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Abstract 
 

A simple approach was developed to computationally construct a polymer by composing simplified 

molecular-input line-entry system (SMILES) strings of a polymer backbone and a molecular fragment. This method 

was used to create 14 polymer datasets by combining seven polymer backbones and two large molecular datasets 

(ZINC and QM9). Polymer backbones that were studied include four polydimethylsiloxane (PDMS) based 

backbones, polyethylene oxide (PEO), poly-allyl glycidyl ether, and polyphosphazene. The generated polymer 

datasets can be used for various cheminformatics tasks, including high-throughput screening for gas permeability 

and selectivity. This study used machine learning (ML) models to screen the polymers for CO2/CH4 and CO2/N2 gas 

separation using membranes and several polymers of interest were identified. 
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Introduction 
 

In the field of cheminformatics, large datasets are valuable for various screening and generative tasks.  

Machine learning (ML) techniques coupled with large collections of data have been successfully applied to materials 

discovery. With access to large collections of data, machine learning approaches can be used to discern 

relationships between chemical structures and their properties.1,2 For these tasks, researchers often represent 

chemical structures using the simplified molecular-input line-entry system (SMILES) string format.3 This format 

allows molecular structures to be specified as text strings, which can be converted into the molecular models. 

Although cheminformatics has had a significant impact on molecular chemistry,2,4–9 its impact on polymer 

research is rather limited due to the scarcity of accessible polymer datasets in the literature.10–14 To address this, 

Luo et al. published the PI1M dataset, consisting of approximately  one million polymers for polymer informatics.15 

These polymers, encoded as SMILES strings, were generated using a machine learning (ML) generative model 

that was trained on a collection of approximately 12,000 polymer structures from the PoLyInfo database16. Yang et 

al.17 constructed a dataset comprising eight million hypothetical polyimides formed by the polycondensation of 

known diamines/diisocyanates with dianhydrides from the PubChem library dataset. They also created another 

dataset containing 1,100 ladder polymers that was generated through the binary combinations of components of 

existing ladder polymers, supplemented by a recurrent neural network (RNN) model.  

Finally, we note that researchers have generated polymer datasets for various ML tasks;18–20 however, 

such datasets are often challenging to apply to other classes of polymers or are publicly unavailable. Additionally, 

recent developments in generative molecular design, such as inverse design methods,21 have the potential to create 

molecules and polymers dynamically during ML tasks;21–27 however, these techniques are more complex to 

implement than the approach presented in this paper. 

This work presents a simple approach to generate large polymer datasets in which the backbone is 

specified in advance and the side group(s) are varied with different molecular fragments obtained from large 

chemically diverse datasets of small organic molecules such as ZINC28,29 and QM930. The molecular fragments are 

chemically diverse,2,29,31 leading to the generated polymers being chemically diverse as well. 

The generated polymer datasets can be utilized for various cheminformatics purposes, including high-

throughput screening of polymers for specific applications. This research focuses on finding suitable polymers for 

CO2/CH4 and CO2/N2 gas separation using membranes. Polymers for CO2/CH4 separation are widely used in 

industrial processes such as natural gas purification, biogas improvement, oil production enhancement, and landfill 

gas cleaning.32–34 CO2/N2 separation polymers are desirable in carbon capture technologies based on polymer 

membranes, as membrane-based carbon dioxide separation processes offer low energy consumption, ease of 

operation, and compact design.35–37  

When evaluating high-performance gas separation polymers, researchers commonly rely on the Robeson 

upper bounds.38,39 These bounds demonstrate the trade-off between permeability (Px) and selectivity (Px/Py) for 

gasses X and Y, and were first identified by Robeson by plotting log10(Px/Py) against log10(Px) for various gas 

pairs. This approach highlights the challenge of finding polymers that simultaneously exhibit good permeability (Px) 

and selectivity (Px/Py). The present study employs ML models to identify such high-performance polymers for 

CO2/CH4 and CO2/N2 gas pair separations. 

In previous studies, various ML models were developed for predicting gas permeabilities and selectivities 

using experimental data from literature.13,17,40–42 Rampi et al.13,40,41 utilized hierarchical fingerprints for model 

training, while Barnett et al.42 and Yang et al.17 employed simpler, bit-based hashed fingerprints. The latter approach 

was chosen for this study due to its ease of implementation. 
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Methods 
 

Polymer Dataset Generation 

The SRUs43 (structural repeating units) of the polymers were created by combining the polymer backbones 

with molecules from the ZINC and QM9 datasets treated as molecular fragments (R) as shown in Figure 1. SMILES 

notations were used to combine the polymer backbone and R, which can be better explained using an example.  

Consider the SMILES of the polymer shown in Figure 1. It can be represented by *O[Si](R)(C)*, where R 

denotes the molecular fragment to be substituted. A computer program was written to substitute the SMILES of the 

molecular fragment in place of R, followed by checking whether the resulting composite SMILES represented a 

valid molecule using RdKit’s MolFromSmiles module. If the composite SMILES was invalid, the order of atoms in 

the fragment group's SMILES was rearranged using RDKit, and the procedure of substitution and validation was 

repeated up to 20 times until a valid SMILES was obtained. Fragments that did not result in any valid polymer SRUs 

were discarded. 

Combining two SMILES strings often results in a valid SMILES because the SMILES representation does 

not explicitly include hydrogen atoms. The new SMILES string created can automatically adjust the valency of atoms 

that are affected by the newly formed bond, making it a valid representation. 

It is worth noting that the SMILES of fragments can be rearranged multiple times and added to the 

backbone, resulting in a greater diversity of chemically unique SRUs. However, in this study, that step was not 

taken as the datasets created were already quite large. 

 

 

 

Figure 1. A schematic of a polymer in which the dashed box surrounds a fixed backbone, while the 

dotted oval indicates varying fragments from the molecular dataset. 
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Figure 2. Seven polymer backbones used to create polymer datasets. 

 

Polymer Backbones Used 

In the study, seven polymer backbone structures were employed, and they are depicted in Figure 2. Four 

of these backbones were based on the structure of polydimethylsiloxane (PDMS) and included the PDMS 

backbone, PDMS-1C, PDMS-2C, and PDMS-3C. The PDMS backbone directly connected the R group to the Si 

atom, while PDMS-1C, PDMS-2C, and PDMS-3C added one, two, and three alkyl groups, respectively, between 

the R group and the Si atom. In experiments, connecting a side chain or fragment to PDMS-2C and PDMS-3C 

backbones is considered synthetically more feasible than with PDMS and PDMS-1C backbones. Polymers with the 

latter two backbones are relatively challenging to synthesize because the reactions used to couple C atoms to Si 

atoms usually require the presence of a catalyst and involve reacting with a C=C bond.44,45 Additionally, the PDMS 

backbone may have unstable bond formation if the side chain has a heteroatom (O, N, S, P, etc.) directly linking 

the Si and C atoms. 

The remaining three backbones utilized in this study were polyethylene oxide (PEO), poly-allyl glycidyl 

ether (PAGE), and polyphosphazene (PZ). The PAGE backbone is a variant of PEO and is considered easier to 

synthesize. All the backbones examined in this study have demonstrated good performance in producing polymer 

membranes.46–52 

 

Fragments from Molecular Datasets 

The molecular fragments for this study were obtained from two large, chemically diverse datasets of small 

organic molecules: the shortened ZINC dataset and the shortened QM9 dataset.29 The ZINC dataset consists of 

approximately 1.93 million small non-ionic organic molecules, while the QM9 dataset contains approximately 

132,000 such molecules (see Table 1). Both datasets were sourced from Github repositories,53,54 and are also 

included in the Github repository with the link provided in the SI. 

 

Internal Diversity of Polymer Datasets 

The molecular fragments used in the study needed to be diverse to generate a polymer dataset that covers 

a broad chemical space. One metric to quantify  the chemical diversity of a dataset is internal diversity (IntDivp).29,31 

For a dataset of molecules/polymers A, internal diversity is given by,29 

 

𝐼𝑛𝑡𝐷𝑖𝑣𝑝(𝐴) =  1 −  √
1

|𝐴|2 ∑

𝑚1,𝑚2 𝜖 𝐴 

𝑇(𝑚1, 𝑚2)𝑝
𝑝

 

 

where, |A| is the size of the dataset, T(m1, m2) is the Tanimoto-similarity of molecules in A with respect to each 

other, and p can be 1 or 2.55 The values of internal diversity lie between 0 and 1, with values closer to 1 indicating 

greater diversity in a dataset. The internal diversities, IntDiv1 and IntDiv2, which correspond to Tanimoto distance 

and Tanimoto variance, respectively, were calculated for each of the ZINC and QM9 molecular datasets, as well as 

for the polymer datasets generated from them and for the PI1M dataset. 

 

Development of ML Models for Permeabilities and Selectivities 

A database of experimentally measured gas permeabilities in polymers was compiled by gathering data 

from the Polymer Gas Separation Membrane Database,56,57 verifying the data from original reports, and 

supplementing it with additional data for various polymers and gases, resulting in a collection of approximately 

1,500 polymers with various gas permeability data. Repeat units of the polymers were encoded as SMILES strings 
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and added to the database. This database was utilized in the creation of ML models for predicting CH4, CO2, and 

N2 permeabilities, as well as CO2/CH4 and CO2/N2 selectivities in polymers, as discussed in the following sections. 

 

ML Models for Gas Permeability Prediction 

First, copolymers and ladder polymers were removed from the polymer database explained in the previous 

section, resulting in 687, 610, and 725 homopolymers for CO2, CH4, and N2 gas permeabilities, respectively, 

available for ML. Then, using an in-house code, each SRU SMILES of the cleaned polymer database was repeated 

to generate an n-mer, also encoded as a SMILES string. The accuracy of the ML model improved with increasing 

the number of repeat units, but plateaued at n = 3 as shown in Figure SI-2 in the SI. In literature, oligomers with 

more than five repeat units are known to perform well in property prediction tasks as they partially represent the 

repeating nature of polymers.58 Thus, in this study, n was set to 10. 

The resulting n-mer encoded as SMILES strings were transformed into RDKit fingerprints59 using the RDKit 

library. The target gas permeabilities, measured in Barrers, were converted to a logarithm 10 scale for fitting in the 

ML model. The ML model used was a Gaussian process regressor (GPR), which was trained using the protocol of 

Barnett et al.42 The dataset was randomly shuffled and divided into training and test sets during the fitting process, 

with 20% of the data reserved for testing (Table 2).  

 

ML Models for Selectivity Prediction 

ML predictions for gas selectivity can be obtained in two ways. The most common method relies on 

separate models for each of the two gasses to predict their permeabilities; the predicted selectivity is estimated 

from the ratio of the predicted permeabilities.17,40–42 An alternative approach is to train models directly on 

experimental selectivity data, which we found to be more accurate. 

In our study, we compared these methods. In method 1, following the methodology explained in the 

previous section, we trained ML models to predict the permeabilities of CH4, CO2, and N2, and then used the ratios 

of the predicted permeabilities to calculate the CO2/CH4 and CO2/N2 selectivities. In method 2, the CO2/CH4 and 

CO2/N2 selectivities were calculated from the ratios of the experimental CO2 and CH4, and CO2 and N2 

permeabilities, respectively. GPR models were trained on these selectivity data, using RDKit-fingerprints derived 

from 10-mer SMILES as input features. A total of 608 polymers were used for CO2/CH4 selectivity and 664 polymers 

for CO2/N2 selectivity in the ML training and testing process, with 20% of the data reserved for testing (Table 2). 

The datasets were randomly shuffled and split into training and test sets during the model fitting process.  The 

results of selectivity predictions using methods 1 and 2 are presented in the results section and in Figure 5.  

 

Use of ML Models for Polymer Screening 

Trained ML models were applied to predict the permeabilities of CO2, CH4, and N2, as well as the 

selectivities of CO2/CH4 and CO2/N2 across multiple polymer datasets employed in this study. To achieve this, the 

SRU SMILES of the polymers were first converted into RDKit-fingerprints using the same method employed in 

training the ML models. These fingerprints were then utilized as inputs to the ML models to predict the gas 

permeabilities and selectivities of the polymers. Predicted gas permeabilities and selectivities were used to screen 

for polymers that are predicted to have gas permeation properties above the Robeson upper bound.38,39  

 

Results and Discussion 
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Generated Polymer Datasets 

A total of 14 datasets of polymers were created by combining seven different polymer backbones and two 

small molecule datasets, ZINC and QM9. The generated datasets along with ZINC, QM9 and PI1M are listed in 

Table 1, and complete datasets can be found in the SI. 

 

Internal Diversity of Polymer Datasets 

 The internal diversities, IntDiv1 and IntDiv2, of all the datasets considered in this study are displayed in 

Table 1. Across all datasets, IntDiv1 was found to be slightly greater than IntDiv2. The ZINC dataset had an internal 

diversity of 0.85, which was lower than the internal diversity of the QM9 dataset, which was calculated to be 0.91. 

However, this trend was reversed in the corresponding polymer datasets. For instance, ZINC-PDMS-1C had a 

higher internal diversity of 0.75 compared to QM9-PDMS-1C with an internal diversity of approximately 0.72. On 

average, the internal diversities of generated polymers from the backbones were close to 0.75, which was lower 

than the internal diversity of the PI1M dataset, measured to be 0.85. This difference is understandable, as a 

generated polymer dataset has a uniform backbone in all polymers. 

 

Table 1. Description of datasets along with their internal diversities employed in this study. Number of 

polymers found above the Robeson bound for various polymer datasets for the CO2/CH4 screening 

are also included. 

Dataset Description Data size Reference 

Internal diversity Number of polymers 
screened above the 
Robeson Bound for 
CO2/CH4 

IntDiv1 IntDiv2 All Non-ring  

ZINC Molecular dataset 

consisting of small 

organic molecules. 

1,936,962 Polykovski

y et al.53  

0.856 0.851 - - 

QM9 Molecular dataset 

consisting of small 

organic molecules. 

131,979 Ramakrish
nan et 

al.30  

0.918 0.904 - - 

PDMS-ZINC 

These polymer datasets 
were created by 
combining polymer 
backbones and 
molecular datasets, and 
named accordingly. 
For example, PDMS-3C-
ZINC dataset was 
created by combining 
the PDMS-3C polymer 
backbone and the 
molecular fragments 
from the ZINC molecular 
dataset. 

~ 1.93 M 
each 

This work 

0.785 0.782 746 0 

PDMS-1C-ZINC 0.763 0.76 707 0 

PDMS-2C-ZINC 0.745 0.742 953 0 

PDMS-3C-ZINC 0.732 0.729 415 0 

PEO-ZINC 0.785 0.782 0 0 

PAGE-ZINC 0.632 0.695 0 0 

PP-ZINC 0.71 0.707 0 0 

PDMS-QM9 ~ 1.32 K 
each 

0.773 0.768 123 1 
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PDMS-1C-QM9 0.733 0.73 47 0 

PDMS-2C-QM9 0.704 0.701 24 0 

PDMS-3C-QM9 0.68 0.677 10 0 

PEO-QM9 0.778 0.772 0 0 

PAGE-QM9 0.633 0.63 0 0 

PP-QM9 0.638 0.634 0 0 

PI1M Polymer dataset 
generated using a ML 
generative model. 

~ 1 M Luo et 

al.15 

 
 

0.855 0.843 13 2 

 

  

 

Table 2. Evaluation of ML fitting for training and testing of various gas permeabilities and selectivities. 

Fitting 
entity 

Training Test 

Data 
Size 

MAE R2 Data 
Size 

MAE R2 

Log10 CO2 
permeability 

550 0.08 0.99 137 0.38 0.81 

Log10 CH4 
permeability 

488 0.10 0.99 122 0.42 0.82 

Log10 N2 
permeability 

580 0.09 0.99 145 0.42 0.84 

CO2/CH4 
selectivity 

486 0.99 0.99 122 7.58 0.59 

CO2/N2 
selectivity 

531 0.96 0.97 133 3.81 0.60 

 

 

ML Models for Gas Permeabilities 

 Figure 3 presents ML models utilized for the training and testing of gas permeabilities for CO2, CH4, and 

N2. Table 2 provides an overview of the model evaluations. The training results showed high levels of accuracy, 

with coefficients of determination (R2) of 0.99 and mean absolute errors (MAE) of 0.08, 0.10, and 0.09 for CO2, CH4, 

and N2, respectively. Similarly, the testing phase demonstrated reasonable performance, with R2 values of 0.81, 

0.82, and 0.84 and corresponding MAEs of 0.38, 0.42, and 0.42 for CO2, CH4, and N2, respectively. 

 

Prediction of Gas Selectivities 

 Gas selectivities were calculated using two methods: method 1 involved taking the ratio of predicted 

permeabilities, while method 2 involved fitting a separate ML model to predict selectivities. Figure 4 shows the ML 

fittings for CO2/CH4 and CO2/N2 selectivities using method 2, and Table 2 provides an overview of the model 

evaluations. The training R2 values for both selectivities were strong (>0.97), indicating a good fit between the 
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models and the training data. However, the test R2 values for CO2/CH4 and CO2/N2 selectivities were lower (0.59 

and 0.60, respectively) due to the limited data available for fitting selectivity. Despite this, the corresponding MAE 

values of 7.58 and 3.81, respectively, were acceptable for identifying and screening potential polymers in the study. 

The accuracy of both methods for predicting selectivities was evaluated against experimental selectivities 

for CO2/CH4 and CO2/N2 on untrained data (Figure 5). Both methods showed comparable accuracy for CO2/CH4, 

with R2 of approximately 0.6 and MAE of approximately 8. However, for CO2/N2, method 2 outperformed method 1 

with an R2 of 0.60 and MAE of 3.81, compared to method 1 with an R2 of 0.44 and MAE of 4.57. The key difference 

between the two methods was the presence of large error bars in gas selectivities for both gas pairs in method 1. 

This was due to error propagation that occurred during the division of predicted permeabilities to calculate the 

selectivity. Such errors may lead to over or underestimated selectivity values, particularly noticeable in large and 

diverse polymer datasets. This is demonstrated in Figure 6, using the ZINC-PDMS polymer dataset, where method 

1 displayed a higher variance of gas selectivities for both gas pairs compared to method 2. This trend was observed 

across all polymer datasets analyzed in this study. 

Considering the more accurate selectivities obtained from the separately fitted ML model for selectivity 

(method 2), we present the screening results for CO2/CH4 and CO2/N2 using this approach. 
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Figure 3. Fittings for log10s of CO2, CH4, and N2 permeabilities. Blue and orange points correspond to 

train and test datasets, respectively. 

 

 

 

 

Figure 4. Fittings for CO2/CH4 and CO2/N2 selectivities. Blue and orange points correspond to train 

and test datasets, respectively. 
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Figure 5. Evaluations of selectivities obtained from taking the ratio of the predicted permeabilities 

(method 1) versus fitting a separate ML model to predict selectivities (method 2) against the 

experimental values. The figure shows the results for both methods for the CO2/CH4 and CO2/N2 gas 

pairs. Note that the error bars from method 1 were too large, therefore, not shown in full. 
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Figure 6. Comparison of screening results for the PDMS-ZINC polymer dataset, using two different 

methods: Method (1) predicts permeabilities and divides them to obtain selectivities, and method (2) 

predicts selectivities via separately fitted ML models. The figure shows the results for both methods for 

the CO2/CH4 and CO2/N2 gas pairs. 

 

 

 

Screening of Polymer Datasets 

Using the ML models described (vide supra), predictions of CO2/CH4 and CO2/N2 permeabilities and 

selectivities were made for the 14 generated polymer datasets and the PI1M dataset, comprising a total of 15.4 

million polymers.  

 

CO2/CH4 Screening 
 

The results of CO2/CH4 selectivity versus CO2 permeability predictions are shown in Figure 7.  The number 

of polymers above the Robeson bound for all datasets is displayed in Table 1. The datasets that contain PDMS and 

its derivative backbones tend to have higher permeabilities and the highest number of polymers above the Robeson 

bound, with a total of 3025. In contrast, datasets containing PEO, PZ, and PAGE backbones showed no polymers 

above the Robeson bound. The spread of predictions in the permeability-selectivity space was found to be related 

to the size of the backbones. Larger backbones had a larger impact on the polymer, leading to a smaller spread in 

predictions. This trend was observed across the PDMS series backbones, where the spread decreased with an 

increase in the number of C atoms. The PZ backbone, being the largest, showed the smallest spread in predictions.  

Finally, the PI1M dataset demonstrated the broadest spread in the permeability-selectivity space due to 

its high internal diversity. Despite this, only 13 polymers were found to be above the Robeson bound, which was 

the key objective of this screening study. This highlights the importance of considering multiple datasets in the 

screening process, as relying solely on a dataset with high internal diversity may result in missing the edge cases 

of interest. 

Additionally, it's important to note that polymers containing rings are typically glassy at room temperature 

and may not be ideal for membrane applications.60 As such, the number of non-ring polymers above the Robeson 

bound was also recorded in Table 1. Only three non-ring polymers were found to lie above the Robeson bound. A 

full list of screened polymers is included in the SI. 
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Figure 7. Plots of predicted CO2/CH4 selectivity versus CO2 permeability for various polymers 

datasets. 
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CO2/N2 screening  
 

The plots of CO2/N2 selectivity versus CO2 permeability are displayed in Figure 8. Unfortunately, none of 

the generated polymers in this study were found to be above the Robeson bound. However, six polymers from the 

PI1M dataset were found to be above the Robeson bound. To broaden the search, the criteria for screening were 

lowered to include polymers with CO2 permeability and CO2/N2 selectivity larger than 250 barrer and 25, 

respectively, as indicated by the yellow shade in the plots. Despite these changes, no generated polymers derived 

from ZINC and QM9 datasets in this study met these criteria. On the other hand, the PI1M dataset had 452 polymers 

that were in the specified region, with 444 of them being non-ring polymers. 

It is important to note that the CO2/N2 selectivity model fitting shown in Figure 5 performed slightly poorly 

in predicting selectivities above 25, which was one of the goals of our screening task. One of the reasons for this 

result is the data imbalance; the number of polymers with selectivity data points above 25 (236) was smaller than 

the number of selectivity data points below 25 (484), causing the model to be biased against predicting larger 

selectivities. 

To address this issue, we employed a combination of a classifier model followed by regression models. 

The method and results are presented in the SI. Although the fitting of this method was slightly poor (with an R2 of 

0.53 for the test dataset), it did manage to screen 143 polymers derived from the ZINC and QM9 datasets that fell 

within the target region. In addition, 198 polymers were screened from the PI1M dataset. A full list of screened 

polymers from both the models is included in the SI. 
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Figure 8. Plots of predicted CO2/N2 selectivity versus CO2 permeability for various polymers datasets. 
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Conclusions 
 

A simple approach was developed to synthesize polymers by combining the SMILES of a polymer 

backbone and a molecular fragment. By using seven different polymer backbones and two large molecular datasets 

(ZINC and QM9), 14 unique polymer datasets were generated. Additionally, an already available polymer dataset 

PI1M was also included in the study. The polymer datasets were found to be diverse, as demonstrated by their 

internal diversity scores. 

The datasets were then used as input to screen polymers  for their applications in CO2/CH4 and CO2/N2 

gas separation using membranes. To achieve this, ML models were trained using experimental data of gas 

permeabilities obtained from the literature. The ML models were used to predict the permeabilities and selectivities 

of the polymers in the generated datasets, helping to identify polymers that meet the criteria of being above the 

Robeson bound. This is a key characteristic of high-performance polymers in gas separation applications. 

To obtain the selectivities, two methods were explored - one by dividing the predicted permeabilities, and 

the other by directly predicting selectivities from the ML models. However, the former method, which is commonly 

used in the literature, resulted in a large variance in selectivities due to error propagation. As a result, the latter 

method was used to report the screening results, ensuring more reliable and accurate results. 

For the CO2/CH4 gas separation, the datasets that contain PDMS and its derivative backbones showed 

the highest number of polymers above the Robeson bound, with a total of 3025. In contrast, datasets containing 

PEO, PZ, and PAGE backbones show no polymers above the Robeson bound. The PI1M dataset demonstrated 

the broadest spread in the permeability-selectivity space due to its high internal diversity. Despite this, only 13 

polymers were found to be above the Robeson bound, which was the key objective of this screening study. This 

highlights the importance of considering multiple datasets in the screening process to avoid missing the edge cases 

of interest. 

For the CO2/N2 gas separation, only six polymers from the PI1M dataset were found to be above the 

Robeson bound. To broaden the search, the criteria for screening were lowered to include polymers with CO2 

permeability and CO2/N2 selectivity larger than 250 barrer and 25, respectively, as indicated by the yellow shade in 

the plots. Despite these changes, no polymers derived from the ZINC and QM9 datasets met the screening criteria. 

On the other hand, the PI1M dataset had 452 polymers that were in the specified region. 

We observed that the CO2/N2 selectivity model performed slightly poorly in predicting larger selectivities, 

which was one of the goals of our screening task. One of the reasons for this result is the data imbalance for training, 

causing the model to be biased against predicting larger selectivities. To address this issue, we employed a 

combination of a classifier model followed by regression models. However, this method suffered from a lower 

accuracy. 

Finally, it is important to acknowledge the limitations of this study. First, it only considered homopolymers 

and excluded block, ladder, and copolymers, some of which have proven to be effective in gas separation 

applications.39,61–63 Second, the experimental gas permeability data used for ML model training may be flawed, 

leading to inaccurate models. This issue could be addressed by using data augmentation techniques for polymers.64 

Additionally, the ML model fittings are not perfect and result in rough polymer predictions, which should be validated 

through experiments or molecular simulations.  

Despite these limitations, this study still provides a promising method for high-throughput screening of 

polymers for various applications. Additionally, materials designed in-silico may suffer from synthetic accessibility 

problems in the lab, for which various metrics have been proposed.65–68 Finally, the created polymer datasets may 

not cover the entire chemical space. This issue can be addressed by utilizing inverse design methods,21–27 and the 

polymer creation method proposed in this study can still be useful in these approaches. 
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