the remaining metrics. It is noteworthy that many of the

competing models display a bias towards one of the two classes (positive/negative), whereas

our proposed model MTL-DNNCons attains good results for both classes even in a highly

imbalanced scenario. For this reason, and despite the differences in terms of experimental

design and data partitions between the competing models in Table S1 and ours, we argue

that the multi-task learning approach adopted in the development of our proposal favors a

balanced and accurate prediction of both mutagenic and not mutagenic compounds.

To the best of our knowledge, this is the first work that presents an MTL approach

to model Ames mutagenicity. The results obtained show that the modeling of Ames muta-

genicity applying a consensus strategy from an MTL model surpasses the modeling strategies

from overall labels commonly found in the literature. In addition, our approach also outper-

forms the consensus strategy based on individual single-task models by strains. These results

further confirm the feasibility of applying MTL approaches for the test Ames modeling.

In terms of interpretability, deep learning models are considered black boxes because

their behavior cannot be directly understood and interpreted by humans. In this sense, our

final model does not provide an interpretation to understand the reason that a compound is

predicted as mutagenic or not. Despite this, if a compound is detected as mutagenic by the

MTL-DNNCons model, it is possible to know the prediction values of each of the five strains,
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which provides additional information that contributes to the interpretability of the Ames

mutagenicity results.

Conclusions

The Ames test is one of the most popularly used methods to detect mutagenicity. Currently,

the development of in silico models for the prediction of mutagenicity is an active research

field. The QSAR models found in the literature generally use overall labels (mutagenic

and non-mutagenic) without considering intermediate results obtained individually for each

strain. These models usually exhibit imbalanced performance issues in terms of sensitivity

(Sn), i.e., the true positive rate, and specificity (Sn), i.e., the true negative rate. For drug

discovery, as well as for food and environmental regulations, QSAR models that predict

mutagenicity with high sensitivity and specificity are essential, due to the time, costs, and

risks involved.

We proposed a novel model for the Ames test using a deep learning MTL approach using

experimental information from five strains: TA98, TA100, TA102, TA1535, and TA1537.

This approach allows each strain to be predicted separately while the information shared by

all strains is learned jointly by the model. Consequently, the Ames test prediction is obtained

by aggregating the model outputs corresponding to each strain. To the best of our knowledge,

this MTL approach has not been previously applied to Ames test modeling. We contrasted

the results obtained with a single-task model that predicts mutagenicity using overall labels

and with individual single-task models for each strain and their ensemble model.

The results obtained by our MTL model surpass those obtained by the single-task models,

i.e., those that predict the Overall label of the Ames test, and those that model mutagenicity

by an ensemble of individual strain models. Our MTL approach presents balanced values

of Sn and Sp, which means that it is able to accurately detect both mutagenic and non-

mutagenic compounds. These results support our hypothesis that multi-task learning is
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beneficial for QSAR modeling given that it allows learning in an environment with little

information and class imbalance without negatively affecting the prediction performance.

Finally, it is worth emphasizing once again that multi-task modeling, compared to approaches

that only infer the overall value, entails the additional benefit of providing a prediction for

each strain, which favors the interpretability of mutagenicity prediction of a compound. All

data and scripts are made publicly available in order to enable reuse and reproducibility of

our experiments.

Supporting Information

We provide all the intermediate results of our experimental workflow, including the grid selec-

tion stage and the five-fold cross validation stage results, and also the predicted values of the

neural models for cross validation and external validation. This information can be found in

the supplementary files. Finally, we provide an appendix (Supporting_information.pdf),

which contains parameterization details of the models and the results of the final phase of

the competition (Table S1) for each of the QSAR tools that participated in the Ames/QSAR

International Challenge Project.5,10

Data and Software Availability

As a means to ensure the reproducibility of our experimental workflow, all the source code

can be found in our GitHub repository: https://github.com/VirginiaSabando/MTL_DNN_

Ames. The dataset has also been made publicly available in Mendeley Data repository:

https://data.mendeley.com/datasets/ktc6gbfsbh.
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