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Abstract

This letter gives results on improving protein-
ligand binding affinity predictions based on
molecular dynamics simulations using ma-
chine learning potentials with a hybrid neu-
ral network potential and molecular mechanics
methodology (NNP/MM). We compute relative
binding free energies (RBFE) with the Alchem-
ical Transfer Method (ATM) and validate its
performance against established benchmarks
and find significant enhancements compared to
conventional MM force fields like GAFF2.

1 Introduction

In modern drug discovery, alchemical free en-
ergy calculations have emerged as highly effi-
cient tools. Relative binding free energy calcu-
lations are widely employed in hit-to-lead ap-
proaches, and several commercial and free tools
with comparable performance have been devel-

oped over the years. However, the accuracy of
binding free energy calculations is influenced
by the choice of ligand force field. Most con-
ventional force fields like GAFF2, GenFF3*,
and OPLS?® often rely on fixed charge molecular
mechanics (MM). This lack of important ener-
getic contributions limits their chemical accu-
racy and leads to poor modeling of torsions.%®

To address these limitations, one approach in-
volves using quantum mechanical (QM) levels
of theory to model the ligands while treating the
remaining environment with an MM force field
in a hybrid potential.® However, QM /MM cal-
culations are significantly more computation-
ally expensive than MM calculations, posing
challenges for drug discovery settings where
RBFE calculations may be required for dozens
or even hundreds of ligands. Recently, neural
network potentials (NNPs) have shown success
in predicting QM energies with significantly
reduced computational cost compared to QM
methods. Notably, the ANI-2x'° model sup-
ports molecular systems comprising elements
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H, C, N, O, S, F, and Cl. Moreover, a hy-
brid method that integrates NNPs and MM,
known as NNP/MM! has been developed,
offering the potential to model ligands more
accurately in RBFE calculations than tradi-
tional MM force fields. The Alchemical Trans-
fer Method (ATM) is a recently developed
methodology for alchemical free energy calcula-
tions that we recently validated that allows an
easy implementation of NNPs!2. In previous
publications, this methodology with MM force
fields on a robust dataset obtained similar re-
sults to other state-of-the-art methods such as
FEP+.131  In this work, we exploit the ca-
pabilities of ATM to test the hybrid approach
of using ANI-2x'° as the neural network poten-
tial. Rufa et al. previously managed to reduce
the error of absolute binding free energies from
0.97 to 0.47 kcal/mol for a congeneric ligand se-
ries for tyrosine kinase TYK2 by correcting the
conventional MM simulation with an NNP /MM
approach ."»ANI-2x has several limitations in
terms of non-supporting charged molecules and
certain elements but it is otherwise a useful test
potential. Our main objective is to test the
applicability of this methodology with different
ligand force fields and to evaluate the feasibil-
ity of an NNP /MM approach in relative binding
free energy calculations.

2 Methods

In this study, we evaluated a series of tar-
gets from both Wang’s et al.'® and Schindler’s
datasets.!” Due to the limitations of ANI-2x,1°
the NNP of our choice in this study, there
is a series of targets from the aforementioned
datasets that cannot be computed due to the
properties of its ligands. Consequently, we eval-
uated the following targets: Cyclin-dependent
kinase 2 (CDK2), c-Jun N-terminal kinase 1
(JNK1), tyrosine kinase 2 (TYK2), P38 MAP
kinase (P38), hypoxia-inducible transcription
factor 2 (HIF2A), PFKFB3, spleen tyrosine
kinase (SYK) and tankyrase 2 (TNKS2), to-
taling 301 ligand pairs. For the selected tar-
gets most of the ligands are compatible with
ANI-2x, the rest (and its corresponding lig-

and pair calculations) were removed from the
dataset. Due to the higher computational costs
related to the integration of NNP into these
calculations, a subset of all the possible lig-
and pairs to be evaluated was selected at ran-
dom. The workflow in this project is similar
to our previous work!®. Protein and ligand
structures were readily available from Wang’s'®
and Schindler’s!” datasets. Ligands were pa-
rameterized with GAFF 2.11'2. The topolo-
gies were generated using the parameterize'®
tool. In contrast to our previous work, we
now prepared complex systems using HTMD, **
which automated and streamlined the prepara-
tion of multiple ligand pairs, along with the au-
tomatic selection of binding site residues. How-
ever, the manual selection of atom indexes for
ligand alignment remained necessary. The en-
ergy minimization, thermalization, and equili-
bration steps followed the procedures described
in our previous work.'® Additionally, the sys-
tem was annealed to the symmetric alchemical
intermediate (A = 1/2) for 250 ps. The clas-
sical RBFE simulations (GAFF2) were run in
triplicate for each ligand pair running an en-
semble of 60 ns per replica. Concurrently, we
performed the same calculations by using an
NNP/MM approach.!'! This hybrid method al-
lowed us to simulate a portion of the molecular
system (the small molecule) with an NNP, while
the rest was simulated with MM, providing the
ligands with optimized intra-molecular interac-
tions. For both approaches, we used the Am-
ber ff14SB parameters?’:?! as well as the TIP3P
water model. Classical RBFE simulations were
run at a 4fs timestep while the NNP/MM runs
were computed at 1fs timestep, both with the
ATM integrator plugin??. Hamiltonian replica
exchange along the A\ space for each ATM leg
was performed with the ASyncRE software?3,
specially customized for OpenMM and ATM.?*
Consistent with our previous work, we com-
puted the binding free energies and their cor-
responding uncertainties from the perturbation
energy samples using the Unbinned Weighted
Histogram Analysis Method (UWHAM).? The
resulting relative binding free energies (AAG)
were compared to experimental measurements
in terms of mean absolute error (MAE), root



mean square error (RMSE), and Kendall Tau
correlation coefficient. For all the possible sys-
tems, absolute AG values were computed with
cinnabar, an analysis tool to compute abso-
lute binding free energies from AAG values via
a maximum likelihood estimator.?® Cinnabar
also generates the correlation plots and calcu-
lates the error and correlation statistics neces-
sary. We compared the obtained values from
calculations and the works by Wang et al'®
and Schindler et al'” with FEP+. To perform
the calculations, we utilized the OpenMM-ML
and NNPOps libraries on our in-house cluster
comprising NVIDIA RTX 2080 Ti and NVIDIA
RTX 4090 cards. Standard MM calculations
were run on GPUGRID. The parallel replica
exchange molecular dynamics simulations were
conducted using the OpenMM 7.7 MD engine
and the ATM Meta Force plugin, utilizing the
CUDA platform.

3 Results

The results of our simulations are displayed in
Table 1 and Figures 1 and 2 which highlight the
relative (Kendall’s rank order correlation) and
absolute performance (MAE and RMSE) of the
evaluated methods. We do not report the Pear-
son correlation as well because the value is not
significant for (AAG) values as it varies with
the choice of the pairs?”. We cannot calculate
AG for all pairs since we ran a subset of the
original datasets. The computation of AG for
all ligands was not possible due to a poor con-
nection of the perturbation network. Figures
S4-S8 displays the AG values and related statis-
tics for the systems that were possible to com-
pute. The NNP/MM method demonstrated su-
perior performance over pure MM runs in both
relative and absolute measures. We observe
that NNP/MM shows a better correlation co-
efficient and MAE for all of the evaluated sys-
tems but PFKFB3 when compared to ATM
with GAFF2 as a force field. In comparison
to FEP+, NNP/MM has a lower correlation
for two systems (P38 and PFKFB3) and higher
MAE for four of them (P38, HIF2A, PFKFB3
and TNKS2). Furthermore, the amount of lig-

ands that are more accurately predicted is in-
creased. In comparison to our GAFF2 runs,
MM /NNP predicts a higher percentage of lig-
ands with a MAE lower than both 1 and 1.5
kcal/mol.(Table S1). Additionally, there are no
major differences between the conformers gen-
erated with GAFF2 and ANI-2x as force-fields.
(Figure S9) We observe for some specific cases
how ligands that participated in poor predic-
tions with GAFF2 (MAE > 2kcal/mol) are now
predicted correctly (MAE < lkcal/mol).(Table
S2) However, this improvement comes at a cost,
as NNP/MM calculations are slower than con-
ventional MM calculations!!. For instance, an
RTX 4090 could yield up to 27 ns/day, whereas
an ATM conventional run for a P38 system with
49k atoms is able to compute 211 ns/day (Fig-
ure S10). This decrease on speed mainly arises
due to the limitation of a 1fs timestep with
the current ATM integrator. While there is a
considerable increase in computational cost for
NNP/MM runs, both approaches could benefit
from further optimizations. We also evaluate if
different timesteps could influence the accuracy
of RBFE calculations. We compared the results
of the GAFF2 calculations performed in this
work with a 4fs timestep with the calculated
points from our previous benchmark, that were
run at a 2fs timestep.(Figure S11) We do not
observe any considerable accuracy difference
between the calculations at both timesteps. In
terms of convergence, we observed that 60 ns
per calculation tends to be sufficient. Conver-
gence analysis over time shows good conver-
gence for most cases as illustrated in Figure S12.

4 Conclusion

We conducted relative binding free energy
(RBFE) calculations using an innovative
NNP /MM approach. Our findings demonstrate
the substantial accuracy enhancement achieved
by using an NNP/MM approach at the cost of
increased computational time. Compared to
conventional ligand forcefields like GAFF2, the
NNP/MM approach exhibited reduced mean
absolute errors, with most systems reaching be-



Table 1: Comparison of the performance of different forcefields and NNP/MM. Kendall correlation
(1), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in kcal/mol for the 8 tested
Protein Targets. FEP+ is included as a state-of-the-art comparison.

GAFF2 NNP/MM ANI2x FEP+ ligand pairs
kendall (7) MAE RMSE | kendall (7) MAE RMSE kendall (1) MAE RMSE
CDK2 0.42 £ 0.17 08+02 1.1+0.3]|0.62+ 0.10 0.7 £ 0.1 0.8 £ 0.2 | 0.42 £0.15 0.8 £ 0.1 1.1 £0.1 22
JNK1 0.34 £ 0.14 09+0.2 1.0+02]0.43 £ 0.12 0.7 £ 0.1 09 +0.2 | 043 £0.14 08+01 1.0+£0.1 27
P38 0.48 £ 0.06 12+02 1.6+02]| 0.59 =+ 0.05 0.9+ 0.1 1.2+ 0.2 | 0.60 £ 0.11 0.8+ 0.1 1.0+ 0.1 56
TYK2 0.33 £0.15 1.1+02 13+£03]0.67 £ 0.10 0.5+ 0.1 0.6 £ 0.1 | 0.54 £0.15 08+02 09+0.1 24
HIF2A 0.43 £ 0.10 1.6 £ 03 2.0+04|0.55+0.11 1.3+ 0.2 1.6 £ 0.3 0.50 £ 0.13 1.1+01 1.3+0.2 28
PFKFB3 | 0.49 £ 0.06 1.3+02 1.6+0.2]| 0.37+0.08 1.3+0.2 1.7+ 0.2 | 0.70 £+ 0.09 1.0 £ 0.1 1.6 +0.2 62
SYK 0.25 £ 0.12 1.3+02 1.6+0.3]0.38+ 0.10 1.0 +£ 0.2 1.3+ 0.2 | 0.16 £ 0.11 12+01 15+02 37
TNKS2 0.37 £ 0.09 1.0£+£02 1.2+£0.2|0.45 £ 0.10 09 +£0.1 1.1 £ 0.2 | 0.41 +£0.10 0.8 +0.1 1.0+0.1 45
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Figure 1: (Top) Kendall Tau and (bottom)
Mean Absolute Error (MAE) for the AAGSs of
each protein-ligand system calculated in com-
bination with different force fields and reported
estimates using FEP+1¢

low 1 kcal/mol. However, we acknowledge that
the current NNP used in this study is limited to
neutral molecules and a limited set of elements,
posing a constraint on our exploration of the
vast chemical space. Future endeavors should
focus on expanding the applicability of NNPs
to include charged ligands, thereby broadening
the scope of our investigations. An increase in
computing performance is also needed, prob-
ably with the inclusion of other integrators
that allow for higher timesteps. Due to limited
computational resources a random subset of all
the possible calculations was computed. Al-
though a potential bias could be included due
to the nature of the subset we believe to have

a sampled an extensive number of data points
to understand the capabilities of RBFE along
with the NNP/MM approach. Our work high-
lights the potential of NNP/MM for accurate
RBFE calculations and underscores the impor-
tance of further advancing NNPs to encompass
a broader range of molecular species, and fur-
ther improve the accuracy of these calculations.

5 Data and software avail-
ability

The calculated free energy values, ligand
and protein structures, as well as prepara-
tion scripts, are available at https://github.
com/compsciencelab/ATM_benchmark/tree/
main/ATM_With_NNPs

6 Acknowledgement

The authors thank the volunteers of GPU-
GRID.net for donating computing time. This
project has received funding from the Eu-
ropean Union’s Horizon 2020 research and
innovation programme under grant agree-
ment No. 823712; and the project PID2020-
116564GB-100 has been funded by MCIN /
AEI / 10.13039/501100011033; the Torres-
Quevedo Programme from the Spanish Na-
tional Agency for Research (PTQ2020-011145
/ AEI / 10.13039/501100011033). Research
reported in this publication was supported by
the National Institute of General Medical Sci-
ences (NIGMS) of the National Institutes of
Health under award number R01GM140090.
E. G. acknowledges support from the United


https://github.com/compsciencelab/ATM_benchmark/tree/main/ATM_With_NNPs
https://github.com/compsciencelab/ATM_benchmark/tree/main/ATM_With_NNPs
https://github.com/compsciencelab/ATM_benchmark/tree/main/ATM_With_NNPs

6 CDK2
T=0.62+0.10
MAE=0.72+0.15

4/RMSE=0.83£0.18

AAGarm (kcal/mol)

JNKL
1=0.43+0.12
MAE=0.68+0.13
RMSE=0.90%0.17

AAGaTm (kcal/mol)
&
Q.

TYK2
1=0.67+0.10
MAE=0.47+0.10
RMSE=0.56+0.11

AAGarm (Kcal/mol)

hif2a
T=0.55+0.10
MAE=1.28+0.24
RMSE=1.55+0.29 . °

AAGarm (kcal/mol)
°

AAGeyp (kcal/mol)

AAGeyp (kcal/mol)

AAGeyxp (kcal/mol)

AAGexp (kcal/mol)

6 p38 pfkfb3 syk tnks2
1=0.59+0.06 T1=0.37+0.08 T=0.38+0.09 T=0.45+0.09
MAE=0.91:0.12 ° MAE=1.34+0.17 MAE=1.03+0.17 MAE=0.910.14

4{RMSE=1.17%0.16 o RMSE=1.69+0.21 RMSE=1.26+0.21 ° RMSE=1.10£0.16

%o [}

° 4 e o

T 2 o 3 ° 3 ° 5

8 o &0 4o
£ RP7 33 £ e £ o g
g o s g 8/ ° oo g 003 g
£ o0 00 © < o %0 < (8 <
z I z ew 6° 0o o z AN z
g -2 ° % ° g 009 Pl o ® 2

* [oNe] L] o
°
-4 ° o e
6 -4 2 0 2 4 -6 -4 2 0 2 4 -6 -4 2 0 2 4 -6 -4 2 0 2 4

AAGeyy (kcal/mol) AAGeyp (kcal/mol)

AAGeyp (kcal/mol)

AAGeyp (kcal/mol)

Figure 2: Performance in combination with the neural network potential (NNP) for each protein-
ligand system studied. The calculated AAG estimates are plotted against their corresponding
experimental values. MAE and RMSE are in kcal/mol and 7 is Kendall correlation.
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7 Associated Content

The Supporting Information contains: De-
scription of the workflow used for this work.
Barplots of the pearson correlation and RMSE
from the calculated versus experimental AAG
values for all systems and compared meth-
ods. Scatterplots for the calculated AG on all
the connected systems and the comparison be-
tween the compared methods as well as barplots
from the corresponding MAE, RMSE errors
and R2 and spearman correlations. Barplots
with the analysis of the different speed perfor-
mances between ATM and ATM combined with
NNP /MM method. Scatterplots for a series of
targets studied at different timesteps. Conver-
gence analaysis based on the estimation of the
AAG through simulated time.
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9 Supporting Information

Supporting Methods

Table S1: Percentage of preditcions that have a MAE lower than 1 or 1.5 kcal /mol for each system.

Protein GAFF2 NNP/MM ANI2x FEP+
%Y MAE <1 | %MAE<15| % MAE<1 |%MAE<15| % MAE<1 | % MAE<1.5

CDK2 54.6 £ 4.9 71.1 £ 4.5 64.0 = 9.3 96.0 £ 3.9 54.5 £+ 10.3 86.4 + 7.2
JNK1 54.9 + 4.7 79.6 £+ 3.7 74.1 £+ 8.3 88.9 £ 6.0 70.4 £ 8.9 85.2 £ 6.8
P38 499 £+ 2.5 65.4 + 2.4 55.9 + 6.2 81.4 + 5.0 64.3 + 6.3 83.9 + 4.8
TYK?2 | 48.0 4 3.6 68.4 + 3.3 85.0 £ 5.6 97.5 + 2.5 87579 875+ 7.9
hif2a 36.0 &+ 4.6 55.9 £ 4.9 41.9 4+ 8.6 58.1 £+ 8.8 55.2 + 8.9 75.9 £+ 8.1
pfkfb3 | 41.8 + 3.6 60.4 £+ 3.6 42.9 4+ 6.2 65.1 &+ 6.2 61.3 + 6.1 80.6 &+ 5.1
syk 40.4 4+ 4.6 61.4 + 4.6 59.5 £ 8.0 78.4 +£ 6.8 42.1 £+ 8.0 737+ 7.1
tnks2 55.8 £ 5.2 70.5 £ 4.7 66.7 £ 7.1 77.8 £ 6.3 75.6 £ 6.2 88.9 4+ 4.2




ACEMD

PLATFORM Parameterize

ACEMD

PLATFORM

OpenMM

Figure S1: The ATM workflow used in this work. Ligands topologies are calculated with parameter-
ize with GAFF2 and Sage force fields. (2) System complexes are prepared and built with htmd!?.
Protein topologies are prepared with the Amber ff14SB force field. Next ligand B is displaced
based on a vector. (3) Energy minimization and equilibration is performed. Later an annealing
and equilibration at A=1/2 is performed. (4) Replica Exchange simulations are performed for a
total sampling of 60ns. ATM simulations were run in GPUGRID were as ATM-NNP calculations
were performed in our local cluster.(5) After the simulations were finished, these were analyzed
with the UWHAM package to obtain the ca,lculaitoed AAG estimates.
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Figure S2: Pearson correlation for each protein-ligand system calculated in combination with dif-
ferent force fields and reported estimates using FEP+
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Figure S3: Root Mean Square Error (RMSE) in kcal/mol for each protein-ligand system calculated
in combination with different force fields and reported estimates using FEP+
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Figure S4: Scatterplots for the AG calculated on all the connected systems. Comparison between
GAFF2, NNP/MM and FEP+. On top of each plot are the corresponding statistics.
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Figure S9: Generated conformers after equilibration for runs performed with GAFF2 (cyan) and
ANI-2x (green).
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with OpenMM 7.7 MD engine and the ATM Meta Force plugin using the CUDA platform
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Table S2: Case study example of the AAGs obtained with NNP/MM and GAFF2. We observe
how the transformations with the ligand ejm_ 55 give poor results with the GAFF2 (highlighted
red) calculations but in the case of NNP/MM (highlighted green) the MAE is below lkcal/mol.

Protein: TYK2 NNP/MM ANI2x GAFF2
ligand1 | ligand2 | exp_.ddG | ATM_ddG | error | MAE | ATM_ddG | error | MAE
ejm_31 | ejm_46 -1.77 -2.27 0.25 | 0.50 -0.42 0.24 | 1.35
ejm_31 | ejm_43 1.28 1.36 0.22 | 0.07 1.94 0.23 | 0.66
ejm_31 | jmc_28 -1.44 -1.33 0.22 | 0.11 -0.54 0.23 | 0.90
ejm_31 | ejm_45 -0.02 0.17 0.23 | 0.19 -0.86 0.23 | 0.84
ejm_31 | ejm_48 0.54 -0.56 0.24 | 1.10 1.84 0.24 | 1.30
ejm_50 | ejm_42 -0.80 -0.37 0.22 | 0.43 0.10 0.22 | 0.90
ejm_b55 | ejm_bH4 -1.32 -0.55 0.22 | 0.77 -0.76 0.23 | 0.56
ejm_43 | ejm_55 -0.95 -0.33 0.23 | 0.62 -2.68 0.23 | 1.73
jmec_28 | jmc_30 0.04 0.57 0.26 | 0.53 -1.07 0.28 | 1.11
jme 28 | jmc 27 -0.30 -0.50 0.22 | 0.20 -0.80 0.22 | 0.50
ejm_49 | ejm_31 -1.79 -2.57 0.24 | 0.78 -0.57 0.24 | 1.22
ejm-49 | ejm_50 -1.23 -0.86 0.24 | 0.38 -0.64 0.24 | 0.59
ejm_45 | ejm_42 -0.22 -0.96 0.22 | 0.74 0.75 0.23 | 0.97
ejm_44 | ejm_55 -1.79 -2.11 0.24 | 0.32 -4.33 0.23 | 2.54
ejm_44 | ejm_42 -2.36 -1.65 0.27 | 0.71 -2.85 0.24 | 0.49
ejm_47 | ejm_31 0.16 0.09 0.22 | 0.07 -0.51 0.23 | 0.67
ejm_47 | ejm_55 0.49 0.04 0.22 | 0.44 -0.98 0.23 | 1.47
jmec_23 | jmc_30 0.76 0.87 0.27 | 0.11 -0.25 0.25 | 1.01
jmc_23 | ejm_46 0.39 0.33 0.22 | 0.06 0.40 0.22 | 0.01
jme_23 | ejm_H5 2.49 1.77 0.23 | 0.72 -0.44 0.23 | 2.93
jmc 23 | jmc 27 0.42 -0.67 0.24 | 1.09 -0.25 0.22 | 0.67
ejm_42 | ejm_55 0.57 1.14 0.22 | 0.57 -1.68 0.22 | 2.25
ejm_42 | ejm_48 0.78 0.53 0.22 | 0.25 0.64 0.23 | 0.14
ejm_42 | ejm_b54 -0.75 -0.12 0.22 | 0.62 -1.83 0.22 | 1.08
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Figure S13: Comparison of Kendall tau for the AAGSs of each protein-ligand system calculated and
compared against a naive estimator based on the difference of molecular weight between ligands
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