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Abstract 

Applying deep learning concepts from image 

detection and graph theory has greatly advanced 

protein-ligand binding affinity prediction, a 

challenge with enormous ramifications for both drug 

discovery and protein engineering. We build upon 
these advances by designing a novel deep learning 

architecture consisting of a 3-dimensional 

convolutional neural network utilizing channel-wise 
attention and two graph convolutional networks 

utilizing attention-based aggregation of node 
features. HAC-Net (Hybrid Attention-Based 

Convolutional Neural Network) obtains state-of-the-

art results on the PDBbind v.2016 core set, the most 
widely recognized benchmark in the field. We 

extensively assess the generalizability of our model 

using multiple train-test splits, each of which 

maximizes differences between either protein 

structures, protein sequences, or ligand extended-
connectivity fingerprints of complexes in the training 

and test sets. Furthermore, we perform 10-fold cross-

validation with a similarity cutoff between SMILES 
strings of ligands in the training and test sets, and 

also evaluate the performance of HAC-Net on lower-
quality data. We envision that this model can be 

extended to a broad range of supervised learning 

problems related to structure-based biomolecular 
property prediction. All of our software is available 

as open source at https://github.com/gregory-

kyro/HAC-Net/, and the HACNet Python package is 
available through PyPI.  

1. Introduction 

1.1 Motivation 

Protein-ligand interactions are essential for most 

biomolecular mechanisms, including important 

processes such as gene regulation, immunoreaction, 

and signal transduction.1 Thoroughly understanding 

such interactions is therefore necessary for many 
targeted applications such as drug discovery and 

protein design. Specifically, efficient and accurate 

screening for particular binding properties would 

enable quick identification of inhibitory molecules 

that combat disease and proteins that perform desired 

functions, and thus a model which can quickly and 

accurately predict protein-ligand interactions would 

be incredibly powerful for promoting important 

molecular-level applications.  

The intrinsic complexity of biological data has 

motivated the use of machine learning (ML) to create 

models capable of predicting intricate biomolecular 

phenomena, many of which have proven to be 

incredibly powerful.2,3 One notable example is 

DeepMind’s AlphaFold,4 a revolutionary deep 

learning model which can accurately predict 3-

dimensional protein structure from amino acid 

sequence. In the case of protein-ligand interactions, 

ML has enabled the discovery of new drugs and 

chemicals that would not have seemed intuitive to 

investigate based on chemical theory alone.5 

1.2 Background 

There has been continuous progress in applying 

ML to predict protein-ligand binding affinity, gaining 

significant popularity in 2010 with NNScore,6 an 

ensemble of 10 multi-layer perceptrons (MLPs), and 

RF-Score,7 a random forest-based model. Many 

groups have subsequently utilized random forest-

based approaches7-11 or related methods such as 

gradient-boosted trees12-16 to predict binding affinity, 

and most other architectures contain one or multiple 

MLPs as subcomponents. Convolutional neural 

networks (CNNs) have become increasingly popular 

for binding affinity prediction due to their success on 

image detection tasks.17 CNNs comprise a class of 

deep learning architectures where the model learns 

weights for multiple convolutional filters that scan 

over the input dataset, transforming it into an output 

feature map. Many CNNs for binding affinity 

prediction operate on dimensionality-reduced data, 

and come in the form of either 1- or 2-dimensional 

CNNs.18-26 The requirement of lower-dimensional 

data is removed by the use of 3-dimensional CNNs 

(3D-CNNs), which utilize a 3-dimensional voxel 

https://github.com/gregory-kyro/HAC-Net/
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representation of protein-ligand complexes where 

each voxel corresponds to an atomic feature vector. 

Many groups have employed some form of 3D-CNN 

for binding affinity prediction.27-33 There have also 

been successful efforts to predict binding affinity 

utilizing graph convolutional networks (GCNs).34-36 

In the case of GCNs, protein-ligand complexes are 

represented as graphs, where nodes usually 

correspond to atoms and edges are pathways for 

information transfer between pairs of nodes. 

Additionally, recent work by Jones et al. has shown 

that the fusion of a 3D-CNN and a GCN can result in 

greater performance than either model in isolation.37 

The use of attention, a context-based weighting 

technique analogous to cognitive attention, has been 

shown to improve performance in many deep 

learning models.38-43 Squeeze-and-Excitation 

Networks won the ImageNet Large Scale Visual 

Recognition Challenge 2017 for image classification, 

and have been shown to significantly improve 

accuracy at a minimal increase in computational cost 

in many high-performing CNNs.39-41 A squeeze-and-

excitation (SE) block incorporates attention by 

performing channel-wise feature recalibration. The 

spatial dimensions for each channel are condensed to 

a single number via average pooling, and then passed 

through a network of two fully-connected layers with 

rectified linear unit (ReLU) activation44 after the first 

layer and sigmoid activation after the second. Finally, 

the resulting vector elements are used as 

multiplicative weights for the corresponding 

channels of the input data. Gated graph neural 

networks (GG-NNs) extend upon traditional graph 

neural networks by incorporating attention to the 

aggregation of node features.42 A neural network first 

computes attention scores used to weight node 

features, and then the weighted feature sets are 

summed. This technique has performed exceptionally 

well on a wide range of problems in graph-based 

ML.42,43  

1.3 HAC-Net 

We build upon these advances by designing a 

novel deep learning architecture for protein-ligand 

binding affinity prediction which averages the 

outputs of a 3D-CNN utilizing channel-wise attention 

and two GCNs utilizing attention-based aggregation 

of node features. This combination achieves an 

optimal balance between the superior performance of 

our GCNs and the complementary learning style of 

our 3D-CNN (SI Appendix, Fig. S1, Fig. S2). 

Furthermore, the inclusion of two architecturally 

identical GCNs mitigates noise resulting from the 

inherently stochastic nature of the training process. 

By incorporating multiple forms of attention with 

advanced concepts from CNN and GCN architectural 

design, we are able to demonstrate state-of-the-art 

performance on the PDBbind benchmark for protein-

ligand binding affinity prediction, as well as the 

ability to generalize to complexes unlike those used 

for training. 

2. Model Architecture and Theory 

2.1 Overview 

HAC-Net (Hybrid Attention-Based 

Convolutional Neural Network) is a deep learning 

model composed of one 3D-CNN and two GCNs. 

The model takes as the inputs oriented protein and 

ligand structural files and outputs a prediction of the 

binding affinity between the inputs. 

2.2 3-Dimensional Convolutional Neural 

Network 

For the 3D-CNN component of HAC-Net, protein 

and ligand atoms are first embedded into a 3-

dimensional spatial grid, each voxel of which 

corresponds to either a vector of atomic feature 

elements or 0s, depending on the presence or absence 

of an atom center, respectively. The input volume 

dimensions are 48×48×48×19, where 48 corresponds 

to the length of each spatial dimension of the voxel 

grid and 19 corresponds to the number of channels 

(i.e., the length of the feature vector). This 

information is presented to the 3D-CNN as a 4-

dimensional array. We utilize the atomic feature set 

first presented by Pafnucy30:    

• 9 bits (0 or 1) encoding atom types: B, C, N, 

O, P, S, Se, halogen and metal 

• 1 integer (1, 2, or 3) for atom hybridization 

• 1 integer counting the number of bonds with 

heavy atoms  

• 1 integer counting the number of bonds with 

heteroatoms 

• 5 bits (0 or 1) encoding hydrophobic, 

aromatic, acceptor, donor and ring 

• 1 float for partial charge 

• 1 integer (-1 or 1) denoting either protein or 

ligand, respectively 

While the 3D-CNN makes use of multiple 

architectural elements (Fig. 1), the most fundamental 

building block is the convolutional layer.45 

Intuitively, this component creates a linear 

combination of all channel values in the spatial 

neighborhood of a given voxel, then propagates the 

resulting scalar to a corresponding spatial index in the 
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output array (Eq. 1). The coefficients for this linear 

combination are learned throughout the training and 

constitute the weights of a filter which is applied 

uniformly across each of the input voxels. One filter 

will therefore generate a 3-dimensional output array. 

By applying multiple independent filters to a given 

input, the length of the channel dimension of the 

output can be modulated, where each filter produces 

a channel of the output.  

Each filter is applied over the input signal 

according to the following equation: 

output[𝑥′, 𝑦′, 𝑧′] = bias + ∑ ∑ ∑ ∑ filter[ℎ, 𝑖, 𝑗, 𝑓] ∙𝐹
𝑓=1

𝑘𝑧
𝑗=1

𝑘𝑦

𝑖=1

𝑘𝑥
ℎ=1

input[𝑥 + ℎ, 𝑦 + 𝑖, 𝑧 + 𝑗, 𝑓]  
[1]                                                                                                                                                        

where 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are the spatial dimensions of the 

filter, 𝐹 is the total number of input channels, and: 
𝑥 = (𝑥′ ∙ stride) + padding − ⌈𝑘𝑥/2⌉       [2] 

𝑦 = (𝑦′ ∙ stride) + padding − ⌈𝑘𝑦/2⌉       [3] 

  𝑧 = (𝑧′ ∙ stride) + padding − ⌈𝑘𝑧/2⌉       [4] 
We are able to modulate the size of the output 

feature map by manipulating padding and stride 

parameters applied to the convolution (according to 

Eq. 2-4), where padding refers to inserting zeroes 

around the initial input array, and stride refers to the 

step size of the filter between each convolution. 

The residual layer,46 which incorporates skip 

connections between convolutional layers, is an 

important constituent of the 3D-CNN component of 

HAC-Net. The outputs of two convolutional layers 

are summed, and then a subsequent convolutional 

layer operates on the sum. Architectures containing 

residual layers are more easily optimized than those 

relying primarily on standard convolutions, allowing 

for the training of significantly deeper neural 

networks which have obtained greatly improved 

results on standard image-recognition benchmarks.47-

49 

Another key component of the 3D-CNN 

architecture is the SE block (Fig. 1B), which begins 

with a standard convolution of the type described 

above (Eq. 1). The values of each channel are then 

averaged across all spatial dimensions, yielding a 1-

dimensional vector with each index corresponding to 

a channel: 

𝑧𝑐 =
1

𝐿𝑥 ∙ 𝐿𝑦 ∙ 𝐿𝑧
∑ ∑ ∑ 𝐮[𝑖, 𝑗, 𝑘, 𝑐] 

𝐿𝑧−1

𝑘=0

𝐿𝑦−1

𝑗=0

𝐿𝑥−1

𝑖=0

 

                                  [5] 

where 𝐮 and 𝐳 correspond to the 4-dimensional 

output of the convolution and the 1-dimensional row 

Figure 1. 3D-CNN architecture used in HAC-Net. Gray arrows and text refer to data and their transformations. 

Black arrows and text refer to components of the model architecture. We begin with protein and ligand 

structural files, voxelize the heavy atoms into a grid of size 48×48×48×19, and then perform a series of 

convolutions to generate a binding affinity prediction in the form of pKD. The convolutional process is shown 

in (A). The function of the squeeze-and-excitation (SE) blocks that we incorporate to employ channel-wise 

attention is visually depicted in (B). 
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vector containing the average value of each channel, 

respectively. Next, 𝐳 is passed through a network of 

fully-connected layers with ReLU activation after the 

first layer and sigmoid activation after the second, 

producing a transformed vector of the same length as 

the original: 

𝐬 = sigmoid(ReLU(𝐳𝐖1)𝐖2)           [6]                                                                                                                                                                     

where 𝐖1 (𝐹 ×
𝐹

16
) and 𝐖2 (

𝐹

16
× 𝐹) are the weight 

matrices for the two fully-connected layers, and 𝐹 is 

the number of channels. Finally, each element of 𝐬 is 

used as a multiplicative factor for the corresponding 

channel of 𝐮: 

𝐱[𝑖, 𝑗, 𝑘, 𝑐] = 𝑠𝑐𝐮[𝑖, 𝑗, 𝑘, 𝑐]                     [7] 

In this way, the model learns to optimally weight the 

various features based on a transformation of their 

collective average values, which can be regarded as a 

self-attention mechanism on the channels.39 

The complete 3D-CNN training procedure 

consists of both a feature extraction protocol (Fig. 

1A) and subsequent optimization of a fully-

connected network (Fig. 5C). The voxelized protein 

and ligand structural data of size 48×48×48×19 are 

first passed to an SE block with filter size 

9×9×9×19@64, where 64 denotes the number of 

identical filters, corresponding to the number of 

channels in the output feature map. It is important to 

note that all convolutional layers are followed by 

ReLU activation and batch normalization50  with 

momentum of 0.1 for estimating the moving mean 

and moving variance. The transformed data, now of 

size 24×24×24×64, are then passed to two residual 

layers, each of size 7×7×7×64@64. The data are then 

fed into another SE block of size 7×7×7×64@128, 

producing an output of size 8×8×8×128. We then 

apply a max pooling layer which divides the spatial 

grid into sub-grids of size 2×2×2 for every channel 

and propagates the maximal value of each one, 

reducing the size of the data to 4×4×4×128. The data 

are then passed to a third SE block of size 

5×5×5×128@256, downsizing the data to 

2×2×2×256. Lastly, the data are flattened into a 

vector of length 2048 and passed to a fully-connected 

layer of size 2048×100 with ReLU activation and 

batch normalization, then to a final fully-connected 

layer of size 100×1, resulting in a binding affinity 

output in the form of pKD (Fig. 1A).  

After the initial 3D-CNN training is complete, we 

extract the flattened features of size 2048 and use 

them to train a pair of fully-connected layers identical 

to those in the 3D-CNN architecture other than the 

single exception of 0.3 momentum used for batch 

normalization. This protocol notably improves 

performance, likely due to the fact that the fully-

connected layers account for only 1.9% of the total 

parameters in the 3D-CNN (as compared with 59.5% 

in the GCNs), causing the initial learning to be driven 

primarily by the parameters for the convolutional 

layers. Therefore, independently training fully-

connected layers on the extracted features enables 

them to adapt more precisely to the outputs of the 

convolutional layers. 

2.3 Graph Convolutional Networks 

The GCN components of HAC-Net interact with 

the input data in a fundamentally different manner 

than the 3D-CNN. Rather than using a voxel 

representation of atoms, the protein-ligand 

complexes are represented as graphs, where nodes 

correspond to heavy atoms and edges are pathways 

for information transfer between the nodes. In the 

case of HAC-Net, edges exist between atoms whose 

centers are within 3.5 Å. For the GCNs, we utilize the 

Pafnucy feature set with the addition of van der 

Waals radius (float), for a total of 20 atomic features.  

GCNs are a broad class of networks which 

iteratively update node features according to three 

general steps: message creation, aggregation, and 

feature updating.51,52 In HAC-Net, message creation 

involves a dimensionality-preserving linear 

transformation applied to each set of node features. 

For each node, the resulting messages of its neighbors 

are weighted by the distance from the central node, 

and then aggregated according to a specified 

algorithm (Eq. 8). We apply an attention mechanism 

similar to that of GG-NNs,42 with the important 

distinctions that we apply node-wise (rather than 

channel-wise) attentional weights and we use it in the 

message-passing aggregation step rather than for 

generating graph-level features. In our case, the 

function operates according to the following 

equation53,54: 

                 𝐱out = softmax(𝛤𝐗)T(𝛺𝐗)              [8]                                                                                                                                                

where 𝐗 denotes the matrix whose rows are the 

messages created from the central node and its 

neighbors. 𝛤 and 𝛺 are independent neural networks, 

and 𝛤𝐗 indicates application of 𝛤 to each row of 𝐗 

followed by vertical concatenation of the outputs. In 

HAC-Net, 𝛤 is a set of three fully-connected layers 

(20×10, 10×5, and 5×1) with Softsign activation55 

after the first two, and 𝛺 is the identity. This 

operation allows us to weight each node in the 

message-passing mechanism by a corresponding 

attentional score. 

After message creation and aggregation, the node 

features are updated by combining the original node 

features (pre-message creation) with the node 
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features after aggregation. We utilize a simplified 

gated recurrent unit (GRU)56 for updating node 

features, which performs the following 

operations57,58: 

reset gate: 𝐫 = sigmoid(𝐖𝑥𝑟𝐱 + 𝐛𝑥𝑟 + 𝐖ℎ𝑟𝐡0 + 𝐛ℎ𝑟)       [9] 

update gate: 𝐳 = sigmoid(𝐖𝑥𝑧𝐱 + 𝐛𝑥𝑧 + 𝐖ℎ𝑧𝐡0 + 𝐛ℎ𝑧)   [10] 

new gate:𝐧 = tanh(𝐖𝑥𝑛𝐱 + 𝐛𝑥𝑛 + 𝐫 ⊙ (𝐖ℎ𝑛𝐡0 + 𝐛ℎ𝑛))   [11] 

output gate: 𝐲 = (1 − 𝐳) ⊙ 𝐧 + 𝐳 ⊙ 𝐡0               [12] 

where 𝐡0 and 𝐱 are the pre- and post-message-

passing data, respectively. The matrices 𝐖𝑖𝑗 and 

vectors 𝐛𝑖𝑗 denote learnable weights and biases, 

respectively. ⊙ indicates element-wise 

multiplication, and 𝐲 denotes the output, which is 

established as the new vector of node features for the 

next round of message passing. 

Our model performs four iterations of message 

passing, and then the outputs from the fourth GRU 

iteration are processed using a method presented by 

Jones et al.,37 which we refer to as asymmetric 

attentional aggregation. The operation is performed 

according to the following equation: 

    𝐲out = ∑ softmax(𝛤(𝐘𝑣||𝐗𝑣)) ⊙ (𝛺𝐗𝑣)𝑣∈ 𝑉   [13]                                                                                                                                                

where 𝐘𝑣||𝐗𝑣 denotes horizontal concatenation of the 

post- and pre-message-passing data, respectively, for 

node 𝑣 in the set of all nodes, 𝑉. 𝛤 is a set of two 

fully-connected layers (40×20 and 20×128), and 𝛺 is 

a single linear transformation (20×128), both using 

Softsign activation. The output of asymmetric 

attentional aggregation (𝐲out) is then passed through 

a final set of three fully-connected layers (128×85, 

85×64, and 64×1), the first two of which are followed 

by ReLU activation, to generate a binding affinity 

prediction. The GCN process is visually depicted in 

Figure 2. 

3. Data 

The PDBbind database59 is an online repository of 

experimentally determined binding affinity data for 

biomolecular complexes deposited in the Protein 

Data Bank. In this work, we make use of the protein-

ligand complexes contained in the PDBbind v.2020 

database (19,443 total complexes). For each protein-

ligand complex, the protein and protein pocket are 

provided in PDB format, where the protein pocket is 

Figure 2. GCN architecture used in HAC-Net. Gray arrows and text refer to data and their transformations. 

Black arrows and text refer to components of the model architecture. We begin with protein and ligand 

structural files, represent the heavy atoms as a graph, and then perform four iterations of message passing, 

after which we employ asymmetric attentional aggregation to generate a graph-level feature vector. Finally, 

the data are passed through a series of fully-connected layers to yield a prediction of the protein-ligand 

binding affinity in the form of pKD. The full GCN protocol is shown in (A). The function of attentional 

aggregation that we incorporate to employ node-level attention is visually depicted in (B). 
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defined as all of the amino acid residues within 10 Å 

of the ligand. Ligand coordinates are provided in both  

MOL2 and SDF formats, and the associated binding 

affinity is given as either  pKD or pKI. In this work, 

we utilize only the MOL2 ligand files. In most cases, 

the 3-dimensional structures of protein-ligand 

complexes are determined by crystallography, 

although there are also relatively few cases where 

structures are determined with nuclear magnetic 

resonance (NMR) spectroscopy (Fig. 3C). The 

PDBbind v.2020 refined set contains 5,316 data 

points with high-quality labels and structures, as 

identified by the PDBbind team according to a 

rigorous set of requirements.60 

Moreover, we utilize the PDBbind v.2016 core set 

as a test set, which is a collection of 290 complexes 

chosen from a wide distribution of structural clusters 

and binding affinities. This benchmark, inspired by 

the 2016 Comparative Assessment of Scoring 

Functions (CASF-2016) test set,61 is the most widely 

reported benchmark for protein-ligand binding 

affinity prediction. 

4. Performance on the PDBbind v.2016 

Core Set Crystal Structures 

4.1 Comparison to Existing Models  

We test and report results on the PDBbind v.2016 

core set in Table 1 to directly compare HAC-Net to 

the highest-performing models in the literature (to the 

best of our knowledge). It is important to note that for 

all HAC-Net results presented in this work, there is 

no overlap between training, validation and test sets, 

and model hyperparameters were optimized 

exclusively on training and validation data. HAC-Net 

achieves the lowest root-mean-square error (RMSE) 

among models reported in the literature (Fig. 4), as 

well as the highest Spearman 𝜌 and r2 values. 

Furthermore, our model attains the second-highest  

Figure 3. Characteristics of the PDBbind v.2020 protein-ligand database. (A) Distribution of binding affinity 

labels for the refined set. (B) Distribution of binding affinity labels for the general set (excluding the refined 

set). (C) Distribution of crystal structure resolution (red) and nuclear magnetic resonance (NMR) data points 

(green) for the general set (entire PDBbind v.2020 protein-ligand database). (D) Representative protein 

ligand complex (PDB ID: 3ACX), protein is shown as magenta, ligand is shown as light green. 
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Model RMSE MAE r2 Pearson r Spearman ρ 

HAC-Net 1.205 0.971 0.692 0.846 0.843 

TopBP* 62 1.210 N/R N/R 0.861 N/R 

AEScore63 1.22 N/R N/R 0.83 0.64 

AK-score* 31 1.22 N/R N/R 0.812 0.670 

DeepAtom29 1.232 0.904 N/R 0.831 N/R 

HAC-Net‡  1.259 1.020 0.664 0.819 0.814 

PerSpect ML* 14 1.265 N/R N/R 0.840 N/R 

KDEEP* 28 1.27 N/R N/R 0.82 0.82 

AGL-Score* 13 1.272 N/R N/R 0.833 N/R 

OnionNet20 1.278 0.984 N/R 0.816 N/R 

PSH-GBT* 16 1.280 N/R N/R 0.835 N/R 

FAST37 1.308 1.019 0.638 0.810 0.807 

BAPA23 1.308 1.021 N/R 0.819 0.819 

SIGN35 1.316 1.027 N/R 0.797 N/R 

TopologyNet* 18 1.34 N/R N/R 0.81 N/R 

DockingApp RF* 11 1.35 1.09 N/R 0.83 N/R 

DeepDTAF24 1.355 1.073 N/R 0.789 N/R 

DLSSAffinity33 1.40 N/R N/R 0.79 N/R 

Pafnucy30 1.42 1.13 N/R 0.78 N/R 

Pair64 1.44 N/R N/R 0.75 N/R 

GraphBAR36 1.542 1.241 N/R 0.726 N/R 

PointTransformer12 1.58 1.29 N/R 0.753 0.751 

MGNN* 65 N/R N/R N/R 0.85 N/R 

SE-OnionNet22 N/R N/R N/R 0.83 N/R 

PLEC-NN* 10 N/R N/R N/R 0.817 N/R 

Table 1. Comparison to high-performing models for predicting protein-ligand binding affinity on crystal 

structures of the PDBbind v.2016 core set.  
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Pearson r and the second-lowest mean absolute error 

(MAE) in the field.  

It is important to note that for the results presented 

in Table 1, the highest performing version of HAC-

Net is trained on all complexes in the PDBbind 

v.2020 general set that do not appear in either the 

v.2016 core set or our randomly generated validation 

set. The other models presented have been trained on 

a variety of different training sets, including the 

PDBbind v.2016 refined set, the v.2016 general set, 

the v.2018 refined set, and the v.2018 general set. 

Given that the performance of deep learning models 

is often improved when trained on more data, it is 

important to note that models trained with less data 

may indeed perform better on the PDBbind v.2016 

core set benchmark if they were trained on more data. 

However, it is also the case that for some models, 

training on only the refined set actually improves 

performance on the core set benchmark,37 given that 

the protein-ligand complex data in the refined set are 

of higher quality than those in the general set and the 

core set complexes are selected from the refined set.60 

This caveat, along with many others that we elucidate 

in later sections, necessitates training and evaluating 

on multiple train-test splits, as we demonstrate 

rigorously in later sections. 

Additionally, we utilize the procedures from 

CASF-201661 to assess the ability of HAC-Net to 

accurately rank, dock, and screen for ideal protein-

ligand pairs. We report our results, along with the 

complete procedures followed, as Supporting 

Information (SI Appendix, Table S3). Our model does 

not achieve comparable performance to commonly-

used docking programs such as AutoDock Vina,66 

which is unsurprising given that HAC-Net is not 

explicitly optimized for such tasks. However, many 

docking and screening approaches suffer from lower 

Pearson r and higher RMSE values compared to high-

performing ML-based approaches (Table 1).61 

Several groups have integrated these traditional 

docking methods with modern ML approaches,32,63,67 

and it has been shown that such combinations can 

largely retain both the precision of the ML-based 

component and the docking/screening power of the 

classical component, strongly motivating the parallel 

optimization of both components.62 

Figure 4. Comparison of root-mean-square error 

(RMSE) provided in units of pKD on the PDBbind 

v.2016 core set benchmark across all high-

performing models in the literature (to the best of our 

knowledge) for protein-ligand binding affinity 

prediction. HAC-Net achieves the lowest RMSE with 

a value of 1.205 pKD.  

4.2 Improved Performance Due to 

Attention-Based Implementations 

To demonstrate the importance of our model’s 

attention-based components, we independently train 

and test an analogous model without SE blocks in the 

3D-CNN and node-wise attentional aggregation in 

the GCNs, which we refer to as vanilla HAC-Net. We 

use identical training and validation sets as those used 

for HAC-Net to provide an accurate comparison of 

performance. Results on the PDBbind v.2016 core set 

are shown in Figure 5A-B, and it is clear that the 

inclusion of attention-based components 

significantly improves the performance of our model. 

a Root-mean-square error (RMSE) in units of pKD, mean absolute error (MAE) in units of pKD, r2, 

Pearson r, and Spearman 𝜌 are shown.  
b Models are ranked by RMSE in increasing order.  
c The best value for each metric is shown in bold.  
d * indicates that the model did not use a validation set, which is expected to present overly optimistic 

results.  
e HAC-Net is trained on the PDBbind v.2020 general set; HAC-Net‡ is trained on the PDBbind v.2016 

refined set. 

f Models trained on PDBbind v.2016 refined set: TopBP, AEScore, AK-score, PerSpectML, KDEEP, AGL-

Score, PSH-GBT, BAPA, SIGN, TopologyNet, GraphBAR, PointTransformer, MGNN; Models trained 

on PDBbind v.2016 general set: DeepAtom, OnionNet, FAST, DeepDTAF, DLSSAffinity, Pafnucy, 

PLEC-NN; Models trained on PDBbind v.2018 refined set: Pair; Models trained on PDBbind v.2018 

general set: DockingApp RF, SE-OnionNet. 
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5. Demonstration of Generalizability 

5.1 Concerns With Deep Learning Models 

for Predicting Protein-Ligand Binding 

Affinity 

There is significant concern in the literature 

regarding the inability of many deep learning models 

for binding affinity prediction to successfully 

generalize to data that are dissimilar to what they 

have been trained on.68 Moreover, the PDBbind 

database, which is the most commonly used database 

for protein-ligand binding affinity prediction, 

contains an appreciable bias due to the preferential 

tendency of experimentalists to measure certain 

classes of complexes that have been deemed worthy 

of investigation. Although this pattern in the data 

creates difficulty in training a model which can 

comprehensively sample chemical space, the data can 

be used to train models aimed at predicting binding 

affinities for the most interesting complexes (i.e., 

those with suspected biological and/or 

pharmaceutical significance, etc.). 

Volkov et al. have suggested that most models for 

predicting binding affinity learn primarily via 

memorization rather than by modeling any physically 

meaningful phenomena.68 To demonstrate this effect 

with a standard graph neural network, they trained 

and tested using only the proteins or only the ligands, 

and achieved results comparable to those obtained 

when the model was trained with the protein-ligand 

complexes. Moreover, this effect has been previously 

observed by others.69 We therefore train HAC-Net 

with protein-only and ligand-only data, and test 

performance on the PDBbind v.2016 core set to 

elucidate the extent to which this effect is present in 

our model. We find that performance on the core set 

is significantly worse in the cases of protein-only and 

ligand-only data compared to using complete protein-

ligand complexes (Table 1), although there is clearly 

a degree of memorization involved as our model 

achieves nontrivial results (SI Appendix, Fig. S4). For 

Figure 5. HAC-Net performance on PDBbind v.2016 core set benchmark and basic architectural scheme. 

(A) Correlation scatter plot depicting HAC-Net predictions of experimental pKD values for core set 

complexes. (B) Correlation scatter plot depicting vanilla HAC-Net predictions of experimental pKD values 

for core set complexes. Root-mean-square error (RMSE) provided in units of pKD, mean absolute error 

(MAE) in units of pKD, r2, Pearson r, and Spearman 𝜌 are shown for A and B. (C) Basic scheme of HAC-

Net architecture. Blue blocks denote components of the GCNs, red blocks denote components of the 3D-

CNN. In the GCNs, HAC-Net utilizes attentional aggregation (red), while vanilla HAC-Net utilizes simple-

sum aggregation (gray). In the 3D-CNN, HAC-Net utilizes squeeze-and-excitation (SE) blocks (red), while 

vanilla HAC-Net utilizes ordinary convolutional blocks (gray). 
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training and testing on protein-only data, RMSE 

increases drastically from 1.205 to 1.742 and Pearson 

r decreases from 0.846 to 0.638. In the case of ligand-

only data, RMSE increases to 1.605 and Pearson r 

decreases to 0.741.  

Multiple groups have suggested that the high 

performance of many deep learning models for 

predicting protein-ligand binding affinity is 

predicated on the similarity of proteins and ligands in 

the training and test sets used.68-70 For example, Li et 

al. have shown that imposing template modeling 

(TM)-score and sequence identity cutoffs between 

proteins in the training and test sets can lead to 

significant reductions in performance of deep 

learning models for binding affinity prediction.70 

Therefore, it is incumbent on new work in this field 

to demonstrate generalizability to complexes unlike 

those used for training, such that there is legitimate 

applicability to studying new systems. In this work, 

we present a rigorous protocol for doing exactly this. 

We illustrate the ability of our model to generalize 

across protein structure by utilizing agglomerative 

hierarchical clustering71 to group proteins by 

pairwise TM-scores70 and create training and test sets 

that maximize differences in protein structures. We 

perform an analogous evaluation for protein 

sequence, clustering proteins based on pairwise 

sequence identity of Needleman-Wunsch (NW)-

aligned70 sequences. In order to account for ligand 

similarity, we utilize the Butina clustering method72 

based on extended-connectivity fingerprints73  with 

Tanimoto coefficient (Tc) cutoffs74 to maximize the 

differences between ligands in the training and test 

sets. Furthermore, we perform 10-fold cross-

validation with a Tc cutoff between ligand SMILES75 

strings in the training and test sets and compare to a 

control. Lastly, to demonstrate that our model is not 

specialized for high-quality data like those in the 

PDBbind v.2016 core set, we evaluate the 

performance of HAC-Net on lower-quality data from 

the PDBbind v.2020 general set. 

5.2 Generalizability Across Proteins Based 

on Structure and Sequence Similarities 

To demonstrate the generalizability of our model 

to dissimilar proteins, we utilize pairwise structural 

and sequence homology of the proteins as distance 

metrics for hierarchical agglomerative clustering. 

Training, validation, and test sets are then generated 

from different clusters of the data, ensuring maximal 

dissimilarity between the proteins of different sets. 

Structural similarity between two proteins is 

defined by the TM-score70 according to the following 

equation: 

TM = max

[
 
 
 
1

𝐿𝑡
∑

1

1 + (
𝑑𝑖

𝑑0(𝐿𝑡)
)
2

𝐿𝑎

𝑖
]
 
 
 

 

[14]                                                                                                                                                

where 𝐿𝑡 is the length of the test protein, 𝐿𝑎 is the 

number of aligned residue pairs identified by TM-

align,76 𝑑𝑖 is the distance between the ith pair of α-

carbon atoms of the two structures, and 𝑑0(𝐿𝑡) =

1.24√𝐿𝑡 − 153 − 1.8 (a scale that normalizes 

distances). TM-score is therefore in the range [0,1], 

where higher values indicate greater similarity 

between protein structures. In the case of multi-chain 

proteins, these comparisons are carried out pairwise 

between all inter-protein chain combinations and the 

lowest similarity value is recorded. 

Protein sequence similarity is determined by 

aligning the two sequences using the NW algorithm70 

and then computing the sequence identity (i.e., the 

number of aligned identical residues divided by the 

length of the longer protein).  

In both cases, agglomerative hierarchical 

clustering is used to create dissimilar groups of 

protein-ligand complexes based on either protein 

structure or protein sequence similarity. This 

unsupervised learning method is initiated with a set 

of pairwise distances between data points (quantified 

by either TM-score or sequence identity) and 

iteratively merges the two most similar clusters.71 

When two existing clusters are merged, the new inter-

cluster distances are calculated according to Ward’s 

minimum variance objective function: 

𝑑(𝑢, 𝑣) =  √
|𝑣| + |𝑠|

𝑇
𝑑(𝑣, 𝑠)2 +

|𝑣| + |𝑡|

𝑇
𝑑(𝑣, 𝑡)2 −

|𝑣|

𝑇
𝑑(𝑠, 𝑡)2 

[15]  

where the clusters 𝑠 and 𝑡 have been merged to create 

a new cluster 𝑢, and the new distance between 𝑢 and 

some cluster 𝑣 needs to be determined. |𝑐| defines the 

number of data points in cluster 𝑐, and 𝑇 = |𝑠| +
|𝑡| + |𝑣|. 

To promote standardization in the field, we utilize 

train-test splits provided by Feinberg et al.34 that were 

generated with complexes in the PDBbind v.2007 

refined set according to the method detailed above, 

excluding a few complexes which were subsequently 

removed from the PDBbind database due to quality-

control concerns. For structure-based clustering, the 

training, validation, and test sets contain 919, 256, 

and 117 complexes, respectively. For sequence-based 
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clustering, the training, validation, and test sets 

contain 971, 220, and 101 complexes, respectively. 

As a control, we test on the PDBbind v.2007 core set 

(209 complexes), validate on 200 complexes from the  

PDBbind v.2007 refined set, and train on the 

remaining 883 complexes from the refined set. The 

results are presented in Table 2, and it is clear that the 

protein clustering techniques do not significantly 

impair the performance of HAC-Net, supporting its 

ability to generalize to unseen data with respect to 

protein structure and sequence (SI Appendix, Fig. 

S5). 

 

Table 2. Performance on the PDBbind v.2007 core 

set (Control), test set based on protein structure 

similarity (Structure-based), and test set based on 

protein sequence similarity (Sequence-based).  

aRoot-mean-square error (RMSE) in units of pKD, 

mean absolute error (MAE) in units of pKD, r2, 

Pearson r, and Spearman 𝜌 are shown. 

5.3 Generalizability Across Ligands Based 

on Extended-Connectivity Fingerprint 

Similarity 

In order to assess the generalizability of our model 

to dissimilar ligands, we cluster ligand extended-

connectivity fingerprints up to four bonds (ECFP4s) 

according to the Butina unsupervised clustering 

algorithm69,72 with a Tc cutoff of 0.8. In this case, any 

two ligands whose pairwise Tc is greater than or equal 

to 0.8 are considered to be neighbors. The ligands are 

then ranked by total number of neighbors in 

descending order, and the first ligand is clustered 

with all of its neighbors. All ligands within this 

cluster are then deleted from the remaining list, and 

cannot serve as either cluster centroids or members 

of another cluster. A new cluster is then created 

analogously from the highest-ranked ligand 

remaining in the list, and the process is iterated until 

no ligands remain. The smallest of the resulting 

clusters are combined to make a test set (1182 

complexes), the next smallest clusters are assembled 

into the validation set (1181 complexes), and all 

remaining complexes are used as the training data 

(9448 complexes). This protocol ensures that the 

ligands in the test set are internally diverse and 

maximally dissimilar to those in the training set. To 

promote standardization in the field, we utilize the 

clusters obtained from the PDBbind v.2015 database 

by Yang et al.69 using this protocol, and remove the 

complexes that were discarded by PDBbind due to 

quality-control concerns. 

This protocol yields the following results: RMSE 

of 1.240, MAE of 0.978, r2 of 0.355, Pearson r of 

0.597, and Spearman 𝜌 of 0.527 (SI Appendix Fig. 

S6). It is clear that while the correlation values are 

considerably reduced by this generalization method, 

the error values are not significantly impacted. This 

discrepancy may be explained by the model’s use of 

mean squared error (MSE) as the loss function, which 

explicitly prioritizes the minimization of error in the 

training process rather than maximizing correlation.  

We see that the ligand-based clustering method 

used in this work for creating training, validation and 

test sets evidently hinders the model’s performance 

more significantly than the protein-based methods 

(Table 2). This occurrence may be partially explained 

by the model’s ability to more effectively learn trends 

among the ligands than among the proteins, as 

supported by the greater performance of the model 

when trained and tested on only ligands as opposed 

to when only the proteins were used. The relatively 

low increases in RMSE and MAE metrics show 

unambiguously that the model is successful to a 

significant extent, suggesting that the high 

performance of HAC-Net cannot be attributed to high 

ligand similarity between training, validation and test 

sets, and supporting its ability to generalize to unseen 

data with respect to ligand ECFP4s. 

5.4 10-Fold Cross-Validation Based on 

Ligand SMILES Dissimilarity 

To further demonstrate the generalizability of 

HAC-Net, we perform 10-fold cross-validation. 

Specifically, we generate ten non-overlapping 500-

complex test sets from the PDBbind v.2020 refined 

set, and for the purpose of generating corresponding 

training and validation sets, we discard any 

remaining complexes with ligands that do not satisfy 

certain dissimilarity requirements relative to each test 

set. As a metric for ligand similarity, we compute the 

Tc  between the SMILES strings of each ligand pair 

in the PDBbind v.2020 refined set, asserting that no 

ligands in either the training or validation sets have a 

Tc greater than or equal to 0.7 with any ligand in the 

test set. Additionally, we ensure that no ligands in 

either the training or validation sets have an average 
Tc greater than 0.25 with all of the ligands in the test 

set. All validation sets contain 200 complexes, while 

Test set RMSE MAE r2 Pearson 

r 

Spearman 

ρ 

Control 1.447 1.153 0.598 0.807 0.824 

Structure

-based 

1.472 1.190 0.608 0.799 0.800 

Sequence

-based 

1.301 0.980 0.583 0.796 0.775 
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the training sets have sizes in the range of 2804 to 

2945 complexes, with the size variability due to the  

different ligand identities in the various test sets. 

An additional evaluation is performed on the 

PDBbind v.2016 core set to serve as a control, using 

training and validation sets containing 3100 and 200 

complexes, respectively, derived from the PDBbind 

v.2020 refined set. As can be seen in Table 3, the 

cross-validation control results are inferior to those 

presented in Table 1, likely due to the six-fold 

reduction in the size of the training set. 

We find that the error-based metrics (RMSE and 

MAE) are minimally affected on the cross-validation 

splits compared to the control, despite nontrivial 

reductions in correlation-based statistics (Pearson r 

and Spearman 𝜌). These results largely reinforce the 

conclusions derived from evaluation on the ECFP4-

based test set, namely that minimizing ligand 

similarity between training and test sets reduces 

performance but that a significant amount of learning 

takes place (Table 3). Additionally, the 

extraordinarily low standard deviations (average 

coefficient of variation between all five metrics is 

0.026) clearly demonstrate the reproducibility of 

HAC-Net trainings, suggesting that a retrained 

version of HAC-Net can reliably be expected to meet 

the same standard of performance.  

5.5 Performance on Lower-Quality Data 

Points 

The PDBbind v.2016 core set compiles crystal 

structures of high quality and with high-confidence 

binding affinity labels.59,60 However, to determine 

how the model performs when given lower-quality 

data for testing, we evaluate HAC-Net with an 

additional train-test split containing complexes 

selected from the PDBbind v.2020 general set. The 

training set contains 18,108 complexes, the 

validation set contains 300 complexes, and the test set 

contains 1000 complexes. In particular, 73.67% of 

the validation set complexes and 75.30% of the test 

set complexes are not in the refined set, ensuring that 

Test set RMSE MAE r2 Pearson r Spearman ρ 

Control 1.432 1.132 0.567 0.761 0.766 

Mean (σ) 1.473 (0.028) 1.170 (0.024) 0.430 (0.022) 0.665 (0.013) 0.670 (0.013) 

Set 1 1.462 1.152 0.443 0.672 0.678 

Set 2 1.450 1.176 0.448 0.676 0.672 

Set 3 1.451 1.159 0.447 0.669 0.675 

Set 4 1.497 1.163 0.414 0.659 0.661 

Set 5 1.481 1.182 0.424 0.654 0.656 

Set 6 1.454 1.158 0.444 0.678 0.677 

Set 7 1.501 1.187 0.409 0.650 0.658 

Set 8 1.483 1.182 0.424 0.661 0.680 

Set 9 1.527 1.219 0.383 0.639 0.649 

Set 10 1.426 1.123 0.465 0.686 0.697 

Table 3. Results of 10-fold cross-validation with complexes from the PDBbind v.2020 refined set, asserting 

that no ligands in either the training or validation sets have a Tc greater than or equal to 0.7 with any ligand 

in the test set, and that no ligands in either the training or validation sets have an average Tc greater than 

0.25 with all of the ligands in the test set. 

aRoot-mean-square error (RMSE) provided in units of pKD, mean absolute error (MAE) in units of pKD, r2, 

Pearson r, and Spearman 𝜌 are shown. The average metrics across the ten cross-validation trials are presented 

as Mean (σ), where σ is the standard deviation. 
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the quality of crystal structures used in these sets 

more precisely reflects the composition of the 

PDBbind database as a whole (72.62% of total 

complexes are not in the refined set). The results of 

this trial are shown in Figure 6, demonstrating the 

ability of HAC-Net to make accurate predictions for 

data points of lower quality. Similarly to the 

performance on both the ligand ECFP4-based test set 

and the 10-fold cross-validation test sets, the 

significant drop in correlation metrics but trivial 

increase in error metrics may be attributed to the use 

of MSE as the model’s loss function. To analyze the 

results in more detail, we also calculate absolute error 

for each data point in the test set, and plot these values 

as a function of crystal structure resolution (Fig. 6B). 

 
Figure 6. HAC-Net performance on lower-quality 

test set obtained from the PDBbind v.2020 general 

set. (A) Correlation scatter plot depicting HAC-Net 

predictions of experimental pKD values for structures 

in the lower quality test set. (B) Correlation scatter 

plot of absolute error for each data point in the test set 

as a function of crystal structure resolution. Pearson r 

and Spearman 𝜌 are shown. (C) Histogram showing 

the distribution of protein-ligand complexes in the 

lower-quality test set as a function of crystal structure 

resolution (green) as well as the number of structures 

determined with NMR (magenta). The mean and 

standard deviation (σ) for crystal structure resolution 

are shown. 

The negligible correlation in Figure 6B suggests 

that there is little or no relationship between 

structural resolution and the performance of HAC-

Net, indicating that its usefulness extends beyond the 

2.5 Å resolution required for admission into the 

refined set. The drop in performance observed when 
testing on complexes that are excluded from the 

refined set is thus likely attributable to the other entry 

requirements for the refined set, which ensure that 

only the highest-quality structures and binding 

affinities are included. It is natural that the model 

would struggle to perform well on lower-quality data, 

and researchers making use of HAC-Net should 

consult the criteria for admission into the refined set 

(other than structural resolution) for details regarding 

these potential deficiencies.60 Importantly, these 

results indicate that HAC-Net is not specialized for 

high-quality structures like those in the PDBbind 

v.2016 core set benchmark, and is instead 

generalizable to crystal structures across a wide range 

of resolutions and to NMR structures without 

significantly compromising performance. 

6. Summary 

We have developed HAC-Net, a deep learning 

model for highly accurate protein-ligand binding 

affinity prediction. By incorporating multiple forms 

of attention into our model’s architecture, specifically 

SE blocks into the 3D-CNN and attentional 

aggregation of node features into the GCNs, we 

obtain a significant increase in performance. HAC-

Net obtains state-of-the-art results on the PDBbind 

v.2016 core set, the most widely recognized 

benchmark in the field. We evaluate the 

generalizability of our model using multiple train-test 

splits, each of which maximizes differences between 

either protein structures, protein sequences, or ligand 

extended-connectivity fingerprints of complexes in 

training and test sets. Additionally, we perform 10-

fold cross-validation with a similarity cutoff between 

SMILES strings of ligands in the test sets and the 

corresponding training and validation sets, and also 

evaluate the performance of HAC-Net on lower-

quality data. We demonstrate that our model can 

successfully generalize to protein-ligand complexes 

dissimilar to those in the training set, and is not 

specialized for only high-quality structures.  

7. Methods 

7.1 Data Preprocessing 

All of the data that we supply to the model were 

initially downloaded from the PDBbind website.59 

Specifically, we downloaded the PDBbind v.2020 

general-except-refined-set and refined-set, both of 

which contain aligned protein (PDB format), protein 

pocket (PDB format), and ligand (MOL2 and SDF 

format) structural files, as well as the corresponding 

binding affinity data (as either pKD or pKI). We used 
the Chimera 1.16 software package77 to add 

hydrogens to each protein pocket PDB file and then 
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convert each to MOL2 format. Next, we reformatted 

any atoms in TIP3P format to avoid compatibility 

issues with the Pybel software package,78 which we 

later used for featurization. Four complexes (PDB 

IDs: 1A09, 4GII, 4BPS, 4MDQ) could not be 

interpreted through this process and were therefore 

discarded. Finally, we used Atomic Charge 

Calculator II (ACC2)79 to calculate and add partial 

charges to each protein pocket MOL2 file. ACC2 

determines which method and parameters are suitable 

for each input structure. The atomic charges for all 

but five protein pockets were calculated using the 

Extended Charge Equilibration Method (EQeq).80 

The charges for the protein pockets of PDB IDs 

4JDA, 5X5G, 6B8Y, and 4Y16 were calculated using 

the Charge Equilibration (QEq) method with the 

parameters presented by Rappé and Goddard.81 The 

atomic charges for the protein pocket of PDB ID 

5U2F were calculated using the Electronegativity 

Equalization Method82 with Raček 2016 

(ccd2016_npa) parameters.83 It is important to note 

that ACC2 will rarely supply charge estimates which 

are unreasonable. To account for this, we removed 

the complexes containing at least one atom with a 

partial charge assignment of magnitude greater than 

2.0 (34 of 19,438 complexes; 0.17%). 

7.2 Featurization 

We processed all of the MOL2 files with the 

Featurizer module from the tfbio software package84 

to compute features for all heavy atoms. This package 

utilizes Pybel78 to collect each heavy atom’s atomic 

number (one-hot encoding), number of bonds with 

heavy atoms (integer), number of bonds with 

heteroatoms (integer), hybridization state (integer), 

and partial charge (float). Next, each molecule’s 

SMARTS85 string was used to determine whether 

each atom is hydrophobic, aromatic, a hydrogen bond 

acceptor, a hydrogen bond donor, and/or a ring (one-

hot encoding for each). Additionally, we assigned 

each atom as present in either the protein or the ligand 

(-1 or 1, respectively). The features of each atom 

were then appended to its 3-dimensional coordinates, 

and the resulting vectors were concatenated vertically 

to create matrices representing each complex. All of 

these arrays were then assembled into a file in HDF 

format and tagged with the corresponding PDB ID 

and binding affinity label. For use in the GCN 

components of HAC-Net, an ordered list of van der 

Waals radii (float) was appended to the HDF file. 

 

7.3 Creation of Training, Validation, and 

Test Splits 

After the initial HDF file was generated, the 

contained data were then partitioned into the training, 

validation, and test sets used throughout this work. 

All sets that were selected from previous work 

(PDBbind v.2016 core set,61 splits obtained through 

protein structure- and sequence-based clustering34, as 

well as splits obtained through ECFP4-based 

clustering69) were constructed from the data in our 

initial HDF file with no further processing. In all 

other cases, the validation and test sets were held to 

the condition that they contain equal numbers of 

complexes from each percentile of the relevant 

binding affinity distribution to ensure a fair 

assessment of the model’s performance across the 

full range of affinities. Other than this requirement 

and the condition that there is no overlap between any 

of the sets within a given protocol, the validation set 

used for testing on the PDBbind v.2016 core set as 

well as both the validation and test sets for the 

evaluation on lower-quality data were randomly 

generated from the PDBbind v.2020 general set, and 

the remaining complexes were used for training. For 

our 10-fold cross-validation, the sets were held to the 

above requirements in addition to membership in the 

PDBbind v.2020 refined set. Additionally, the ten test 

sets had no overlapping complexes. For each of the 

cross-validation splits, we utilized the Pybel software 

package78 to compute SMILES strings from ligand 

MOL2 files and Tc for each member of the test set 

with every other ligand in the PDBbind v.2020 

refined set. Ligands not in the test set were removed 

if the Tc between them and any ligand in the test set 

was greater than 0.7. Additionally, we asserted that 

the average Tc between any ligand not in the test set 

and the collection of all test set complexes was less 

than 0.25. After this filtering process, the validation 

set was selected randomly from the remaining 

complexes while enforcing the equal distribution of 

binding affinities detailed above. All other refined-set 

complexes not filtered out by the similarity 

requirements were then used as training data.  

7.4 Voxelization 

Once training, validation, and test sets had been 

assembled in HDF format, they could immediately be 

used by the GCN components of the HAC-Net 

architecture. However, for use in the 3D-CNN, the 

atomic features must be voxelized into 4-dimensional 

grids with dimensions 48×48×48×19. We first 

aligned each protein-ligand complex to the center of 
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a 3-dimensional voxel grid, then assigned each 

atomic feature vector to the voxel containing the 

center of the corresponding atom. On the rare 

occasion that two atom centers were positioned in the 

same voxel (0.22% of atoms), we summed the 

corresponding features within that voxel. If an atom’s 

center was outside of the 48 Å voxel grid (0.01% of 

atoms), we omitted its features from the voxelized 

data. These 4-dimensional arrays were collected for 

all members of each dataset, and these collections 

were saved as HDF files. 

 

7.5 Trainings 

The 3D-CNN component of HAC-Net was 

constructed and trained using PyTorch.57,58 The 

trainings were carried out for 100 epochs with a batch 

size of 50 complexes, utilizing the MSE loss function 

and the Root Mean Square Propagation (RMSProp) 

optimizer,86 with an initial learning rate of 0.0007. If 

the number of complexes in the training set was not 

divisible by the batch size, the last batch contained 

fewer than 50 complexes. To reduce bias during the 

training, the order of the complexes was randomly 

shuffled for each epoch. After each epoch, the model 

was evaluated with the validation data, allowing us to 

assess the propensity of the training for overfitting, 

and a checkpoint containing model parameters was 

saved. In addition, we computed the average 

correlation between predicted and true values on 

validation data as (Spearman 𝜌 +  Pearson r)/2 at 

the end of each epoch, and selected for feature 

extraction the training checkpoint that corresponded 

to the highest average correlation. We then used the 

extracted features as input to train a set of fully-

connected layers identical to those used in the feature 

extraction protocol other than the single distinction of 

using batch normalization with momentum of 0.3 for 

estimating the moving mean and moving variance 

rather than 0.1, and followed the same procedure to 

select the checkpoint to be used in HAC-Net. 

The GCN components of HAC-Net were 

constructed and trained primarily using PyTorch 

Geometric.53,54 It is important to note that HAC-Net 

contains two GCNs which have identical 

architectures and training protocols. Each GCN was 

trained for 300 epochs with a batch size of 7 

complexes, utilizing the MSE loss function and 

Adam optimizer,87 with a constant learning rate of 

0.001. The order of complexes was randomized for 

each epoch, and if the number of training complexes 

was not divisible by the batch size, the leftover 

complexes were simply discarded for that epoch. The 

GCNs were evaluated on the validation data after 

each training epoch, and the checkpoint that 

corresponded to the highest average correlation on 

the validation set was selected for each GCN.

Data and Software Availability 

All of our software, as well as all training, validation, 

and test sets used in this work are available as open 

source at https://github.com/gregory-kyro/HAC-

Net/. Additionally, the HACNet Python package is 

published to PyPI at 

https://pypi.org/project/HACNet/. 
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List of Figures and Tables 

 

S1: Correlation scatter plots depicting predictions of HAC-Net subcomponents on experimental 

pKD values of protein-ligand complexes in the PDBbind v.2016 core set. (A) 3D-CNN and 

(B) GCN are shown. r 2, Spearman 𝜌, and Pearson r are shown on plots. 

S2: Learning curves for testing on the PDBbind v.2016 core set. Validation and training loss (left 

y-axis) and average correlation ((Spearman 𝜌 +  Pearson r)/2) on the validation set (right 

y-axis) are shown as a function of epoch for the (A) 3D-CNN feature extraction, (B) GCN 0, 

and (C) GCN 1. 

S3:  Performance of HAC-Net on the Comparative Assessment of Scoring Functions (CASF)-2016 

ranking, docking, and screening tests for protein ligand complexes in the CASF-2016 test set. 

S4: Correlation scatter plots depicting the performance of HAC-Net on the protein-ligand 

complexes of the PDBbind v.2016 core set compared to protein-only and ligand-only trainings 

and tests. Root-mean-square error (RMSE), mean absolute error (MAE), r2, Pearson r, and 

Spearman 𝜌 are shown. Predictions of experimental pKD values are shown on the (A) protein-

ligand complex data (control), (B) protein-only data, and (C) ligand-only data. 

S5: Correlation scatter plots depicting generalizability of HAC-Net across protein structure and 

sequence. Root-mean-square error (RMSE), mean absolute error (MAE), r2, Pearson r, and 

Spearman 𝜌 are shown for predictions of experimental pKD values for complexes in the A) 

PDBbind v.2007 core set (Control), (B) test set based on protein structure-dissimilarity 

(Structure-based), and (C) test set based on protein sequence-dissimilarity (Sequence-based). 

S6: Correlation scatter plot depicting generalizability of HAC-Net based on ligand extended-

connectivity fingerprints across four bonds (ECFP4s). Root-mean-square error (RMSE), 

mean absolute error (MAE), r2, Pearson r, and Spearman 𝜌 are shown for predictions of 

experimental pKD values. 

S7: Correlation scatter plots depicting performance of HAC-Net on 10-fold cross-validation based 

on Tanimoto coefficient (Tc) cutoff applied to ligand SMILES strings. Root-mean-square 

error (RMSE), mean absolute error (MAE), r2, Pearson r, and Spearman 𝜌 are shown for 

predictions of experimental pKD values on the PDBbind v.2016 core set (CV Control), as well 

as the ten cross-validation test sets. 
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Figure S1. Correlation scatter plots depicting predictions of HAC-Net subcomponents on 

experimental pKD values of protein-ligand complexes in the PDBbind v.2016 core set. (A) 3D-

CNN and (B) GCN are shown. Root-mean-square error (RMSE), mean absolute error (MAE), r 2, 

Pearson r, and Spearman 𝜌 are shown on plots. 
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Figure S2. Representative learning curves for testing on the PDBbind v.2016 core set. Validation 

and training loss (left y-axis) and average correlation ((Spearman 𝜌 +  Pearson r)/2) on the 

validation set (right y-axis) are shown as a function of epoch for the (A) 3D-CNN feature extraction 

and (B) one of the GCNs. 
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Table S3. Performance of HAC-Net on the Comparative Assessment of Scoring Functions 

(CASF)-2016 ranking, docking, and screening tests for protein ligand complexes in the CASF-

2016 test set. 

 
aWe assess ranking power with mean Spearman ρ, predictive index (PI) and Kendall τ across all 

57 proteins, and docking power with success rate (SR), where a complex is marked as a success if 

the root-mean-square deviation (RMSD) of the top 1, 2 and 3 identified ligands is below a preset 

cutoff of 2.0 Å. To assess screening power, we calculate the SR of identifying the highest-affinity 

binder among the 1%, 5%, and 10% top-ranked ligands for each target protein in the test set (F: 

forward) and the SR of identifying the highest-affinity binder among the 1%, 5%, and 10% top-

ranked proteins for each target ligand (R: reverse). Additionally, we utilize the mean enhancement 

factor (EF) among all proteins in the test set. This entire procedure is outlined by Su et al. (J. Chem. 

Inf. Model. 2019, 59, 2, 895–913) 

 

 

 

 

 

 

 

 

 

 Ranking Docking Screening 

Model Spearman ρ PI Kendall τ SR Top 1 SR Top 2 SR Top 3 SR 1% 

F/R 

SR 5% 

F/R 

SR 10% 

F/R 

Mean 

EF 1% 

Mean 

EF 5% 

Mean 

EF 10% 

HAC-Net 0.705 0.731 0.611 0.368 0.572 0.702 0.088/0.

042 

0.211/

0.109 

0.386/0.1

68 

2.24 1.91 1.71 
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Figure S4. Correlation scatter plots depicting the performance of HAC-Net on the protein-ligand 

complexes of the PDBbind v.2016 core set compared to protein-only and ligand-only trainings and 

tests. Root-mean-square error (RMSE), mean absolute error (MAE), r2, Pearson r, and Spearman 

𝜌 are shown. Predictions of experimental pKD values are shown on the (A) protein-ligand complex 

data (control), (B) protein-only data, and (C) ligand-only data. 
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Figure S5. Correlation scatter plots depicting generalizability of HAC-Net across protein structure 

and sequence. Root-mean-square error (RMSE), mean absolute error (MAE), r2, Pearson r, and 

Spearman 𝜌 are shown for predictions of experimental pKD values for complexes in the A) 

PDBbind v.2007 core set (Control), (B) test set based on protein structure-dissimilarity (Structure-

based), and (C) test set based on protein sequence-dissimilarity (Sequence-based). 
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Figure S6. Correlation scatter plot depicting generalizability of HAC-Net based on ligand 

extended-connectivity fingerprints across four bonds (ECFP4s). Root-mean-square error (RMSE), 

mean absolute error (MAE), r2, Pearson r, and Spearman 𝜌 are shown for predictions of 

experimental pKD values. 
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Figure S7. Correlation scatter plots depicting performance of HAC-Net on 10-fold cross-

validation based on Tanimoto coefficient (Tc) cutoff applied to ligand SMILES strings. Root-

mean-square error (RMSE), mean absolute error (MAE), r2, Pearson r, and Spearman 𝜌 are shown 

for predictions of experimental pKD values on the PDBbind v.2016 core set (CV Control), as well 

as the ten cross-validation test sets. 
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