
Self-focusing virtual screening with active design

space pruning

David E. Graff,†,‡ Matteo Aldeghi,‡ Joseph A. Morrone,¶ Kirk E. Jordan,§

Edward O. Pyzer-Knapp,‖ and Connor W. Coley∗,‡,⊥

†Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA

02138

‡Department of Chemical Engineering, MIT, Cambridge, MA 02142

¶Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown

Heights, NY 10594

§IBM Thomas J. Watson Research Center, Cambridge, Massachusetts 02142

‖IBM Research Europe, Daresbury, U.K.

⊥Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA

02142

E-mail: ccoley@mit.edu

Abstract

High-throughput virtual screening is an indispensable technique utilized in the dis-

covery of small molecules. In cases where the library of molecules is exceedingly large,

the cost of an exhaustive virtual screen may be prohibitive. Model-guided optimization

has been employed to lower these costs through dramatic increases in sample efficiency

compared to random selection. However, these techniques introduce new costs to the

workflow through the surrogate model training and inference steps. In this study, we

propose an extension to the framework of model-guided optimization that mitigates

1

ar
X

iv
:2

20
5.

01
75

3v
1

 [
q-

bi
o.

Q
M

]
 3

 M
ay

 2
02

2

ccoley@mit.edu

inferences costs using a technique we refer to as design space pruning (DSP), which

irreversibly removes poor-performing candidates from consideration. We study the ap-

plication of DSP to a variety of optimization tasks and observe significant reductions

in overhead costs while exhibiting similar performance to the baseline optimization.

DSP represents an attractive extension of model-guided optimization that can limit

overhead costs in optimization settings where these costs are non-negligible relative to

objective costs, such as docking.

Introduction

The discovery of novel molecules and materials is a central problem that cuts across many

domains of science. Broadly, these problems entail the search through a space of possible

candidates (“design space”) for those that achieve or optimize a specified set of properties.

Depending on the context, the search may involve identifying these candidates from a dis-

crete, enumerated library. High-throughput virtual screening (HTVS) is often employed in

these scenarios,1 but the cost of the technique is directly proportional to both the cost of

evaluating a single candidate and the total number of candidates. There is a significant

amount of recent work on HTVS for structure-based drug design (SBDD) using computa-

tional docking to screen ultra-large chemical libraries exceeding one hundred million or even

one billion compounds.2–5

Though compounds identified through docking may lead to experimentally-validated

binders,2,3 brute-force screens of these magnitudes require a substantial commitment of com-

putational resources. For example, it took Gorgulla et al. 475 CPU-years to screen 1.4B

compounds using QVina2,6 which at the time of publication represented all compounds in

the Enamine REAL and Zinc databases. The Enamine REAL database alone now contains

more than 21B compounds,7 so exhaustively screening it would consume over 7000 CPU-

years worth of resources (assuming the same screening protocol). Moreover, this effort would

be limited to targeting a single active site on one receptor, meaning that each new target

2

Figure 1: Overview of Bayesian optimization with design space pruning. A. High level view
of the virtual screening workflow where compounds are iteratively docked or pruned from
the virtual library at each iteration of the optimization loop (grey circle). B. Depiction of a
single iteration of the optimization loop. C. Graphical depiction of the pruning step in the
optimization loop.

would require another 7000 CPU-years worth of resources.

An alternative molecular discovery approach to virtual screening is de novo design.8,9 In

this approach, the chemical space is defined implicitly and molecules with desired properties

are directly generated rather than identified through a brute-force search.10 Despite the

promising nature of de novo design, pre-enumerated molecular libraries maintain certain

advantages. In particular, synthesizablity remains a challenge in generative models,11 and

even in the case that proposed molecules are synthesizable, sourcing these molecules is a

different challenge. In contrast, searching within a well-defined library, such as catalogs

from commercial vendors, reasonably guarantees the availability of a selected compound.

Model-guided optimization strategies enable the efficient search within these predefined

libraries. Bayesian optimization (BO) is one such technique that operates by fitting a sur-

rogate machine learning model to observed data and then using this surrogate model to

3

guide the selection of subsequent experiments. Broadly, BO operates via (1) observing some

initial data, (2) fitting a surrogate model to these data, (3) using the fitted model to select

a new point to observe that maximizes some notion of “acquisition utility”, (4) observing

that point then adding it to the dataset, and (5) repeating steps (2)–(4) for some number

of iterations (Algorithm 1).12 Bayesian optimization has previously been employed in phar-

maceutical discovery,13–16 materials design,17–19 and molecular simulations.20,21 More recent

work has also demonstrated its abilities to reduce the costs of identifying the top-performers

in HTVS.16,22–29

Yet HTVS remains an underexplored setting in Bayesian optimization (BO) due to both

the large and discrete nature of chemical libraries and Gaussian processes (GPs)–the canon-

ical model type used for BO–scaling poorly in both memory and computational time to

such large training and inference sets. The use of alternate surrogate models like random

forests or neural networks addresses these scalability problems, but nevertheless introduces

costs associated with surrogate model training and inference. At each iteration of the opti-

mization in HTVS, the surrogate model must not only be fit to the acquired data but also

predict the performance of all remaining candidate molecules to calculate an updated acqui-

sition utility. When using an oracle function that is relatively inexpensive, such as docking,

these costs cannot be neglected. For example, MolPAL23 spends roughly 9% and 8% of its

total budget on inference and training costs, respectively, for a hypothetical optimization

campaign (Table S2). This is in contrast to the other applications that use experiments or

physics-based simulations as objective functions; the low-data regime of these studies leads

to sample count being the only relevant metric in terms of costs. As vendor catalogs grow

ever larger (the latest Enamine REAL contains approximately 21B compounds7), inference

costs will continue to scale linearly, making even optimization workflows both prohibitively

expensive and practically challenging for these virtual libraries; depending on the batch size

chosen for iterative optimization, the 9% inference costs would grow to occupy an even larger

fraction of the total cost.

4

In this work, we propose an extension to the framework of model-guided optimization

in discrete design spaces to address these challenges. Our approach, design space pruning

(DSP), irreversibly removes subsets of the design space as the optimization proceeds. It

incorporates a theoretically justified pruning strategy with a single hyperparameter that

controls risk aversion to false negatives (i.e., omission of high-performing compounds). In

empirical tests across a wide range of docking tasks, we find that DSP lowers the inference

costs of model-guided optimization by around 50% without significant changes to optimiza-

tion efficiency or performance. These costs savings become more substantial as the size of

virtual libraries used for screening increases.

Approach

A central premise of surrogate model-guided optimization is that the iterative acquisition of

new information leads to improvements in model performance and guides candidate selection

to the best compounds. However, the goals of training a good surrogate and the goals of

an optimization are distinct. It is not necessarily true that the data acquired throughout

a “successful” optimization will lead to a more accurate model. In our experience with

docking-based optimization, we observe that while the model becomes progressively better

at prioritizing molecules with more desirable docking scores, its accuracy with respect to the

overall library changes minimally throughout the optimization (Figures S1 and S2). That

is, molecules that the surrogate model predicts to be poor binders in the first iteration of

the optimization generally remain so in subsequent iterations. The computational cost of

recalculating acquisition utility is essentially wasted on these unpromising compounds.

To address this issue of wasted inference costs, we introduce a strategy we refer to as

design space pruning (DSP). The basic principle of DSP is to irreversibly narrow the design

space at each iteration, allowing our model to actively focus its search on progressively more

promising regions of space. By shrinking the design space, we reduce the the number of

5

inference calls, and thus the cost, of the acquisition function optimization. The aggressiveness

with which compounds predicted to be poor performers are pruned must be a design choice.

Unlike other approaches to discrete optimization where we may have strict upper and lower

bounds with which to compare two options (e.g., in the branch and bound algorithm),30,31

here we merely have predicted values and associated uncertainties according to a surrogate

model.

In the search for the top-k points in a discrete design space, we define a “hit” as a

compound with a score at least as good as the kth best point, which corresponds to a “hit

threshold”, y′. After model training, we predict both the mean, µ̂, and uncertainty, σ̂,

for each point. Analogous to the probability of improvement (PI) acquisition function, we

calculate the cumulative distribution function above y′ of a normal distribution centered at

µ̂ with standard deviation σ̂ and interpret this value as the probability p that the given point

is a hit:

p = Φ
(
µ̂− y′

σ̂

)
(1)

Note that this framing presents the optimization objective as a maximization, but we may

apply Equation 1 to a minimization by subtracting the obtained value from 1. We can

then make a deterministic decision about whether the given point should be kept or pruned

based on the estimated hit probability exceeding some minimum probability threshold, p∗.

In practice, the true hit threshold used in Equation 1 is unknown at runtime, but we may

approximate it using either the kth best observation or the kth best prediction ŷ′. For all

experiments reported in this paper, we set p∗ equal to 0.025 and use the kth best prediction

as our hit threshold. We discuss the implications of using the kth best observation in the 6

section in the supplementary text. Note that this does not consider the correlation between

similar candidates (e.g., similar molecular structures) and treats the predicted scores as

independent normal random variables. When candidates are pruned, they are excluded from

the library in subsequent iterations (Figure 2A).

This algorithm naturally considers the risk of incorrectly pruning a high-performing can-

6

Algorithm 1: Bayesian Optimization with Design Space Pruning. Line 4 (red)
represents the distinction between BO and BO+DSP.

Input: objective function f , acquisition function α, surrogate model f̂ , initial
candidate set X0, hit threshold k, minimum hit probability p∗

1 Initialize dataset by querying objective function at n0 initial points
D0 ← {(xi, f(xi))}n0

1
2 for t← 1, . . . , T do
3 Fit surrogate model f̂ using Dt−1

4 Prune input space Xt ← prune(Xt−1, f̂ , k, p
∗)

5 Select xt ← arg max
x∈Xt

α(x; f̂ , Dt−1)

6 Update dataset Dt ← Dt−1 ∪
{

(xt, f(xt))
}

Result: {xi}k
i=1
∗ := arg max

{xi}k
i=1⊂Dt

∑k
i=1 f(xi)

didate by framing the decision in terms of the probability that a molecule’s score is better

than ŷ′. Because the framework of Bayesian optimization already requires the prediction of

distributions of performance (e.g., means and uncertainties) for each candidate in the design

space, calculating the CDF requires minimal additional computational effort. Making the

pruning decision itself involves setting only one hyperparameter, p∗. The full algorithm of

BO with DSP may be seen in Algorithm 1. Therefore, DSP achieves the following desiderata

of an ideal model-guided optimization algorithm:

i. Control the risk of discarding potentially good molecules.

ii. Allow users to tune the level of risk they are willing to incur with minimal hyperpa-

rameters.

iii. Remain computationally simple without requiring additional predictions beyond Bayesian

optimization

There are some conceptual links between design space pruning and design space parti-

tioning, which is a technique that has emerged in high-dimensional BO to decompose the

original, high-dimensional optimization into a set of low-dimensional optimizations of lower

total complexity than the original problem.32–36 Our approach also shares similar themes

to the branch-and-bound algorithm for solving discrete optimization problems.30,31 At each

7

step of the optimization, we also prune regions of the search space irreversibly; however, un-

like branch-and-bound, we don’t possess strict upper and lower bounds for each candidate,

merely predictions and uncertainties.

The principal motivation of DSP is to lower optimization overhead costs while maintain-

ing overall optimization performance. However, the performance of DSP is bounded by the

performance of an optimization that does not prune any inputs. Thus while we may realize

benefits in terms of lower overhead costs, the overhead costs saved must be worth the risk of

false negatives. Practically, this means that DSP will be useful primarily in settings where

overhead costs are non-negligible relative to objective evaluation costs. Examples of this

include when (1) the design space is discrete but non-combinatorial, requiring prediction

for each individual point at every iteration; (2) the inference costs of the surrogate model

are not negligible, whether due to the per-candidate cost or the size of the library; and (3)

the objective function f(·) is relatively inexpensive (e.g., can be evaluated in 10’s of CPU-

seconds, such as computational docking) so that its costs do not overwhelm model costs. In

settings where objective evaluation costs vastly exceed overhead costs, DSP will provide little

practical benefit. But when the two costs are comparable, such as BO applied to docking

large libraries, DSP can significantly lower the budget expended on non-objective costs as

we demonstrate below.

Results and Discussion

Test oracles

We first evaluate design space pruning (DSP) on a suite of optimization benchmark functions

that are commonly used in the context of continuous optimization. We adapt them to our

setting by discretizing each function into a set of 10 000 points uniformly sampled from the

input domain. Similar to previous work in computational docking optimizations, we frame

the task as retrieval of the top-k points from each surface and collect points in batches of

8

A

objective ()

0 100 200 300
Objective evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 To

p-
10

 Id
en

tif
ie

d

B
BO
BO+DSP
random
size

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

In
pu

t S
pa

ce
 S

ize

0 5 10 15 20 25 30 35 40 45
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 To

p-
10

 P
ru

ne
d

C
0.5 2

1.0 2

2.0 2

Figure 2: Bayesian optimization with pruning on the discretized Michalewicz function. A.
Visualization of design space pruning at the start of the iteration denoted in the upper-left
corner of each panel. Acquired points are circled in black. As candidates are pruned, they
are removed from the scatterplot. B. Bayesian optimization performance as measured by
the fraction of the top-10 points identified (left axis, blue and red traces), and the relative
size of the input space when pruning in the optimization (right axis; green, dotted trace).
Each trace represents the average ± standard error of 100 independent runs. C. Fraction of
the top-10 points pruned as a function of iteration for when model-predicted variances are
scaled up (orange) or down (purple). Each trace represents the average ± standard error of
100 independent runs.

size q. We construct batches naïvely, selecting the top-q points in the input space ranked

by the acquisition function α. Additionally, each point may only be queried once during

the optimization. We perform each optimization by taking 10 points randomly from the

10 000 candidate points and then select points in batches of 10 for either 200 iterations or

until the design space is “exhausted” (i.e., all candidates are either evaluated or pruned).

Each optimization was carried out using a Gaussian process (GP) surrogate model with a

Matérn-5/2 kernel and an upper confidence bound (UCB) acquisition function.

9

Applying DSP to the Michalewicz function, we observe that large regions of the design

space are pruned by the fifth iteration (Figure 2A). By the 30th iteration of this trial, nearly

all of the 10 000-point design space has been pruned or acquired, indicating that termination

of the optimization is imminent. Across the 100 trials, DSP evaluates an average of 325

molecules (minimum of 250 and maximum of 650). In this regime, DSP exhibits nearly

identical average performance to the baseline non-pruning approach and identifies slightly

more than six of the ten optima on average (Figure 2B). DSP aggressively prunes the design

space, with nearly 50% of the design space eliminated by the 15th acquisition (160 objective

evaluations). In turn, this reduces surrogate model inference costs by half, which is further

reduced in subsequent iterations. Extending our analysis to the maximum sample count,

nearly 650 evaluations, DSP finds nearly eight of the ten optima; in contrast, the baseline

approach without pruning goes on to find all ten of the optimal points on average (Figure S3).

This performance trend may also be analyzed in terms of the number of top-10 points

that were (unfortunately) pruned from the design space (Figure 2C, pink trace). Of the 100

independent runs, pruning generally leads to either the identification of all top-10 points

in fewer iterations than the baseline or to the identification of none of the top-10 because

they are pruned prematurely (Figures S4 and S5). A poor random initialization can funnel

the initial search towards a local minimum, leading to a model with enough confidence to

prune the true optimal region. These results underscore the inherent risks associated with

any approach that does not perform an exhaustive search, including the proposed pruning

approach despite its strong performance in the majority of trials.

Pruning behavior is also inherently coupled to the predictive uncertainties of our surrogate

model. Thus, inflating or deflating these uncertainties should lead to under- or over-pruning,

respectively. Multiplying the predicted variance of the GP by 0.5 (deflation) or 2 (inflation)

illustrates the expected trends (Figure 2C). Deflated uncertainties lead to more aggressive

pruning, earlier termination, and lower average performance, with the reverse being true for

inflated uncertainties. High model uncertainty will cause DSP to prune fewer candidates and

10

behave like standard model-guided optimization, whereas overconfident estimates (commonly

observed with ensembling) will lead to over-pruning and early termination.

DSP was tested on seven benchmark functions with a variety of landscape characters

(Figure S3). These results illustrate that DSP produces equal performance to the baseline

optimization, showcasing the generality of this approach, and always decreases cost. Func-

tions with clearly defined optimal regions (e.g., Bukin and Six-Hump Camel) lead to more

aggressive pruning, while those with relatively flat optimal regions (e.g., Beale, Branin, and

Levy) result in more conservative pruning behavior. Exceptions to the general trend of

matching performance are the Drop-Wave and Michalewicz functions, where DSP finds an

average of 50% and 80% of the hits in the design space, respectively, when no limits are

placed on the number of oracle calls. We hypothesize that the periodic nature of the Drop-

Wave function is ill-suited to the Matérn-5/2 kernel used in these experiments. While DSP

exhibits generally strong performance, its performance is doubly sensitive to optimization

hyperparameters due to the natural limit pruning imposes on the oracle budget. Though all

model-guided optimizations are impacted by the choice of hyperparameters, a poor initial-

ization or surrogate model can lead to premature pruning of the optimal region, permanently

bounding the performance of the given trial.

Docking with DOCKSTRING

As docking is an ideal setting for DSP based on the relative costs of inference and acquisition,

we examine the applicability and performance of DSP on 58 docking optimization tasks using

the DOCKSTRING benchmark suite,37 a collection of docking scores of 260k ligands docked

against 58 proteins using AutoDock Vina. We perform retrospective studies on each of the

58 datasets by framing the optimization task as a retrieval of the top-250 (approx. 0.1%)

scores in each dataset. For each optimization, we use a message passing neural network

(MPN) surrogate model and select ligands in batches of 0.4% (approximately 1040 ligands

per batch) according to their ranking by an upper confidence bound acquisition function

11

(β = 2).38

In 57 of the 58 optimization tasks, there is no statistically significant difference between

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Top-250 Scores Found

MAOB
THRB

AR
HSD11B1

NR3C1
GBA

PPARG
F2

HMGCR
NOS1

REN
ACHE
ESR2
DHFR

HSP90AA1
MAPK1

CYP3A4
PGR
SRC

CSF1R
IGF1R
AKT2

PPARA
DPP4

ROCK1
ESR1
MET

PPARD
PARP1
CASP3

MAPK14
CYP2C9

CA2
LCK

BACE1
ADAM17

FGFR1
MAP2K1

PTPN1
DRD3

ADRB2
ADRB1

AKT1
DRD2
CDK2

PTGS2
PLK1
F10

MAPKAPK2
ABL1

PDE5A
KIT

JAK2
KDR

ADORA2A
MMP13

PTK2
EGFR

Figure 3: Bayesian optimization performance on DOCKSTRING tasks using DSP, an MPN
surrogate model, UCB acquisition function, and 0.4% batch size. Each bar indicates the
average fraction of the top-250 compounds found during five independent runs with docking
scores against given target protein as the objective function. Hatched areas indicate the
difference in mean performance of the baseline optimization relative to DSP. The white,
dotted vertical line represents expected performance of a random search. ∗ indicates tar-
gets where optimization without pruning outperforms DSP according to a one-sided t-test,
p−value < 0.05 (Bonferroni corrected).

12

DSP and the baseline without pruning in terms of the fraction of top-250 compounds they

identify after 5 iterations (Figure 3). Only for ABL1 do we observe a decrease in performance,

with DSP identifying 80% of the top-250 versus the nearly 92% found by the baseline. Both

DSP and the baseline perform relatively poorly on the MAOB task. The distribution of

docking scores for MAOB shows many positive docking scores (approx. 4700 of the 260k)

and nearly 20 docking scores above 40 kcal ·mol−1 (Figure S9). The presence of these outlier

molecules may lead to a poor surrogate model fit and a worse ability to effectively prioritize

molecules relative to the top-250 cutoff. Fortunately, because the surrogate model has high

uncertainty for MAOB and other empirically challenging targets (THRB, AR, HDS11B1, and

NR3C1), DSP prunes more conservatively than for the “easier” targets where model-guided

optimization is more successful (Figure S8).

As intended, DSP significantly reduces overhead optimization costs. Analysis of the

cumulative number of inference calls shows that DSP reduces model inference costs by 60-

80% in nearly 90% of the runs (Figure S10). We perform similar experiments using both

a 0.2% batch size for nine batches (approx. 4700 ligands) and a 0.1% batch size for 11

batches (approx. 2900 ligands). For both of these cases, we observe similar trends as above:

DSP massively reduces model inference costs yet achieves a performance that is largely

indistinguishable from the no-pruning baseline (Figures S11-S16).

Large-scale docking

In our previous work applying Bayesian optimization to virtual screening,23 we were able

to identify roughly 90% of the top-50k molecules in a 98.2M member library with 40 times

fewer simulations than brute force screening, but optimization overhead costs (e.g., model

training and inference) required over 15% of the total workflow budget (Table S2).

Similar to the DOCKSTRING tasks, we perform a retrospective study on a 98.2M library

docked against AmpC β-lactamase using Glide SP from Yang et al.,24 framing the task as

a retrieval of the top-10 000 molecules (comparing scores or SMILES strings, as the two are

13

Figure 4: Bayesian Optimization performance on AmpC Glide dataset (98.2M) with an
MPN surrogate model, UCB acquisition function, and 0.4% batch size. The grey shaded
area represents the range of possible sample budgets for individual DSP trials. Each trace
represents the average ± standard deviations of three independent runs.

equivalent in this dataset) according to Yang et al. 24 . Molecules are selected in batches

of 0.4% (approx. 400k molecules) using an MPN surrogate model with a UCB acquisition

function. The optimization was run for either five batches (excluding the initialization batch)

or until the pool of molecules was exhausted.

The performance of DSP and the baseline optimization in this ultra large setting are

nearly identical (Figure 4). After approximately 1.2M evaluations, DSP identifies 66.3%–

69.0% of the top-10 000 molecules compared to the 66.0%–68.8% that the baseline optimiza-

tion identifies. Using our estimates of optimization costs, we calculated the total overhead

cost (Table S2) and find that DSP saves roughly 40% of overhead costs compared to the

baseline approach; in this hypothetical workflow, baseline overheads costs correspond to ap-

proximately $100 of compute on Google Cloud Platform (GCP) whereas DSP costs are only

$60 (Table 1). For more details on how these costs were calculated, see the Optimization

costs section in the supplementary text. This improved efficiency is achieved through DSP’s

progressive lowering of inference costs at each iteration as more and more candidates are

14

Table 1: Optimization overhead costs incurred at the given number of molecules sampled
for both baseline and DSP approaches. Costs are incurred in steps at the given number of
molecules sampled, so any sample count less than 392 906 would have an overhead cost of $0

overhead cost / $

number of molecules sampled baseline DSP

392 906 26.6 26.6
785 812 59.2 39.6

1 178 718 97.9 57.9

pruned.

We further compare our DSP results on the AmpC Glide task against those of Yang et al.,

who also investigated the application of active learning to structure-based virtual screening.

The authors investigated a variety of batch sizes, ranging from 2% to 10% of the total library

per batch, and ran each optimization for five iterations. After two iterations with a 3%

batch size (6.1% total exploration including a 0.1% initialization batch, approximately 6M

molecules), Yang et al. identify roughly 65% of the top-10 000 molecules. In comparison, with

the same number of exploration iterations but only 20% the number of molecules evaluated,

we are able to identify the same number of top-10 000 molecules while at the same time

lowering our inference costs by two thirds (Table 1).

An important element of DSP is its early termination. Model-guided optimization, when

run to completion with an infinite budget, would eventually explore the full design space

and identify 100% of the top-10 000 molecules. However, with a 0.4% batch size, DSP

“exhausts” the design space after exploring only 1.22M–1.24M molecules, i.e., all molecules

are either evaluated or pruned at that point. The early termination of DSP, as expected,

does lead to false negatives at a rate that is tunable through the hyperparameter p∗. Setting

this hyperparameter a priori is a practical challenge, similar to knowing when to stop a

prospective model-guided optimization, . At the time of DSP’s natural termination around

1.2M evaluations, DSP identifies more than 67% of the hits while expending a total compute

budget of $523. Allowing the baseline approach to explore for five full iterations (2.36M

15

evaluations) identifies 82% of the hits at a total cost of $1150.

Of further interest is how DSP impacts the search dynamics during the optimization. Be-

cause it prunes candidates that the surrogate model believes to be poor-performing molecules,

we speculated that certain types of compounds may be more likely to be removed than oth-

ers, i.e., “singleton” compounds that are local optima in the structure-activity landscape.

We cluster the top-10 000 molecules from the AmpC-Glide dataset using directed sphere

exclusion clustering39–41 and analyze the distribution of cluster sizes in this set (Figure S17).

Molecules were represented via 2048-bit Morgan fingerprints of radius 2 and clustered using

a maximum Tanimoto similarity of 0.35. The distribution of cluster sizes reveals one large

cluster with approximately 350 molecules, 292 singleton clusters, and the remaining 9360

molecules residing in clusters of size 2–250 (Figure S17).

Using the definitions above, we analyze the overall AmpC performance in terms of how

both DSP and the baseline optimization explore molecules belonging to the singleton, mid-

sized, or large cluster (Figure S18). Identifying 100% of the top-10 000 molecules would

correspond to identifying 100% of the singleton, mid, and large cluster molecules. Comparing

the rate of recovery for each molecule type by DSP to baseline shows that both approaches

explore the space of the top-10 000 in a roughly equivalent fashion. This is surprising, as one

might expect that DSP would accelerate exploration of molecules in the largest cluster at the

expense of singleton molecules. We believe this is due to the pruning function being almost

identical in form to the probability of improvement acquisition function. Given a list of

candidate molecules ranked by our acquisition function, the optimization will select molecules

from the top of this list while the pruning decision is very likely to remove molecules from the

bottom of this list. For pruning to materially alter the search dynamics of an optimization,

it must prune molecules that would otherwise be selected in subsequent iterations.

16

Conclusions

We propose design space pruning (DSP) as an extension to the framework of surrogate model

guided optimization that lowers the additional costs introduced by the surrogate model in-

ference step. Evaluation of DSP on a variety of tasks demonstrates that (1) its ability to

identify the best-performing candidates is comparable to that of the baseline optimization

and (2) DSP enables significant reductions in overhead costs. This cost consideration is par-

ticularly relevant to the task of high-throughput virtual screening using docking, as surrogate

model costs are not negligible relative to the docking calculation itself. Applying DSP to

an ultra-large docking dataset of 98.2M molecules from Yang et al., we are able to identify

67.7% of the top-10 000 compounds, recapitulating performance of the baseline optimization

while reducing overhead costs by 40%. Our algorithm introduces only one additional hyper-

parameter that allows a user to balance the risk of pruning true actives with the reduction in

inference costs. Additional variants and extensions of this algorithm that could be explored

in future work are discussed in the supporting information.

Materials and Methods

Datasets

Discretized test oracle datasets were generated by drawing 10 000 points uniformly at random

within the bounds of the respective function then evaluating these points with zero noise.

DOCKSTRING data was the full benchmark dataset provided in ref. 37. AmpC-Glide data

was obtained from ref. 24.

Batched Bayesian optimization

The batched Bayesian optimization procedure was the same for both test oracle and docking

datasets. To initialize, n points are selected at random from the discrete design space,

17

evaluated, and added to the dataset. At each iteration, (1) the surrogate model is fit to

all available data, holding out 20% for validation in the case of docking; (2) the trained

surrogate model is then used to predict the objective value and uncertainty for each point in

the design space; (3) the acquisition utility for each point is calculated; (4) the top-q points

ranked by acquisition utility are evaluated with the objective function; (5) the dataset is

updated with these new data; and (6) steps (1)–(5) are repeated.

Pruning When DSP is employed, the design space is pruned between steps (2) and (3)

from above. Using the predicted objective values and uncertainties along with the estimated

hit threshold, the “hit probability” of each point is calculated according to Equation 1. All

points with a calculated value of p less than p∗ are then irreversibly pruned from the design

space. In all experiments, the value of p∗ was set at 0.025.

Surrogate models

Test oracles

The optimizations on the test oracles utilized Gaussian process (GP) model with a Matérn-

5/2 kernel. GP hyperparameters were optimized over 150 epochs using the Adam optimiza-

tion algorithm with a learning rate of 1 · 10−3 and marginal log likelihood loss function. All

code was implemented using the BoTorch package.42

Docking

The docking-based optimizations (both DOCKSTRING and AmpC-Glide) utilized Chemprop,

a message-passing neural network from ref. 43 and 44, as the surrogate model. The model

was used with the following settings: messages passed on directed bonds, ReLU activa-

tion of messages, an encoded dimension of 300, and encoder output fully connected to a

feedforward neural network with a single, 300-dimensional hidden layer connected to a 2-

dimensional output layer. The model was trained over 50 epochs with early stopping using

Adam optimization, a Noam learning rate scheduler (initial, maximum, and final learning

18

rates of 1 · 10−4, 1 · 10−3, and 1 · 10−4, respectively, warming up over two epochs), and MVE

loss from ref. 45. Early stopping tracked the validation loss and had a patience of 10 epochs.

The surrogate model was trained fully from scratch at each iteration of the optimization

with no hyperparameter tuning.

Evaluation

Optimization performance was evaluated as the retrieval of the top-k scores in the design

space. This is similar, in principle, to the top-k molecules but it accounts for the fact that

multiple molecules may have equal scores. This metric is calculated by taking the intersection

of the list of true top-k scores and observed top-k scores divided by k.

Author Contributions

D.E.G. authored the software and performed the experiments. D.E.G. and M.A. designed

the figures. D.E.G., M.A., and C.W.C. conceptualized the idea. D.E.G., M.A., and C.W.C.

wrote the original draft. E.P.K, K.E.J, and C.W.C. supervised the work. All authors con-

tributed to the analysis of results and the final version of the manuscript.

Data and Software Availability

All code needed to reproduce the data in this study and the resulting analysis can be found

at https://github.com/coleygroup/molpal (docking-based oracle functions) and https:

//github.com/coleygroup/dsp (toy oracle functions).

Acknowledgement

The authors thank Wendy Cornell for useful discussions to shape the direction of this work

and for commenting on the manuscript. This work was funded by the MIT-IBM Watson

19

https://github.com/coleygroup/molpal
https://github.com/coleygroup/dsp
https://github.com/coleygroup/dsp

AI Lab. The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercom-

puting Center for providing HPC resources that have contributed to the research results

reported within this paper.

Supporting Information Available

Additional methods and results can be found in the supporting information.

References

(1) Pyzer-Knapp, E. O.; Suh, C.; Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Aspuru-

Guzik, A. What Is High-Throughput Virtual Screening? A Perspective from Organic

Materials Discovery. Annual Review of Materials Research 2015, 45, 195–216.

(2) Lyu, J.; Wang, S.; Balius, T. E.; Singh, I.; Levit, A.; Moroz, Y. S.; O’Meara, M. J.;

Che, T.; Algaa, E.; Tolmachova, K.; Tolmachev, A. A.; Shoichet, B. K.; Roth, B. L.;

Irwin, J. J. Ultra-large library docking for discovering new chemotypes. Nature 2019,

566, 224–229.

(3) Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.-F.; Fischer, P. D.; Coote, P. W.; Pad-

manabha Das, K. M.; Malets, Y. S.; Radchenko, D. S.; Moroz, Y. S.; Scott, D. A.;

Fackeldey, K.; Hoffmann, M.; Iavniuk, I.; Wagner, G.; Arthanari, H. An open-source

drug discovery platform enables ultra-large virtual screens. Nature 2020, 580, 663–668.

(4) Gentile, F.; Fernandez, M.; Ban, F.; Ton, A.-T.; Mslati, H.; Perez, C. F.; Leblanc, E.;

Yaacoub, J. C.; Gleave, J.; Stern, A.; Wong, B.; Jean, F.; Strynadka, N.; Cherkasov, A.

Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by con-

sensus Deep Docking of 40 billion small molecules. Chemical Science 2021, 12, 15960–

15974.

20

(5) Luttens, A. et al. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease

Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the Amer-

ican Chemical Society 2022, 144, 2905–2920.

(6) Alhossary, A.; Handoko, S. D.; Mu, Y.; Kwoh, C.-K. Fast, accurate, and reliable molec-

ular docking with QuickVina 2. Bioinformatics 2015, 31, 2214–2216.

(7) REAL Space - Enamine. https://enamine.net/compound-collections/

real-compounds/real-space-navigator, Accessed 05/03/2022.

(8) Elton, D. C.; Boukouvalas, Z.; Fuge, M. D.; Chung, P. W. Deep learning for molecular

design—a review of the state of the art.Molecular Systems Design & Engineering 2019,

4, 828–849.

(9) Bilodeau, C.; Jin, W.; Jaakkola, T.; Barzilay, R.; Jensen, K. F. Generative models for

molecular discovery: Recent advances and challenges.WIREs Computational Molecular

Science 2022, n/a, e1608.

(10) Coley, C. W. Defining and Exploring Chemical Spaces. Trends in Chemistry 2021, 3,

133–145.

(11) Gao, W.; Coley, C. W. The Synthesizability of Molecules Proposed by Generative

Models. Journal of Chemical Information and Modeling 2020, 60, 5714–5723.

(12) Frazier, P. I. A Tutorial on Bayesian Optimization. arXiv:1807.02811 [cs, math, stat]

2018,

(13) Czechtizky, W.; Dedio, J.; Desai, B.; Dixon, K.; Farrant, E.; Feng, Q.; Morgan, T.;

Parry, D. M.; Ramjee, M. K.; Selway, C. N.; Schmidt, T.; Tarver, G. J.; Wright, A. G.

Integrated Synthesis and Testing of Substituted Xanthine Based DPP4 Inhibitors: Ap-

plication to Drug Discovery. ACS Medicinal Chemistry Letters 2013, 4, 768–772.

21

https://enamine.net/compound-collections/real-compounds/real-space-navigator
https://enamine.net/compound-collections/real-compounds/real-space-navigator

(14) Williams, K.; Bilsland, E.; Sparkes, A.; Aubrey, W.; Young, M.; Soldatova, L. N.;

De Grave, K.; Ramon, J.; de Clare, M.; Sirawaraporn, W.; Oliver, S. G.; King, R. D.

Cheaper faster drug development validated by the repositioning of drugs against ne-

glected tropical diseases. Journal of The Royal Society Interface 2015, 12, 20141289.

(15) Reker, D.; Schneider, G. Active-learning strategies in computer-assisted drug discovery.

Drug Discovery Today 2015, 20, 458–465.

(16) Pyzer-Knapp, E. O. Bayesian optimization for accelerated drug discovery. IBM Journal

of Research and Development 2018, 62, 2:1–2:7.

(17) Yuan, R.; Liu, Z.; Balachandran, P. V.; Xue, D.; Zhou, Y.; Ding, X.; Sun, J.; Xue, D.;

Lookman, T. Accelerated Discovery of Large Electrostrains in BaTiO3-Based Piezo-

electrics Using Active Learning. Advanced Materials 2018, 30, 1702884.

(18) Xue, D.; Balachandran, P. V.; Hogden, J.; Theiler, J.; Xue, D.; Lookman, T. Acceler-

ated search for materials with targeted properties by adaptive design. Nature Commu-

nications 2016, 7, 11241, Number: 1 Publisher: Nature Publishing Group.

(19) Balachandran, P. V.; Xue, D.; Theiler, J.; Hogden, J.; Lookman, T. Adaptive Strategies

for Materials Design using Uncertainties. Scientific Reports 2016, 6, 19660, Number:

1 Publisher: Nature Publishing Group.

(20) Seko, A.; Maekawa, T.; Tsuda, K.; Tanaka, I. Machine learning with systematic density-

functional theory calculations: Application to melting temperatures of single- and

binary-component solids. Physical Review B 2014, 89, 054303.

(21) Seko, A.; Togo, A.; Hayashi, H.; Tsuda, K.; Chaput, L.; Tanaka, I. Prediction

of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-

Dynamics Calculations and Bayesian Optimization. Physical Review Letters 2015, 115,

205901.

22

(22) Gentile, F.; Agrawal, V.; Hsing, M.; Ton, A.-T.; Ban, F.; Norinder, U.; Gleave, M. E.;

Cherkasov, A. Deep Docking: A Deep Learning Platform for Augmentation of Structure

Based Drug Discovery. ACS Central Science 2020, 6, 939–949.

(23) Graff, D. E.; Shakhnovich, E. I.; Coley, C. W. Accelerating high-throughput virtual

screening through molecular pool-based active learning. Chemical Science 2021, 12,

7866–7881.

(24) Yang, Y.; Yao, K.; Repasky, M. P.; Leswing, K.; Abel, R.; Shoichet, B. K.; Jerome, S. V.

Efficient Exploration of Chemical Space with Docking and Deep Learning. Journal of

Chemical Theory and Computation 2021, 17, 7106–7119.

(25) Pyzer-Knapp, E. O. Using Bayesian Optimization to Accelerate Virtual Screen-

ing for the Discovery of Therapeutics Appropriate for Repurposing for COVID-19.

arXiv:2005.07121 [cs, q-bio] 2020,

(26) Ahmed, L.; Georgiev, V.; Capuccini, M.; Toor, S.; Schaal, W.; Laure, E.; Spjuth, O. Ef-

ficient iterative virtual screening with Apache Spark and conformal prediction. Journal

of Cheminformatics 2018, 10, 8.

(27) Svensson, F.; Norinder, U.; Bender, A. Improving Screening Efficiency through Iterative

Screening Using Docking and Conformal Prediction. Journal of Chemical Information

and Modeling 2017, 57, 439–444.

(28) Kalliokoski, T. Machine Learning Boosted Docking (HASTEN): An Open-source Tool

To Accelerate Structure-based Virtual Screening Campaigns. Molecular Informatics

2021, 40, 2100089.

(29) Martin, L. State of the Art Iterative Docking with Logistic Regression and Morgan

Fingerprints. ChemRxiv 2021,

23

(30) Little, J. D. C.; Murty, K. G.; Sweeney, D. W.; Karel, C. An Algorithm for the Traveling

Salesman Problem. Operations Research 1963, 11, 972–989.

(31) Land, A. H.; Doig, A. G. An Automatic Method of Solving Discrete Programming

Problems. Econometrica 1960, 28, 497–520.

(32) Wang, Z.; Gehring, C.; Kohli, P.; Jegelka, S. Batched Large-scale Bayesian Optimiza-

tion in High-dimensional Spaces. arXiv:1706.01445 [cs, math, stat] 2018,

(33) Wang, Z.; Shakibi, B.; Jin, L.; de Freitas, N. Bayesian Multi-Scale Optimistic Opti-

mization. arXiv:1402.7005 [cs, stat] 2014,

(34) Wang, L.; Fonseca, R.; Tian, Y. Learning Search Space Partition for Black-box Opti-

mization using Monte Carlo Tree Search. arXiv:2007.00708 [cs, math, stat] 2020,

(35) Eriksson, D.; Pearce, M.; Gardner, J. R.; Turner, R.; Poloczek, M. Scalable Global

Optimization via Local Bayesian Optimization. arXiv:1910.01739 [cs, stat] 2020,

(36) Groves, M.; Pyzer-Knapp, E. O. Efficient and Scalable Batch Bayesian Optimization

Using K-Means. arXiv:1806.01159 [cs, stat] 2018,

(37) García-Ortegón, M.; Simm, G. N. C.; Tripp, A. J.; Hernández-Lobato, J. M.; Ben-

der, A.; Bacallado, S. DOCKSTRING: easy molecular docking yields better benchmarks

for ligand design. arXiv:2110.15486 [cs, q-bio, stat] 2021,

(38) Srinivas, N.; Krause, A.; Kakade, S. M.; Seeger, M. W. Information-Theoretic Regret

Bounds for Gaussian Process Optimization in the Bandit Setting. IEEE Transactions

on Information Theory 2012, 58, 3250–3265.

(39) Gobbi, A.; Lee, M.-L. DISE: Directed Sphere Exclusion. Journal of Chemical Informa-

tion and Computer Sciences 2003, 43, 317–323.

24

(40) Hudson, B. D.; Hyde, R. M.; Rahr, E.; Wood, J.; Osman, J. Parameter Based Meth-

ods for Compound Selection from Chemical Databases. Quantitative Structure-Activity

Relationships 1996, 15, 285–289.

(41) Butina, D. Unsupervised Data Base Clustering Based on Daylight’s Fingerprint and

Tanimoto Similarity: A Fast and Automated Way To Cluster Small and Large Data

Sets. Journal of Chemical Information and Computer Sciences 1999, 39, 747–750.

(42) Balandat, M.; Karrer, B.; Jiang, D. R.; Daulton, S.; Letham, B.; Wilson, A. G.;

Bakshy, E. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization.

arXiv:1910.06403 [cs, math, stat] 2020,

(43) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.;

Hopper, T.; Kelley, B.; Mathea, M.; Palmer, A.; Settels, V.; Jaakkola, T.; Jensen, K.;

Barzilay, R. Analyzing Learned Molecular Representations for Property Prediction.

Journal of Chemical Information and Modeling 2019, 59, 3370–3388.

(44) Hirschfeld, L.; Swanson, K.; Yang, K.; Barzilay, R.; Coley, C. W. Uncertainty Quantifi-

cation Using Neural Networks for Molecular Property Prediction. Journal of Chemical

Information and Modeling 2020, 60, 3770–3780.

(45) Nix, D. A.; Weigend, A. S. Estimating the mean and variance of the target probability

distribution. Proceedings of 1994 IEEE International Conference on Neural Networks

(ICNN’94). 1994; pp 55–60 vol.1.

25

Supporting Information
Self-focusing virtual screening with active design

space pruning

David E. Graff,†,‡ Matteo Aldeghi,‡ Joseph A. Morrone,¶ Kirk E. Jordan,§

Edward O. Pyzer-Knapp,‖ and Connor W. Coley∗,‡,⊥

† Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA

02138

‡ Department of Chemical Engineering, MIT, Cambridge, MA 02142

¶ Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown

Heights, NY 10594

§ IBM Thomas J. Watson Research Center, Cambridge, Massachusetts 02142

‖ IBM Research Europe, Hartree Centre, Daresbury WA4, U.K.

⊥ Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA

02142

E-mail: ccoley@mit.edu

Additional Methods

Variants of the proposed algorithm

There are several variations of the DSP algorithm proposed in the main text, and we discuss

a few of them below.

1

Observed threshold As mentioned in the Approach section of the main text, the true

of value of the hit threshold y∗ is unknown at runtime. All experiments in the main text

used the kth best prediction, ŷ∗, to approximate this value, but it is also possible to use

the kth best observation. In practice, this value will generally be lower than ŷ∗, leading to

larger calculated hit probabilities across the design space (Equation 1). Using the observed

threshold will thus result in more conservative pruning and a lower risk of removing true hits

from the design space over the course of the optimization. We tested this approach on the

Michalewicz function and found that it indeed led to more conservative pruning compared

to using ŷ∗ and performance more comparable to the baseline optimization in the limit of

larger sample counts (Figure S7).

Pruning once An alternative to pruning in every iteration is to only prune in the first

iteration of the optimization. This is a more conservative approach than the standard,

iterative pruning and will understandably lead to lower likelihood of performance loss at

the cost of increased inference calls. Depending on the optimization task, this approach can

be almost indistinguishable from the baseline approach. For example, the test oracle tasks

exhibit minimal pruning in the first iteration. In contrast, the docking tasks typically pruned

about half of the design space after the first iteration.

p∗ scheduling It is also possible to schedule the value of p∗ used in the pruning decision

to more conservatively prune in the beginning when the model has less data and more

aggressively as the optimization proceeds. As there a number of ways in which to schedule

this value, we leave the investigation of this idea to future work.

Initialization Optimization performance is dependent on initialization conditions and

DSP is doubly sensitive. As exemplified in Figures S4 and S5, a poor initialization can funnel

the search towards local optima and eventually prune the true optima. Careful initialization

strategies can help mitigate this possibility, but investigation of the many possibilities was

2

beyond the scope of this study.

Optimization costs

We calculated the per-step costs of our optimization workflow on the AmpC-Glide dataset

using our observed wall times and Google Cloud Platform (GCP) resource costs (Tables S1

and S2). We make the following assumptions when calculating GCP costs: we are optimizing

within the same virtual library (98.2M molecules), a 0.4% batch size (approx. 400k molecules

per batch), no early stopping during training, our objective function is a Glide docking

simulation (30 s/molecule according to ref. 24), the costs of both the acquisition function

calculation and selection steps are negligible, and that wall-times observed on our machines

will be the same as those on GCP. Both the docking and inference costs are constant at each

iteration, but surrogate model training costs scale linearly with with the size of the dataset,

approximately $6.20 for every 400k molecules in the training set.

Table S1: resource costs on GCP N1 standard machines (accessed 08/2021)

resource cost
1 CPU · h $0.048
1 GPU · ha $2.48

a Nvidia V100

Table S2: Observed wall times and calculated costs on GCP N1 virtual machines for the
specified optimization steps. Wall times were for MPN training and inference were measured
using 10 Intel 6248 CPUs and 1 Nvidia V100 GPU. The wall time for computational docking
varies greatly with simulation parameters, thus the values provided are only estimates.

step CPU wall time GPU wall time GCP N1 cost
traininga 7.5 · 104 CPU · s 7.5 · 103 GPU · s $6.2
inferenceb 2.5 · 105 CPU · s 2.5 · 104 GPU · s $20.5
dockingc 1.2 · 107 CPU · s n/a $158.3

a 50 epochs of MPN training with 400k molecules
b MPN inference over 98.2M molecules
c docking 400k molecules

3

Additional Results

8k 16k 24k 32k 40k 48k
Molecules Explored

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 to

p-
10

00
 S

co
re

s F
ou

nd

Figure S1: Bayesian optimization performance on the Enamine HTS dataset using an MPN
surrogate model, greedy acquisition, and 0.4% initialization batch. Faded trace: active learn-
ing with a 0.4% batch size. Solid trace: single-batch acquisition with a 2% acquisition batch.
Dotted trace: single-batch acquisition with a 2% initialization batch and 0.4% acquisition
batch. Figure reproduced from data reported in ref. 23.

4

1 2 3 4 5
Iteration

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Er
ro

r

Figure S2: Predictive error of the surrogate model on the full Enamine HTS dataset at
the start of the given iteration for active learning using an MPN surrogate model, greedy
acquisition, and a 0.4% batch size. Errors are clipped to the range [-1.5, 1.5] for ease of
visualization. White dots represent the median error and black bars represent the Q1–Q3
range. Figure reproduced from data reported in ref. 23.

5

4
2

0
2

4

432101234
Be

al
e

A

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

10
.0

02468101214
Br

an
in

B

14
12

10
8

6
3210123

Bu
ki

n
C

3
2

1
0

1
2

3
2.

0

1.
5

1.
0

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Si
xH

um
pC

am
el

D

4
2

0
2

4

42024

Dr
op

W
av

e
E

10
5

0
5

10
10

.07.
5

5.
0

2.
5

0.
0

2.
5

5.
0

7.
5

10
.0

Le
vy

F

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

M
ich

al
ew

icz
G

0
50

0
10

00
15

00
20

00
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Top-10 Identified

0
50

0
10

00
15

00
20

00
0

50
0

10
00

0
50

0
10

00
15

00
20

00
0

50
0

10
00

0
50

0
10

00
15

00
20

00
0

50
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative Input Space Size

Ob
je

ct
iv

e
Ev

al
ua

tio
ns

BO
BO

+D
SP

ra
nd

om
siz

e

Fi
gu

re
S3

:T
op

.
C
on

to
ur

pl
ot
sf
or

th
e
(c
on

tin
uo

us
)s

pe
ci
fie
d
fu
nc
tio

n.
B

ot
to

m
.
Fr
ac
tio

n
of

th
e
to
p-
10

po
in
ts

id
en
tifi

ed
on

th
e

gi
ve
n
fu
nc
tio

n
an

d
re
la
tiv

e
in
pu

t
sp
ac
e
re
m
ai
ni
ng

ve
rs
us

ob
je
ct
iv
e
ev
al
ua

tio
ns
.
Ea

ch
tr
ac
e
re
pr
es
en
ts

th
e
av
er
ag
e
±

st
an

da
rd

er
ro
r
of

10
0
in
de
pe

nd
en
t
ru
ns
.

6

0.0

0.2

0.4

0.6

0.8

1.0
BO

0 200 400 600
Objective Evaluations

0.0

0.2

0.4

0.6

0.8

1.0
BO+DSP

Fr
ac

tio
n

of
 T

op
-1

0
Id

en
tif

ie
d

Figure S4: Fraction of the top-10 points identified on the Michalewicz function versus ob-
jective evaluations for each trial of both baseline and DSP optimization. The median trial
is outlined. A circle signifies the point at which a DSP trial terminates.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 To

p-
10

 P
ru

ne
d

Figure S5: Fraction of the top-10 points falsely pruned on the Michalewicz function versus
iteration for each trial. The median trial is outlined. A circle signifies the point at which a
trial terminates.

7

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 T

op
-1

0
Id

en
tif

ie
d

0.5 2

0 100 200 300 400 500 600

1.0 2

0 100 200 300 400 500 600 700

2.0 2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

In
pu

t S
pa

ce
 S

ize

Objective EvaluationsBO
BO+DSP

random
size

Figure S6: Fraction of the top-10 points identified on the Michalewicz function and rela-
tive input space remaining versus objective evaluations when uncertainties provided to the
pruning function are multiplied by the given values. Each trace represents the average ±
standard error of 100 independent runs.

0 500 1000 1500
Objective Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 T

op
-1

0
Id

en
tif

ie
d

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

In
pu

t S
pa

ce
 S

ize

BO
BO+DSP
random
size

Figure S7: Fraction of the top-10 points identified on the Michalewicz function and relative
input space remaining versus objective evaluations when using the observed hit threshold for
the pruning decision. Each trace represents the average ± standard error of 100 independent
runs.

8

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Top-250 Scores Found

MAOB
THRB

AR
HSD11B1

NR3C1
GBA

PPARG
F2

HMGCR
NOS1

REN
ACHE
ESR2
DHFR

HSP90AA1
MAPK1

CYP3A4
PGR
SRC

CSF1R
IGF1R
AKT2

PPARA
DPP4

ROCK1
ESR1
MET

PPARD
PARP1
CASP3

MAPK14
CYP2C9

CA2
LCK

BACE1
ADAM17

FGFR1
MAP2K1

PTPN1
DRD3

ADRB2
ADRB1

AKT1
DRD2
CDK2

PTGS2
PLK1
F10

MAPKAPK2
ABL1

PDE5A
KIT

JAK2
KDR

ADORA2A
MMP13

PTK2
EGFR

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Inference Calls

performance inference

Figure S8: Bayesian optimization performance using DSP (top axis) and total number of
inference calls using DSP relative to baseline optimization on DOCKSTRING tasks using a
0.4% batch size over five iterations. Each bar represents the mean of five independent runs.

9

20 0 20 40 60 80 100
Score

100

101

102

103

104

105

Co
un

t

Figure S9: Histogram of scores in the MAOB dataset from DOCKSTRING. Red, dotted line
shows the top-250 threshold and red arrow indicates direction of better scores

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of inference calls

0

2

4

6

8

De
ns

ity

Figure S10: Histogram of the total number of inference calls made using DSP relative to the
baseline optimization for a 0.4% batch size over five iterations.

10

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Top-250 Scores Found

MAOB
THRB

F2
PPARG

HSD11B1
AR

HMGCR
GBA

NR3C1
NOS1
AKT2

ADAM17
CA2

CYP3A4
REN

ACHE
DPP4
ESR2
DHFR

SRC
ROCK1
CSF1R

AKT1
IGF1R
PTPN1
MAPK1

HSP90AA1
CYP2C9

MET
LCK

ESR1
PPARA
BACE1

MAPK14
PGR

DRD3
PPARD
CDK2
EGFR

MAP2K1
PLK1

CASP3
PARP1
ADRB2

PTK2
ADRB1
FGFR1
DRD2

MAPKAPK2
PDE5A

F10
JAK2

PTGS2
KIT

KDR
MMP13

ADORA2A
ABL1

Figure S11: Bayesian optimization performance on DOCKSTRING tasks using DSP, an
MPN surrogate model, UCB acquisition function, and 0.2% batch size. Each bar indicates
the average fraction of the top-250 compounds found during five independent runs with
docking scores against given target protein as the objective function. Hatched areas indicate
the difference in mean performance of the baseline optimization relative to DSP. The white,
dotted vertical line represents expected performance of a random search. ∗ indicates tar-
gets where optimization without pruning outperforms DSP according to a one-sided t-test,
p−value < 0.05 (Bonferroni corrected).

11

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Top-250 Scores Found

MAOB
THRB

F2
PPARG

HSD11B1
AR

HMGCR
GBA

NR3C1
NOS1
AKT2

ADAM17
CA2

CYP3A4
REN

ACHE
DPP4
ESR2
DHFR

SRC
ROCK1
CSF1R

AKT1
IGF1R
PTPN1
MAPK1

HSP90AA1
CYP2C9

MET
LCK

ESR1
PPARA
BACE1

MAPK14
PGR

DRD3
PPARD
CDK2
EGFR

MAP2K1
PLK1

CASP3
PARP1
ADRB2

PTK2
ADRB1
FGFR1
DRD2

MAPKAPK2
PDE5A

F10
JAK2

PTGS2
KIT

KDR
MMP13

ADORA2A
ABL1

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Inference Calls

performance inference

Figure S12: Bayesian optimization performance using DSP (top axis) and total number of
inference calls using DSP relative to baseline optimization on DOCKSTRING tasks using
a 0.2% batch size over eight iterations. Each bar represents the mean of five independent
runs.

12

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of inference calls

0

1

2

3

4

5

6

7

De
ns

ity

Figure S13: Histogram of the total number of inference calls made using DSP relative to the
baseline optimization for a 0.2% batch size over eight iterations.

13

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Top-250 Scores Found

MAOB
GBA

F2
THRB

HMGCR
HSD11B1

PPARG
NR3C1

AKT2
REN

ADAM17
DPP4
AKT1
CA2

CYP3A4
IGF1R

AR
ACHE

BACE1
ESR2

PARP1
DHFR
NOS1

CSF1R
EGFR

ROCK1
PTPN1
CASP3

F10
HSP90AA1

LCK
SRC

MAPK1
MAP2K1

PTK2
ADRB2

CYP2C9
PPARD
DRD3
ESR1
PGR

CDK2
MAPK14

PPARA
PLK1

PDE5A
ADRB1

MET
DRD2
JAK2

MMP13
MAPKAPK2

PTGS2
FGFR1

KIT
ADORA2A

KDR
ABL1

Figure S14: Bayesian optimization performance on DOCKSTRING tasks using DSP, an
MPN surrogate model, UCB acquisition function, and 0.1% batch size. Each bar indicates
the average fraction of the top-250 compounds found during five independent runs with
docking scores against given target protein as the objective function. Hatched areas indicate
the difference in mean performance of the baseline optimization relative to DSP. The white,
dotted vertical line represents expected performance of a random search. ∗ indicates tar-
gets where optimization without pruning outperforms DSP according to a one-sided t-test,
p−value < 0.05 (Bonferroni corrected).

14

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Top-250 Scores Found

MAOB
GBA

F2
THRB

HMGCR
HSD11B1

PPARG
NR3C1

AKT2
REN

ADAM17
DPP4
AKT1
CA2

CYP3A4
IGF1R

AR
ACHE

BACE1
ESR2

PARP1
DHFR
NOS1

CSF1R
EGFR

ROCK1
PTPN1
CASP3

F10
HSP90AA1

LCK
SRC

MAPK1
MAP2K1

PTK2
ADRB2

CYP2C9
PPARD
DRD3
ESR1
PGR

CDK2
MAPK14

PPARA
PLK1

PDE5A
ADRB1

MET
DRD2
JAK2

MMP13
MAPKAPK2

PTGS2
FGFR1

KIT
ADORA2A

KDR
ABL1

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Inference Calls

performance inference

Figure S15: Bayesian optimization performance using DSP (top axis) and total number of
inference calls using DSP relative to baseline optimization on DOCKSTRING tasks using a
0.1% batch size over ten iterations. Each bar represents the mean of five independent runs.

15

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of inference calls

0

1

2

3

4

5

De
ns

ity

Figure S16: Histogram of the total number of inference calls made using DSP relative to the
baseline optimization for a 0.1% batch size over ten iterations.

16

0 50 100 150 200 250 300 350
Cluster Size

100

101

102

103

Co
un

t

Figure S17: Histogram of cluster sizes in the top-10 000 molecules of the AmpC-Glide dataset
using sphere clustering.

17

Figure S18: Fraction of molecules in each cluster type of the top-10 000 molecules identified
versus number of molecules explored using a 0.4% batch size. The grey shaded area represents
the range of possible sample budgets for individual DSP trials. Each trace represents the
average ± standard deviation of three independent runs.

Figure S19: Bayesian Optimization performance on AmpC Glide dataset (100M) with an
MPN surrogate model, UCB acquisition function, and 0.2% batch size. The grey shaded
area represents the range of possible sample budgets for individual DSP trials. Each trace
represents the average ± standard deviations of three independent runs.

18

Figure S20: Fraction of molecules in each cluster type of the top-10 000 molecules identified
versus number of molecules explored using a 0.2% batch size. The grey shaded area represents
the range of possible sample budgets for individual DSP trials. Each trace represents the
average ± standard deviation of three independent runs.

19

Figure S21: Bayesian Optimization performance on AmpC Glide dataset (100M) with an
MPN surrogate model, UCB acquisition function, and 0.1% batch size. The grey shaded
area represents the range of possible sample budgets for individual DSP trials. Each trace
represents the average ± standard deviations of three independent runs.

20

Figure S22: Fraction of molecules in each cluster type of the top-10 000 molecules identified
versus number of molecules explored using a 0.1% batch size. The grey shaded area represents
the range of possible sample budgets for individual DSP trials. Each trace represents the
average ± standard deviation of three independent runs.

21

Graphical TOC Entry

molecules
docked

molecules
pruned

start virtual screen
end virtual screen

hit molecules

full library

hits identified

22

