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Abstract

Reaction diagram parsing is the task of extracting reaction schemes from a diagram

in the chemistry literature. The reaction diagrams can be arbitrarily complex, thus ro-

bustly parsing them into structured data is an open challenge. In this paper, we present

RxnScribe, a machine learning model for parsing reaction diagrams of varying styles.

We formulate this structured prediction task with a sequence generation approach,

which condenses the traditional pipeline into an end-to-end model. We train Rxn-

Scribe on a dataset of 1,378 diagrams and evaluate it with cross validation, achieving

an 80.0% soft match F1 score, with significant improvements over previous models. Our

code and data are publicly available at https://github.com/thomas0809/RxnScribe.

Introduction

In the chemistry literature, new reactions and synthesis pathways are often presented in

diagrams. As Figure 1 illustrates, these diagrams exhibit significant diversity and can be
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Single Line Multiple Line

Tree Graph

Figure 1: Examples of reaction diagrams in chemistry literature. We summarize four com-
mon styles of reaction diagrams: single-line, multiple-line, tree, and graph. The exam-
ple diagrams are adapted with permission from Faizi et al. 1 [Copyright © 2016 American
Chemical Society], Armitage et al. 2 [Copyright © 2015 American Chemical Society], Gib-
bons et al. 3 [Copyright © 2015 American Chemical Society], and Shen et al. 4 [Copyright
© 2016 American Chemical Society].

arbitrarily complex. The importance of automatic parsing of these diagrams into structured

data has been recognized by the research community.5–7 For each diagram, the task is to

recognize the reaction scheme and extract the reactants, conditions, and products for each

reaction. In this paper, we aim to design a general machine learning solution for reaction

diagram parsing that robustly generalizes across styles. Assuming expert annotations of

reaction schemes on a collection of diagrams, we train a neural network model that can

predict the reactions in new diagrams.

This paper introduces RxnScribe, a simple and effective model for reaction diagram
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parsing. We formulate this structured prediction problem as sequence generation. To ac-

complish this, we define a sequence representation to describe the reaction structure in a

diagram, which specifies the reaction roles (reactants, conditions, and products) and indi-

cates the bounding box coordinates and the type of each entity (e.g., a molecular graph or

a textual description). We train a generation model to predict this sequence representation

conditioned on the diagram image. Compared to traditional pipelined approaches7 that first

extract the entities and then predict their relationships, our formulation simplifies the pro-

cess and naturally avoids the problem of error propagation. At inference time, we decode the

reaction structure from the predicted sequence, and subsequently apply off-the-shelf molec-

ular structure recognition8 and optical character recognition9 models to translate the entity

bounding boxes into molecular structures and texts.

To train RxnScribe, we construct a dataset with reaction diagrams collected from the

chemistry literature. The dataset consists of 1,378 diagrams with 3,776 reactions, covering

the four styles presented in Figure 1. The ground truth of reaction structure is annotated

by domain experts. We further develop a data augmentation strategy that composes simple

diagrams into more complex ones to augment the training data.

In the experiments, we evaluate RxnScribe on our dataset with five-fold cross validation.

We only evaluate the accuracy of the predicted reaction structure, as we do not have the

ground truth for the molecular structures (i.e., SMILES strings) and text content. RxnScribe

attains a significant performance boost compared to previous models. The model achieves

an 80.0% F1 score (soft match) overall, ranging from 91.0% on single-line diagrams to 65.9%

on the most complicated graph-style diagrams, while the scores for existing models are below

10%. RxnScribe also benefits from the proposed data augmentation techniques to achieve

strong performance with a small number of training data. Our code and data are publicly

available at https://github.com/thomas0809/RxnScribe. We have also developed an

online interface for RxnScribe: https://huggingface.co/spaces/yujieq/RxnScribe.
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RxnScribe

Reactant Condition Product

[R]OC(C1=CC=CC=C1C#C
C2=CC=CC=C2)=O

CIBcat (1.4 equiv)

toluene, 100℃  24h

O=C1C2=CC=CC=C2C([B])=
C(C3=CC=CC=C3)O1

O=C1C2=CC=CC=C2C([B])
=C(C3=CC=CC=C3)O1

pinacol (3 equiv)

NEt3, rt, 1h

O=C1C2=CC=CC=C2C([Bpi
n])=C(C3=CC=CC=C3)O1

Reaction 1

Reaction 2

Reaction Diagram

Figure 2: Overview of reaction diagram parsing. The input is a reaction diagram, and the
output is a list of reactions. The example diagram is from a journal article.1

Reaction Diagram Parsing

Task Definition

Reaction diagram parsing is the task of extracting chemical reactions from the diagrams

in the literature. Figure 2 gives an overview of the task. The input is an image of a

reaction diagram, which illustrates either a single reaction or a series of reactions. We aim

to extract the reaction(s) in this diagram, and identify their reactants, products, and reaction

conditions. Specifically, the expected output is a list of reactions {R1, R2, . . . , Rn}, where

each reaction consists of three roles Ri = (Si, Ci, Ti). Si is the set of reactants and Ti is

the set of products, each consisting of one or multiple molecule structures. Ci is the set of

reaction conditions, which may be empty if no condition is specified in the diagram.

To obtain the input for our task, we utilize PDF parsing tools10 to crop reaction diagrams

from chemistry papers and convert them into image files (PNG format).
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Related Work

Published research on extracting reactions from chemistry literature focuses primarily on

text.11–14 For example, Pistachio15 is a reaction dataset constructed from patent text with

a traditional natural language processing pipeline, which includes syntactic parsing, named

entity recognition (to extract chemical names), and event extraction (to assemble chemicals

into reactions).16,17 Steiner et al. and Vaucher et al. developed expert-curated heuristics18

and a sequence-to-sequence generation model,19 respectively, to convert experimental pro-

cedure text into synthesis actions. For processing more diverse text in journal articles, Guo

et al. proposed a deep learning model to extract the reaction schemes.20 They formulated

the task into two stages: product extraction and reaction role labeling, each solved by se-

quence tagging adapted from pre-trained language models. Our paper studies a different

input source – reaction diagrams, which are images and naturally require different models to

process. Both text and diagram parsing are important components in information extraction

from chemistry literature.

Prior work on diagram parsing focused on the segmentation of molecular images from the

diagrams5,6 and the recognition of their chemical structures.5,8,21–23 Only a few attempted to

understand the relationships between the molecules, i.e., reaction schemes. Wilary and Cole

proposed ReactionDataExtractor7 to extract reaction schemes from the diagrams. They

developed a pipeline based on image processing techniques and heuristics. This method first

converts the input image to grayscale and removes noisy pixels. Then, additional rules are

used to segment out the arrows, molecules, and texts. For example, arrows are identified by

running a line detection algorithm, and filtered based on a criterion that the half with the

arrow hook should have sufficiently more pixels than the other half. Molecules are identified

by first clustering the pixels, then finding the clusters with many bonds, suitable sizes, and

aspect ratios. Finally, they use an arrow as the indicator of a reaction and assign reactants,

products, and conditions to the arrow according to their relative positions and distances.

ReactionDataExtractor can successfully parse simple single-line reaction diagrams, but many
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Sequence Representation of Reaction Structure

Figure 3: RxnScribe is a sequence generation model for reaction diagram parsing. We define
a sequence representation of the reaction structure in a diagram. Each entity is represented
as five tokens. The reaction role is described with special tokens ([Rct]: reactant, [Cnd]:
condition, [Prd]: product, [Rxn]: reaction).

diagrams in chemistry literature contain patterns that are not covered by this rule-based

system. For example, reactions presented with vertical, branched, or curved arrows (see

Figure 1) cannot be recognized by their system. In our experiments, we found that the

performance of those heuristics on our collected diagrams is unsatisfactory given realistic

variation in drawing styles.

Model

We propose a general-purpose neural network framework RxnScribe for reaction diagram

parsing. RxnScribe is an extraction model that identifies the reaction structure in the image

and segments out the relevant entities, i.e., their reactants, conditions, and products. Then,

we use MolScribe,8 a molecular structure recognition model, to translate the images of

molecular entities into SMILES strings, and use an optical character recognition (OCR)

tool9 to recognize the text content. In this paper, we mainly discuss the reaction extraction

model.
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The challenge of formulating reaction diagram parsing with machine learning lies in the

complexity of the reaction structure. Each reaction role may contain a variable number of

entities (molecules or texts), thus we cannot apply existing information extraction models

which usually predict the relationship between two entities24–26. In this paper, we propose

a simple and effective formulation. We define a sequence representation of the reaction

structure in a diagram, which serializes the reactions into a sequence of tokens, and train a

model to generate this sequence given the diagram.

Sequence Representation of Reaction Structure Figure 3 illustrates the definition of

our sequence representation of reaction structure in a diagram. First, each entity of interest

is represented as five tokens:

Entity := x1 y1 x2 y2 EntityType (1)

The first four tokens describes its bounding box in the image, (x1, y1) and (x2, y2) are the

coordinates of the top-left and bottom-right corners, respectively. The coordinates are con-

verted to integer tokens by binning,27 i.e., x := b x
W
×nbinsc, y := b y

H
×nbinsc, where x, y are

the pixel-level coordinates, W and H are the width and height of the diagram image, and

nbins is a hyperparameter for the number of bins. The fifth token represents the entity type:

EntityType := [Mol] | [Txt] | [Idt] (2)

We define three types of entities: molecule ([Mol]), text ([Txt]), and identifier ([Idt]).

(Identifier is a text label which refers to another molecule in the same article, such as 2

and 3c.) Usually, reactants and products are drawn as molecular graphs and conditions are

written in text in the diagram, but there are also many cases where molecules are denoted

as text or identifiers.
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The sequence for the reaction structure in a diagram is defined by the following grammar:

ReactionStructure := (Reaction)∗ [EOS] (3)

Reaction := Reactants Conditions Products [Rxn] (4)

Reactants := (Entity)+ [Rct] (5)

Conditions := (Entity)∗ [Cnd] (6)

Products := (Entity)+ [Prd] (7)

where (·)∗ means zero or more occurrences, and (·)+ means one or more occurrences. Each

Reaction is a subsequence, which consists of three reaction roles: Reactants, Conditions,

and Products, and ends with a [Rxn] token. Each reaction role corresponds to a sequence

of Entitys, and ends with a special token ([Rct], [Cnd], or [Prd]). Note that Reac-

tants and Products must contain at least one Entity, but Conditions can be empty.

The overall ReactionStructure is described by stacking the Reaction subsequences

one by one. We rank the Reactions according to their reading order (explained in the data

section). Finally, an [EOS] token completes the sequence.

Model Architecture RxnScribe takes a diagram image as input and generates a sequence

of the reaction structure. The model has an encoder-decoder architecture: an encoder ab-

stracts the input image into hidden representations, and a decoder generates the output

sequence in an autoregressive fashion, i.e., it predicts one token at a time, conditioned on

the image encoding and the tokens that has already been generated. We follow the im-

plementation of Pix2Seq,27 which was originally designed for object detection. It uses a

convolutional neural network as the encoder, and a Transformer network as the decoder.

Training RxnScribe is trained by maximizing the likelihood of the ground truth reaction

structure sequence via teacher forcing. In practice, we first pre-train the model on a generic

object detection dataset28, which only seeks to predict the objects (entities) in an image,
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Figure 4: Transition between states at inference time. Circles are the states and arrows are
the possible transitions. Each token generated is mapped to a state in this figure.

then finetune the model on our reaction diagram dataset. The pre-training helps the model

to converge faster and improves its final performance.

Inference At inference time, RxnScribe uses a greedy decoding strategy to generate its

output sequence. We impose simple constraints to guarantee the generation follows the

grammar of the proposed sequence representation. When RxnScribe is decoding, we maintain

a state of the current prediction step, and use it to determine what tokens the model is

allowed to predict in the next step. Figure 4 displays the possible transitions between the

states. For example, when the model is predicting the x1 coordinate of a reactant (state

“Rct x1”), it must predict its y1 coordinate next; when the model is predicting the entity

type of a product (state “Prd type”), the next token can either be an x1 coordinate for

another product, or a [Prd] token if all the products have been predicted. Such constraints

are enforced by masking the output vocabulary to avoid generating an invalid token, i.e., the

model can only generate tokens that follow the sequence representation grammar, and the
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Table 1: Statistics of our reaction diagram parsing dataset.

Single-line Multiple-line Tree Graph Overall

Num. of diagrams 730 260 286 102 1378
Num. of entities 7536 4831 4934 1926 19227
Num. of reactions 882 948 1313 633 3776
Avg. num. of reactions per diagram 1.2 3.6 4.6 6.2 2.7
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Num. of reactions
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101
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Figure 5: The number of diagrams with respect to the number of reactions in each diagram.

invalid tokens are masked out. Finally, the predicted sequence is converted to the reaction

structure according to its definition.

Data

To train and evaluate RxnScribe, we create a high-quality dataset with annotated reac-

tion structures over diagrams extracted from chemistry literature. Table 1 summarizes the

statistics of our dataset.

Dataset Construction We collect a list of 662 articles from four chemistry journals:

Journal of the American Chemical Society, Journal of Organic Chemistry, Organic Letters,

and Organic Process Research & Development, where each article is a PDF file. We use

the pdffigures tool10 to extract the diagram images from the PDF files. The diagrams are

categorized into four styles: single-line, multiple-line, tree, and graph, based on how the
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reactions are organized in the diagram. An example of each style can be found in Figure 1.

In Figure 5, we show the distribution of the number of reactions in each diagram. The

majority of the diagrams contain fewer than 10 reactions, and about half of all examples are

simple diagrams with a single reaction.

Annotation The annotation process consists of two stages: entity annotation and reaction

role annotation. An example of the annotation can be found in the supporting information.

The first step is to annotate the relevant entities in the diagrams, typically presented in

the form of a chemical structure (molecular graph) or a text sequence (chemical name and

formula, identifier, etc). For each entity, we annotate a rectangle bounding box (defined

by four coordinates) and its entity type. As mentioned in the model section, we consider

three main types of entities: molecule, text, and structure identifier. Amazon Mechanical

Turk (MTurk) was used to collect the initial entity annotations. We carefully refined them

using the CVAT29 platform to resolve annotation errors and ambiguities, which mainly

involve bounding box tightness and missing entities. For example, small-sized entities such

as structure identifiers were often skipped by the annotators. Finally, 23% (317) diagrams

have been manually corrected. In this work, we only annotate the bounding boxes of the

entities, and do not annotate the SMILES strings of the molecules or the content of the texts

due to the high annotation costs.

The second step is to annotate the reaction roles given the diagram and the annotated

entities. As this process requires domain knowledge, two students with bachelor’s degrees in

chemistry performed the annotation. Each annotator was given the diagram with visualized

entities, and each entity was associated with a unique index. All possible reactions were

annotated in a sequential form, and each reaction was annotated with the three reaction

roles ([Rct], [Cnd], [Prd]). The annotation followed three general guidelines:

1. All reactions displayed in the diagram, including intermediate steps, should be anno-

tated. However, if the diagram indicates a reaction is not valid (e.g., a cross mark on
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the arrow, occurs less than 5% in the dataset), it is not annotated.

2. For each reaction, all of its reactant/condition/product entities should be annotated as

specified in the diagram. Conditions include reagent, catalyst, solvent, temperature,

and time. We also annotate other relevant information such as reaction type as con-

ditions. In cases where byproducts are present, we do not distinguish them with the

main product and annotate both as products.

3. Annotation follows the reading order in general, i.e., top-to-bottom and left-to-right;

however, for tree and graph-style diagrams where there is not a natural reading order,

we do not specify a particular order and leave the decision to the annotator.

Finally, one author of the paper double-checked the annotations to guarantee their correct-

ness and consistency.

Data Augmentation

Given the constructed dataset, we are able to train a neural network model for reaction

diagram parsing. However, the number of annotated diagrams is relatively small, and about

half of them are simple and consist of a single reaction (see Figure 5). Because our goal is to

train a robust model that accurately parses diagrams with different styles in the real world,

we develop data augmentation techniques to generate synthetic reaction diagrams during

training.

Figure 6 illustrates the data augmentation process. We first have a compositional aug-

mentation stage to synthesize more complex diagrams from the training data. Specifically,

we randomly sample multiple diagrams from the training data, and concatenate them verti-

cally to form a new diagram with multiple reactions. If the diagrams have different width,

a random offset is added to the shorter one. The number of diagrams that are concatenated

together ranges from 2 to 6, with the probability of concatenating more diagrams decreasing

exponentially. The annotation of the new diagram is the combination of the annotations of

12
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Figure 6: Data augmentation in RxnScribe. We randomly compose simple diagrams into
more complex ones, and apply image transformations.

the original diagrams, while the entity bounding boxes are shifted accordingly in the new

diagram. After compositional augmentation, we further apply image transformations, includ-

ing resizing, padding, rotation, flipping, and color jitter at random. These transformations

improve the model’s robustness against image perturbations.

Experiments

Experimental Setup

The model architechture of RxnScribe consists of a ResNet-50 backbone and a 6-layer Trans-

former for sequence generation. This architecture was adoped in previous research on object

detection.27,30 We initialize the parameters of RxnScribe with a Pix2Seq model checkpoint27

pre-trained on the MS-COCO object detection dataset,28 which contains 118K images and

the annotations of object bounding boxes. We finetune the model on our dataset for 600

epochs, with a maximum learning rate of 3e-4, a linear warmup for the first 2% steps and a

cosine function decay. The training batch size is 32. The input diagram is resized and padded

to a fixed resolution of 1333×1333. At inference time, we post-process the predictions to

remove obvious mistakes, such as duplicate reactions and empty entities.
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Due to the small size of the dataset, we perform 5-fold cross validation to evaluate

RxnScribe. The dataset is evenly split into five subsets. We train five models, each model

uses four subsets for training and development, and the other one for testing. We report the

evaluation results on the combined five test sets.

We compare RxnScribe with two reaction diagram parsing software, ReactionDataEx-

tractor7 and OChemR.31 ReactionDataExtractor is a rule-based pipeline. OChemR trains

an object detection model to recognize arrows, molecules, and texts, and uses heuristics to

identify the reaction roles.

Evaluation Metric

The evaluation of reaction diagram parsing results is non-trivial, as both prediction and

ground truth are sets of reaction structures. Often, the prediction does not match the

ground truth exactly. For example, the entity bounding boxes may be slightly shifted or the

orders of the reactions predicted differently, but many of these cases should be considered as

correct. We design two groups of evaluation metrics, hard match and soft match, to evaluate

the model. Figure 7 illustrates the evaluation process, which will be explained in detail next.

For each diagram, we denote the ground truth as G = {R1, R2, . . . , Rn} and the prediction

as P = {R̂1, R̂2, . . . , R̂m}. We first describe how to compare a predicted reaction R̂ with a

ground truth reaction R. We find a mapping between the two lists of entities in R̂ and R.

Specifically, for each entity in R, we find the entity in R̂ which has the maximum bounding

box overlap with it. The bounding box overlap is measured by the Intersection over Union

(IoU) score. If the maximum IoU is greater than a threshold 0.5, we consider the predicted

and ground truth bounding boxes as being successfully matched.

In our hard match evaluation, we say the prediction R̂ matches the ground truth R if

all the reactants, conditions, and products of the R̂ and R can be matched. In the soft

match evaluation, we only take into account the molecule entities, and do not distinguish

between reactants and reagents (part of the conditions). We have two considerations for the
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IoU = 0.8

matched

Ground Truth Prediction

Hard Match: ✘    Soft Match: ✓

Figure 7: Evaluation of reaction diagram parsing results. Each ground truth entity is
matched with a predicted entity that has the maximum IoU overlap (at least 0.5). Hard
match evaluation requires all the reactants, conditions, and products to be matched. Soft
match evaluation only considers molecule entities and does not distinguish between reactants
and reagents (part of the conditions).

soft match evaluation. First, it only compares molecule entities and ignores text entities,

because there is often ambiguity in whether two consecutive text lines are annotated as one

entity or two entities. Second, it does not distinguish reactants and conditions, because

sometimes a molecule is drawn above or below the reaction arrow and visually looks like a

condition, but actually contributes heavy atoms and is conventionally considered a reactant.

Figure 7 provides an illustrative example, where the molecule containing a TMS group is

annotated as a reactant in the ground truth, but predicted as a reaction condition by the

model. While this prediction is considered incorrect under hard match evaluation, it is

considered correct under soft match evaluation.

For both hard match and soft match, we compute the precision, recall, and F1 scores.

As we do not have the one-to-one correspondence between the predicted reactions and the

ground truth reactions, we enumerate all pairs and compare each R̂i with each Rj. Then

15



Table 2: Evaluation of reaction diagram parsing performance (scores are in %).

Hard Match Soft Match

Precision Recall F1 Precision Recall F1

ReactionDataExtractor 4.1 1.3 1.9 19.4 5.9 9.0
OChemR 4.4 2.8 3.4 12.4 7.9 9.6

RxnScribe 72.3 66.2 69.1 83.8 76.5 80.0
- No pre-training 66.4 59.4 62.7 80.4 71.3 75.5
- No compositional augmentation 67.1 60.7 63.8 78.2 70.2 74.0
- Random reaction order 72.0 64.2 67.9 83.9 74.3 78.8
- No post-processing 70.8 66.0 68.3 82.1 76.4 79.1

the metrics are defined as follows:

precision =
1

m

m∑

j=1

1

(
∃ i ∈ {1, . . . , n}, R̂j matches Ri

)

recall =
1

n

n∑

i=1

1

(
∃ j ∈ {1, . . . ,m}, Ri matches R̂j

)

F1 =
2 · precision · recall

precision + recall
.

(8)

The precision measures what fraction of the model predictions are correct, and the recall

measures what fraction of the ground truth are correctly predicted. Finally, we report the

micro-averaged metrics over the test set.

Results and Analysis

Table 2 shows the overall evaluation results. As the first neural model for reaction diagram

parsing, RxnScribe achieves strong performance (hard match F1 69.1% and soft match F1

80.0%). We present four ablation studies in Table 2: (1) training the model from scratch

without pre-training on object detection; (2) training without compositional augmentation;

(3) using a random order of reactions for each diagram instead of the reading order (i.e.,

the annotation order); (4) without post-processing at inference time. All these variants

perform worse than the full model. RxnScribe leverages the proposed techniques to achieve
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1. object detection RDE: rule-based

OChemR: neural network

2. reaction assembly RDE: rule-based

OChemR: rule-based

reaction 1 reaction 2

    [Mol][Rct]  … [Cnd]  … [Prd] [Rxn]

    [Mol][Rct]  … [Cnd]  … [Prd] [Rxn]

[EOS]

x(1)
1 y(1)

1 x(1)
2 y(1)

2
x(4)

1 y(4)
1 x(4)

2 y(4)
2

Sequence Representation of Reaction Structure

RxnScribe

Figure 8: Comparison between previous pipelined approaches (left) and RxnScribe (right).
RDE: ReactionDataExtractor.

strong performance with limited training data. We notice that RxnScribe sometimes predicts

duplicate reactions or empty entities, and these mistakes have been removed with a simple

post-processing which leads to about 1% improvement in F1.

RxnScribe markedly outperforms existing rule-based systems, whose soft match F1 scores

are below 10%, at least in part because they have not been tuned for the diagrams in our

dataset. For example, ReactionDataExtractor designed its rules based on a dataset that

contains mostly single-line diagrams. In our evaluation, ReactionDataExtractor achieves

27.4% precision, 15.0% recall, and 19.4% F1 (soft match) on single-line diagrams. Figure 9

compares ReactionDataExtractor and RxnScribe’s predictions on three single-line diagrams.

In the first example, where there is a single reactant and a single product, and the separa-

tion between the molecules and the arrow is clear, ReactionDataExtractor can recognize it

correctly. In the other two examples, where the reaction involves multiple reactants or the

diagram contains multiple reactions, ReactionDataExtractor makes mistakes such as missing

a reactant or incorrectly merging two molecule entities. Our RxnScribe model handles these

cases adequately, and achieves a 91.0% soft match F1 on single-line diagrams.
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Figure 9: Examples of ReactionDataExtractor (left) and RxnScribe (right) predictions. We
analyze three single-line diagrams in our dataset, which are adapted with permission from Lu
and Alper 32 [Copyright © 2005 American Chemical Society], Briones and Davies 33 [Copy-
right © 2013 American Chemical Society], and Faizi et al. 1 [Copyright © 2016 American
Chemical Society]. Check marks and cross marks represent correct and wrong predictions,
respectively.

RxnScribe’s success can be credited to its sequence generation formulation, which avoids

the inherent problems of the previous pipelined approach, i.e., first segment out the relevant

entities and then compose them into reactions. Figure 8 compares the two solutions. Our

method has three advantages compared with the pipelined approach. First, our method

avoids the issue of error propagation, while in a pipelined approach, inaccurate entity de-

tection can lead to compounded errors in the subsequent steps. Second, our neural network

model can generalize well to diverse reaction diagrams, without relying on complex heuristics

to assemble entities into reactions. Third, we do not require the annotation of the arrows or

the association between arrows and the entities. RxnScribe directly generates the reaction

structure as a sequence, skipping the intermediate step of arrow and entity detection.

Figure 10 shows some examples of RxnScribe’s prediction on more complex diagrams.

18



Exam
ple (1)

Exam
ple (2)

✓ ✓

✓ ✓

✓ ✓

reactant

condition

product

Exam
ple (3)

✓

✓

✓

✘ ✘ ✘

✘

✓: correct
✘: wrong

✓

✓ ✓

Figure 10: Examples of RxnScribe predictions. Each predicted reaction is visualized in a
separate image. The original diagrams are shown in Figure 1. Check marks and cross marks
represent correct and wrong prediction, respectively, under the soft match criterion.
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Table 1

precision recall F1

Single Line 85.9 84.1 85.0
Multiple Line 75.9 69.9 72.8
Tree 66.5 59.9 63.0
Graph 57.3 48.8 52.7

Table 2

precision recall F1

Single Line 91.9 90.1 91.0
Multiple Line 88.0 80.9 84.3
Tree 80.1 71.9 75.8
Graph 72.2 60.7 65.9

Soft match

0
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100

precision recall F1
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80.1 84.380.9

88.0 91.090.191.9

Single Line Multiple Line Tree Graph

1

Figure 11: RxnScribe’s performance on four styles of diagrams.

Example (1) is a multiple-line diagram, where RxnScribe correctly predicts all four reactions.

Example (2) is a tree-style diagram with three reactions. RxnScribe predicts one horizontal

and one vertical reaction correctly, but makes a mistake on the third reaction, probably

because the arrow has two lines which is rare in the dataset. Example (3) is a graph-style

diagram with nine annotated reactions. RxnScribe makes six correct predictions and three

wrong predictions, and there are three other reactions in the ground truth not predicted

by the model. This diagram contains many curved and branched arrows, which are still

challenging for RxnScribe.

Figure 11 decomposes RxnScribe’s performance on four diagram styles. The model per-

forms the best on single-line diagrams, achieving a 90.4% soft match F1 score, but performs

relatively worse on the other three styles. It is expected because the other three styles are

more complex, diverse, and contain more reactions in average. Besides, there are fewer

such examples than single line diagrams in the training data, which leads to lower accuracy

on those diagrams. Nevertheless, even in the hardest group “graph”, which only has 102

examples in the dataset, RxnScribe still achieves above 60% soft match F1.

In Figure 12, we show how the compositional augmentation and using more training

data help the model to achieve better performance. We analyze the results on the four

styles, as well as the diagrams with different number of reactions. On single line diagrams

and those with only one reaction, compositional augmentation does not help because it
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Figure 12: Top: performance of models trained with or without compositional augmentation.
Bottom: performance of models trained with 100%, 50%, or 25% of training data.

only creates diagrams with multiple lines and multiple reactions, but the performance on

the other three styles have been significantly improved with this augmentation. Comparing

the models trained with 25%, 50%, and 100% data, we observe the performance constantly

improves with more training data, especially on complex diagrams with multiple reactions.

It implies the potential of further boosting the performance by collecting more training data.

A promising avenue for future research is to adopt an active learning strategy, whereby we

use the predictions of our current RxnScribe model to selectively identify and annotate more

challenging diagrams.

Conclusion

This paper presents RxnScribe, a novel model for reaction diagram parsing. We define a

sequence representation to describe the reaction structure in a diagram, where each entity,
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reaction role, and reaction is expressed as a sequence of discrete tokens. RxnScribe lever-

ages this simple and effective formulation and trains a sequence generation model to predict

the reaction structure. We collect a dataset of 1,378 diagrams to train and evaluate Rxn-

Scribe. Our experiments validate that RxnScribe can accurately parse the reaction diagrams

in different styles. Our model’s performance on specific types of reactions can be further

improved by annotating more diagrams, such as biosynthesis and metabolic pathways, which

will facilitate data extraction in these domains.

We contribute to this research area by defining the task of reaction diagram parsing,

proposing the first machine learning solution, and constructing a diverse dataset for train-

ing and evaluation. Despite the success in our experiments, there are a few limitations in

this work. First, we focus on parsing the reaction structure, but do not evaluate the final

extracted reaction SMILES strings due to the lack of such ground truth in our dataset. The

molecular structure recognition model MolScribe and the OCR tool might introduce addi-

tional errors. Second, we limit our study to diagrams presented in digital format, excluding

those that are either scanned or hand-drawn. Furthermore, the extracted information from

diagrams are sometimes incomplete. For example, the reaction conditions are sometimes

listed in a table and the molecules may involve R-groups which are defined elsewhere. Fu-

ture work needs to design methods to consolidate the information from diagrams, tables,

and texts.

Data and Software Availability

Our code, data, and model checkpoints are publicly available at https://github.com/t

homas0809/RxnScribe. We have also developed a web interface for RxnScribe: https:

//huggingface.co/spaces/yujieq/RxnScribe. Our dataset is constructed on the journal

articles shared between the American Chemical Society (ACS) and MIT under a private

access agreement. We have obtained approval from ACS to release the dataset for future
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research.

Supporting Information Available

Detailed evaluation results for RxnScribe and other tools, an illustration of our data annota-

tion process, and the sources of our reaction diagram dataset are available in the supporting

information.
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Experiment Results

Table 1 and Table 2 display the complete evaluation results of RxnScribe and the compared

models. Table 1 shows the hard match scores and Table 2 shows the soft match scores. We

present both the overall performance and the performance on each diagram style. RxnScribe

achieves better performance compared to other models.

Annotation

Figure 1 shows an example of our two-step annotation procedure.

Given a reaction diagram, we first annotate the entities, including molecules, texts, and

identifiers, and assign indices to them. Each entity is annotated with its bounding box and

entity type. The entity annotation was performed by was performed by Amazon Mechanical

Turk and cost about $1000.
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Reactants Conditions Products
Reaction 1 3 4, 5 2
Reaction 2 2 10, 6 1

Reaction Diagram

Entity Annotation

Reaction Role Annotation

Figure 1: Our annotation process. First, we annotate the entities in a diagram, and assign
an index to each entity. Second, we annotate the reaction roles. The example diagram is
from a journal article.?

Then, we visualize the entity bounding boxes and annotate the reaction roles. For each

reaction, the annotator selects the indices of its reactants, conditions, and products. This

annotation process was performed by two chemistry students and took approximately two

months to complete.
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Dataset

Our dataset contains 1,378 reaction diagrams, collected from 662 journal articles shared by

ACS. We have obtained approval from ACS to release the dataset. The diagrams can be

downloaded at https://huggingface.co/yujieq/RxnScribe/blob/main/images.zip.

The ground truth files are included in our GitHub repository (https://github.com/thoma

s0809/RxnScribe/tree/main/data/parse).

We list the DOI numbers of the relevant journal articles below.

acs.joc.5b00301 acs.joc.5b00302 acs.joc.5b00632 acs.joc.5b00685

acs.joc.5b01204 acs.joc.5b01366 acs.joc.5b01547 acs.joc.5b01703

acs.joc.5b02057 acs.joc.5b02237 acs.joc.5b02345 acs.joc.5b02382

acs.joc.6b00020 acs.joc.6b00116 acs.joc.6b01001 acs.joc.6b01262

acs.oprd.5b00027 acs.oprd.5b00070 acs.oprd.5b00137 acs.oprd.5b00144

acs.oprd.5b00148 acs.oprd.5b00170 acs.oprd.5b00209 acs.oprd.5b00251

acs.oprd.5b00278 acs.oprd.5b00282 acs.oprd.5b00303 acs.oprd.5b00312

acs.oprd.5b00331 acs.oprd.5b00339 acs.oprd.5b00370 acs.oprd.5b00371
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