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Abstract 

In silico identification of potent protein inhibitors 
commonly requires prediction of a ligand binding free 
energy (BFE). Thermodynamics integration (TI) based 
on molecular dynamics (MD) simulations is a BFE 
calculation method capable of predicting accurate BFE, 
but it is computationally expensive and time-
consuming. In this work, we developed an efficient 
automated workflow for identifying compounds with 
the lowest BFE among thousands of congeneric ligands 
which requires only hundreds of TI calculations. 
Automated Machine Learning (AutoML) orchestrated 
by Active Learning (AL) in AL-AutoML workflow 
allows unbiased and efficient search for a small set of 
best performing molecules. We applied this workflow 
to select inhibitors of the SARS-CoV-2 papain-like 
protease. Our work resulted in predicting 133 
compounds with improved binding affinity among 
which 16 compounds with better than 100-fold binding 
affinity improvement. The hit rate obtained here is 
better than that of traditional projects where molecule 
selection is guided by an expert medicinal chemist. We 
demonstrated that a combination of an AL protocol 
provides at least 20x the common brute force 
approaches. 

Significance Statement 

Hit-to-lead and lead optimization stages of drug 
discovery have low success rates. In silico screening of 

ultra-large molecular libraries is an attractive alternative 
to experimental approaches and expert-driven 
prediction, yet current success of virtual screening is 
limited by poor predictive power of ligand ranking 
methods. Incorporation of molecular dynamics (MD) 
for computing relative binding free energy (RBFE) 
provides a solution. However, MD methodologies are 
restricted by intensive computing resource 
requirements. To efficiently overcome such restraints 
we developed a workflow which relies on Automated 
Machine Learning guided by Active Learning approach 
to minimize a number of required MD-RBFE 
evaluations. 

Introduction 

Hit-to-lead and lead optimization stages of drug design 
aim to discover lead compounds, molecules with 
improved binding affinity to a biological target by 
altering chemical structure of a hit molecule that has a 
demonstrated activity against the target.  A typical 
process of lead optimization involves expensive and 
time-consuming process of first, chemical synthesis of 
multiple compounds and then, testing them for 
biological activity (1, 2). Structure-based virtual 
screening of ultra-large molecular libraries aimed at 
minimizing the number of compounds chosen for 
laboratory synthesis and testing has become a 
successful strategy in computational drug design (3). 
High hit rates were achieved with docking ligands to 
target protein  (4). However, two main limitations of 
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such approaches remain: a limited ability of docking 
methodologies to predict ligand binding affinity, and 
technological difficulty in working with libraries 
comprised of multibillion of compounds (4, 5).  

Unlike docking approaches all-atom molecular 
dynamics (MD) simulation methods, including  
thermodynamics integration (TI) (6) can predict ligand 
binding affinity, also termed binding free energy (BFE), 
with high accuracy (7). A relative BFE (RBFE), i.e., a 
BFE difference between a new ligand and a lead 
compound is needed in a hit-to-lead and lead 
optimization (8-12). However, despite recent advances 
in high performance computing and improvement of 
algorithms for graphical processing units (GPU)-
accelerated MD simulations, computing multiple 
RBFEs for a large number of compounds remains  
prohibitively time consuming and technically 
intractable (13).  

To overcome this problem, we developed an 
automated approach for a machine learning (ML)-active 
learning (AL) guided lead optimization based on TI 
computed RBFEs. In this approach compounds for the 
TI calculations are selected with an automated ML 
algorithm designed to achieve two goals: 1) to 
efficiently enrich a set of molecules selected for TI 
computation with good binders, 2) to improve an ML 
model prediction of the RBFEs for an entire screening 
library of molecules using the TI computed RBFEs.  To 
achieve this two-fold goal we coupled the TI RBFE 
calculations with an automatic machine learning 
(AutoML) cycle, thus eliminating a model selection 
bias and efficiently utilizing an information gain on 
each AL iteration. This AutoML – MD TI RBFE 
computational workflow allows for identification of 
tight-binding ligands with a minimal number of the TI 
RBFE calculations.  

The pandemics of a coronavirus disease 2019 
(COVID-19) caused by a severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) remains a 
serious threat for global public health. Given that the 
number of unvaccinated people is still significant as 
well as the rapid rate of virus mutations, efficient 
COVID-19 therapeutics are needed. One of the 
attractive drug targets for designing COVID-19 
antivirals is SARS-CoV-2 papain-like protease (PLpro), 
an enzyme responsible for processing the viral 
polyprotein and suppressing the host immune function 
(14). PLpro has 315 residues and consists of two distinct 
domains: a small N-terminal ubiquitin-like domain and 
a “thumb–palm–fingers” catalytic domain (see Fig.1). 
A fingers subdomain includes a zinc binding site 
formed by four cysteine residues. Protein active site is 
formed by a canonical cysteine protease catalytic triad 
which includes Cys111, His271 and Asp286 residues 
located at an interface between a thumb and a palm 
subdomains.  

Several N-[(1R)-1-naphthalen-1-
ylethyl]benzamide derivatives were demonstrated to be 
effective at halting SARS-CoV-2 PLpro activity as well 
as SARS-CoV-2 replication in cells (15). In particular, 

the most potent inhibitor GRL0617  with known high 
resolution structure (Fig. 1) demonstrates half maximal 
inhibitory concentration (IC50) of 2.3 μM (15). High 
resolution structures of SARS-CoV-2 PLpro complexes 
with three inhibitors with the same scaffold including 
the inhibitor GRL0617 were resolved with the 
resolution of 2.1-2.9 Å revealing identical binding 
modes (15). This indicates that this scaffold is important 
for ligand binding to PLpro, and suggests that more 
potent PLpro inhibitors may be found among 
compounds with this scaffold. Recently, several novel 
Plpro inhibitors based on similar scaffold were 
proposed with limited success using an expert driven 
lead optimization approaches (16). In this work we 
virtually screened a library of 1.3 billion commercially 
available compounds, selected a focused library of ten 
thousand derivatives of  N-[(1R)-1-
arylethyl]arenecarboxamide, and finally identified 
sixteen potent binders with more than hundred-fold 
improvement in predicted binding affinity.   
 
Results and discussion 

Approach 
The workflow developed in this work uses 
computationally intensive MD based thermodynamic 
integration calculations of the RBFEs (∆∆𝐺𝐺) of a 
focused library of molecules with a target protein SARS-
CoV-2 PLpro as a source of training data for the ML 
models. To develop a focused library of compounds we 
initially screened a 1.3 billion of commercially 
available molecules from three reputable compound 
vendors Enamine, WuXi and Mcule. The resulting 
library of an approximately ten thousand N-[(1R)-1-
arylethyl]arenecarboxamide derivatives was further 
narrowed down to 8175 compounds, which passed 
structural molecular docking quality control. These 
compounds were used to prepare bound poses by 
docking each molecule to the target binding site (see SI 
Methods, molecular docking subsection).  

 

Figure. 1. Structure of SARS-CoV-2 PLpro and its 
inhibitor. A) Structure of SARS-CoV-2 PLpro in 
complex with GRL0617 (PDB ID: 7JIR). The inhibitor 
and residues of the catalytic triad are shown as pink and 
green sticks correspondingly. B) GRL0617 The common 
scaffold (N-[(1R)-1-arylethyl]arenecarboxamide) is 
highlighted in green. 



To find best PLpro binders we utilized an active 
learning (AL) approach. The AL was organized as an 
iterative cycle: i) starting with a seed set of molecules 
we perform TI RBFE calculations to obtain training 
data and train initial ML model, ii) we then select 
molecules for the next round of the TI RBFE 
calculations using current ML model, iii) we compute 
additional TI RBFEs for the molecules selected in ii) 
and re-train the ML model with an updated TI RBFE 
dataset. The cycle is repeated until convergence.  
 
Active Learning (AL) Cycle. The main goal of active 
learning is to infer an accurate ML model from a set of 
training data smaller than a randomly selected data set 
needed to achieve the same model accuracy. (17). Here 
AL workflow is organized as a black box optimization 
of ∆∆𝐺𝐺  obtained by the TI MD calculations for a subset 
of molecules from a focused library of molecules.  The 
AL cycles are performed in two regimes: explorative 
and exploitative. These are distinguished by the data 
selection style: the explorative regime uses a balanced 
selection, while the exploitative regime uses a greedy 

selection (see SI Methods). The explorative regime is 
used until the ML model reaches an apparent 
convergence, followed by the exploitative regime used 
to select molecules with the lowest ∆∆𝐺𝐺 of binding. 
Both explorative and exploitative regimes are organized 

in an AL cycle of four steps (Fig. 2): (1) train a proxy 
AutoML-model on acquired labeled data for a given 
objective(s); (2) use this model to screen the chemical 
space, (3) select optimal set of candidate molecules for 
the TI MD calculations of RBFE, (4) perform the TI 
MD calculations for selected molecules and use these 
obtained ∆∆𝐺𝐺 data to update the AutoML-model.  

The AL cycle includes two major 
computational modules (Fig. 2): first, an AutoML 
module responsible for ML model development based 
on the labeled data provided by the second 
computational module, a TI RBFE module responsible 
for the TI computation of relative binding free energies 
of selected compounds with the PLpro protein. The AL 
cycle shown in Fig 2 is initialized with a small but 
diverse set of molecules. Their ∆∆𝐺𝐺 values are 
computed with TI RBFE module in Step 1. These ∆∆𝐺𝐺s 
are added to the pool of labeled data, which are used by 
an AutoML module to train a predictive model. 
Specifically, labeled data are input-output pairs (X,y), 
where the output label y represents a correct answer to 
a question associated with an input X. In this work, X 

describes a ligand molecule, and y is a ∆∆𝐺𝐺 value 
obtained in a TI MD calculation (see SI Methods for 
details). An ML model trained in Step 2 is used in the 
Step 3 to virtually screen chemical space (grey dots 
represents chemical space) to obtain ML-model 

 
Figure 2. A general scheme of the automated computational workflow organized in an Active Learning Cycle. The 
workflow includes two main modules: AutoML and TI RBFE and four principal steps. Molecules with computed ∆∆𝐺𝐺  are 
depicted as colored hexagons in Step 1. Labeled chemical space is shown as 2D t-SNE plots. All colors are consistent with color 
scheme in Fig 4. according to their ∆∆𝐺𝐺 values in (blue, white, red). 



predicted ∆∆𝐺𝐺 values (color coded here as in Fig. 4). A 
new set of molecules is selected in Step 4 by the AL 
criteria to be submitted for the TI RBFE calculations 
thus completing the cycle. 
Automated machine learning (AutoML) module 
(Fig. 2). Building an ML model with a priori chosen ML 
method (e.g., a neural network, a random forest or a 
gaussian process) and a molecular representation (e.g., 
a path fingerprint, or a ligand-protein interaction 
fingerprint) may lead to substantial model bias, and a 
sample selection bias. Multiple studies showed that this 
bias may result in substantial modeling artifacts (18-
22). In contrast, an AutoML aims to make decisions for 
an ML model selection, data representation and hyper-
parameters in a data-driven, objective, and automated 
way (23-26). The combination of AutoML and AL 
approaches (AutoML-AL) allows for a fast systematic 
unbiased exploration of the chemical space in the first 
regime, and a selection of champion candidate 
molecules in the second, exploitative, regime. We 
implemented AutoML as a set of well performing ML 
algorithms available in scikit-learn package (27, 28), 
multiple molecular representation and on-the-fly 
feature engineering (see SI Methods for details). 
Thermodynamic Integration MD for RBFE (TI 
RBFE). An automated protocol for the multiple RBFE 
calculations implemented in this work requires minimal 
user interaction. Our protocol accepts a set of docked 
ligands (see SI Methods section for details) as an input 
and provides calculated RBFEs for all ligands as an 
output. Compound GRL0617 (Fig. 1B) was used as a 
common reference ligand. An automatic TI workflow 
was designed in three connected parts: 1) generation of 
the MD input files (including molecular topologies, 
initial coordinates of the atoms, and restraints), and 2) 
set up and submission of the parallelized GPU-
accelerated MD simulations using TI implementation of 
AMBER 18 package (29), 3) collection and processing 
of the output data. The details of the protocol are 
described in the SI Methods. 

Results 

An AutoML-AL approach was applied to perform eight 
AL cycles. Figure 3 shows all TI obtained ΔΔGs over 
all AL cycles. AL Cycle 0 was initialized with a diverse 
selection of molecules to sample chemical space of the 
focused library as wide as possible (see SI Methods for 
details). TI MD ΔΔG were computed for this initial set 
of molecules and supplied to the AutoML module for 
initial ML-model training. For the next five AL cycles 
(AL cycles 1-5) we used a balanced selection of 
molecules with the low ML predicted RBFEs from 
clusters on a full focused library (see SI Methods for 
details). The goal of these five AL cycles was to gain 
information about the chemical space of the focused 
library rather than to select molecules with the lowest 
∆∆𝐺𝐺s.  

With progression of AL cycles the performance 
of the ML model improved. The cross-validated mean 
absolute error (MAE; Fig. 3, middle) reached 1 

kcal/mol, which is comparable to the accuracy of the 
RBFE calculations reported elsewhere (8-11). To verify 
model convergence, we performed the sixth AL cycle 
with a random selection of the molecules (see SI 
Methods). The random selection of molecules also 
serves to overcome a possible problem if AL being 
trapped in a local minimum of the chemical space.  

We monitored two criteria between each 
balanced cycle (AL cycles 1-5) and a random cycle (AL 
cycle 6). First, the difference between the mean ∆∆𝐺𝐺𝐺𝐺 
and second is retrospective MAE. The former is staying 
different up to ca. 2 kcal/mol. The latter remains nearly 
constant (Fig. 3, bottom) between the last balaced cycle 
(AL cycle 5) and the random cycle (AL cycle 6).  This 
suggests that AutoML-AL process converged to a 
desired chemical accuracy for the entire focused library. 
Subsequently, for the AL Cycle 7 we performed an 
exploitative (greedy) selection of the molecules with the 
lowest ML predicted  ∆∆𝐺𝐺𝐺𝐺. The resulting AL Cycle 7 
had mean TI ΔΔG with -1.7 kcal/mol as opposed to 2 
kcal/mol in the AL Cycle 6 (Fig. 3, top). This difference 
is statistically significant with the p-value = 1.3x10-8  

according to the Mann–Whitney U test (30). 
The efficiency of the AL can be further 

demonstrated by comparison of the binding affinity 
distribution in the ligand samples selected by the ML 
models (including both the explorative and the 
exploitative sets), and in the molecular samples selected 
by diversity or randomly (see Fig. S1 and SI text). In the 
exploitative Cycle 7, 27 out of 30 ligands were found to 
have improved binding affinity with respect to the 
reference ligand. In contrast, in the random sample, the 
distribution was inverse, with only 3 out of 30 ligands 
have an improved binding affinity. 

 
Figure 3.  MD TI RBFE results in AL cycles 
(top); MAE for am ML model measured as 10-
FOLD-CV (middle); retrospective MAE (bottom). 



TI MD RBFE calculations were performed for 
253 ligands. Negative RBFE were computed for 133 
ligands, i.e. approximately 53% of TI calculations. 
Thus, more than half of the ligands screened by the TI 
MD calculations were predicted to have higher binding 
affinity than the reference ligand. Among these, 62 
ligands, or 24.5% of the ligands screened by the TI MD 
were found to have more than ten-fold improvement in 
predicted binding affinity. 16 ligands, or 6 % of the 
ligands screened by TI MD were found to have more 
than a hundred-fold improvement in predicted binding 
affinity to the target protein. 

 Among ML-selected molecules (in the 
explorative and exploitative cycles)   approximately 

70% were estimated by TI MD to have higher binding 
affinity than the reference ligand. In contrast, the ratio 
of such ligands for the diverse and random samples was 
only about 10%. Notably, our results demonstrated a 
significant advantage of the Auto-ML guided sampling 
over the random and diverse sampling in identifying 
ligands with more than ten-fold improvement in 
predicted binding affinity. In the ML samples  ~25% 
and ~8% of ligands had 10-100 and > 100-fold 
improvement in binding affinity correspondingly while 
in random and diversity samples the both ratios are 
~1%. 

Figure 4 shows evolution of ML-model’s 
perception of the chemical space of the focused library, 

 
Figure 4. TI RBFE results and ML model evolution over the active learning cycles. Each panel (labeled by the AL cycle 
number and a corresponding selection style) shows two 2D labeled t-SNE representations of the focused library: (top) The 
molecules selected in arespective AL cycle for the TI RBFE calculation are colored by the TI computed ∆∆𝐺𝐺, the rest is 
shown in grey; (bottom) The focused library is colored by ML predicted ∆∆𝐺𝐺 . Color bar for the ∆∆𝐺𝐺  values is shown at the 
bottom.  



as well as a distribution of the molecules chosen for the 
TI MD RBFE calculations. In Fig. 4 the chemical space 
of the focused library is depicted as a two-dimensional 
t-SNE projection, which estimates an organization of 
the high-dimensional representation of the molecular 
chemical space and constructs a low-dimensional 
representation that preserves  relationships present in 
the high-dimensional representation (31).  

Notably, in the beginning of the active learning 
workflow, (the AL cycle 0) the ML-model does not 
distinguish (Fig. 4) specific regions of the chemical 
space enriched with favorable binders characterized by 
low ∆∆G. In the following AL cycles 1-5 with the 
balanced selection, the model is exploring multiple 
regions and finding the perspective chemical space (Fig. 
4, AL 1-5, TI row). As a result of information gain, the 
ML-model’s perception is changing significantly (Fig. 
4, AL 0, ML row). Regions of chemical space densely 
populated with low ∆∆G molecules started to be 
identified (See Fig. 4, AL 1, ML row). By the AL cycle 
5 ML-model is converged (Fig. 3) which reflected in 
stabilized coloring of various regions of the chemical 
space. During the AL cycle 6 (Fig. 4, AL 6, TI row) with 
random selection the molecules, they are spread across 
the chemical space and majority of them have positive 
∆∆G as expected. Notably, the model's errors (Fig. 3) 
did not increase, which supports an observation of 
model convergence. Thus, our study is concluded with 
an AL cycle 7 in an exploitative phase as discussed 
above. 
Analysis of the ligands with improved predicted 
binding affinity. Two common modifications in the 
naphthalene ring of (N-[(1R)-1-
arylethyl]arenecarboxamide) were present in the 
molecules with improved predicted binding affinity 
(scaffolds S1 and S2 in Fig. 5A). The first modification 
(S1) is a substitution in position 4 of the naphthalene 
ring. The second modification (S2) includes a 
substitution of the beta naphthalene carbon to nitrogen, 
and an addition of a methoxy group in position 7 of the 
aromatic ring, which make it a 7-methoxyisoquinoline 
moiety. To assess relative importance of these 
modifications we computed RBFEs. GRL0617 → M1 
and GRL0617 → M2 (Fig. 5B) resulting in improved 
binding affinity by -0.84 kcal/mol and -0.99 kcal/mol 

respectively. The third common structural feature of 
ligands with improved predicted binding affinity was 
the presence of fused 5,6- and 6,6-bicyclic aromatic 
systems in place of the benzene ring of the reference 
ligand. (Fig. 5C). Among ligands with negative TI ∆∆𝐺𝐺  
there were 35 (~26%) molecules with similar aromatic 
systems. Nine of these molecules showed more than 100 
fold improvement in predicted binding affinity (Fig. 
S2).  

 
Figure 6. Representative binding poses of the 
reference ligand (A), ligand 1 (B) and ligand 3 (C).. 
Carbon atoms of ligands and protein residues are shown 
in green and grey correspondingly. Nitrogen, oxygen 
and fluorine atoms are shown in blue, red and cyan 
respectively. 

 
Figure 5. Ligands with improved binding affinity. (A) Common scaffolds of ligands with negative ∆∆𝐺𝐺. “Ar” corresponds 
to any substituted aromatic system containing a six-membered aromatic ring. Chemical modifications with respect to the scaffold 
of reference ligand are encircled. (B) Reference ligand analogs corresponding to the common scaffolds shown in section A. (C) 
Ligands with the highest predicted binding affinity. Calculated TI ∆∆𝐺𝐺 for ligands are shown above their structural formulas. 



The reference ligand has specific interactions 
with protein formed by benzene ring substituents: 
amino group makes hydrogen bond with amide group 
of Gln269 and hydroxyl group of Tyr268 and methyl 
group makes hydrophobic interactions with side chains 
of Tyr264, Tyr273 and Leu162 (Fig. 6A). The 
representative binding poses of the ligands 1 and 3 and 
the reference ligand are shown in the Fig. 6B and 6C. 
The amide group of the linker forms hydrogen bonds 
with the main-chain amino group of Gln269, hydroxyl 
group of Tyr264 and carboxylic group of Asp164. The 
naphthalene ring of the reference ligand and ligand 3 
and isoquinoline ring of ligands 1-2 make hydrophobic 
interactions with side chains of Pro248 and Tyr268. 
Benzene ring of the reference ligand and ligands 2-3 and 
pyridine ring of ligand 1 make hydrophobic interactions 
with aliphatic regions of the side chains of Gln269 and 
Asp164.  

Modifications present in ligands 1-3 allows for 
several protein-ligand interactions absent for the 
reference ligand. Methoxy group of ligands 1-2 makes 
polar interactions with main chains of Gly266  and 
Asn267. Pyrazole ring of ligands 1-2 and pyrazine ring 
of ligand 3 make polar interactions with side chains of 
Tyr268 and Gln269. Notably, the analog of ligand 3 in 
which methyl group of the benzene ring is absent has TI 
∆∆𝐺𝐺 of -1.56 kcal/mol which suggests that the presence 
of this methyl group is important for binding affinity 
improvement. 

 
Conclusions 

Lead optimization remains a substantial computational 
challenge for modern computational chemistry. 
Computationally intensive campaigns, such as 
molecular dynamics for relative binding free energy 
simulations are typically severely limited by availability 
of computational resources as well as difficulty in 
implementing computations in a high-through put 
manner. For example, the COVID-19 Moonshot 
initiative ran over 5000 free energy simulations 
exploiting global Folding@home computational 
initiative (32). This massive undertaking used hundreds 
of millions of computer hours to achieve 100-fold 
improvement in potency against SARS-CoV-2  main 
protease. Such resources are rarely available. Here we 
were able to perform RBFE calculations only for a 
subset of ligands, rather than for all available analogues 
of a lead compound by coupling such calculations with 
an active learning approach, which included an 
automatic machine learning model selection.  

Using selection of molecules enriched by the 
Auto-ML procedure we identified 133 potential SARS-
CoV-2 PLpro inhibitors predicted to have improved 
binding affinity by performing the TI RBFE 
calculations for only 253 ligands. Remarkably, the 
alchemical RBFE calculations have predicted improved 
binding affinity for 70% of ligands selected by ML in 
contrast to only 11% of ligands selected randomly. We 
believe that the approach developed here is an important 

step toward accelerating lead optimization stages in 
drug design projects by leveraging modern 
computational approaches.  

Methods 

Dataset screening and preparation, molecular docking, 
molecular dynamics and thermodynamic integration 
details are described in Supplementary Information. 
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