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Abstract

Reticular materials, including metal–organic frameworks and covalent organic frameworks,
combine relative ease of synthesis and an impressive range of applications in various fields,
from gas storage to biomedicine. Diverse properties arise from the variation of building
units—metal centers and organic linkers—in almost infinite chemical space. Such variation
substantially complicates experimental design and promotes the use of computational methods.
In particular, the most successful artificial intelligence algorithms for predicting properties
of reticular materials are atomic-level graph neural networks, which optionally incorporate
domain knowledge. Nonetheless, the data-driven inverse design involving these models
suffers from incorporation of irrelevant and redundant features such as full atomistic graph
and network topology. In this study, we propose a new way of representing materials,
aiming to overcome the limitations of existing methods; the message passing is performed
on a coarse-grained crystal graph that comprises molecular building units. To highlight
the merits of our approach, we assessed predictive performance and energy efficiency of
neural networks built on different materials representations, including composition-based and
crystal-structure–aware models. Coarse-grained crystal graph neural networks showed decent
accuracy at low computational costs, making them a valuable alternative to omnipresent
atomic-level algorithms. Moreover, the presented models can be successfully integrated into
an inverse materials design pipeline as estimators of the objective function. Overall, the
coarse-grained crystal graph framework is aimed at challenging the prevailing atom-centric
perspective on reticular materials design.

Keywords reticular design · metal-organic framework · covalent organic framework · coarse graining · graph
neural network

1 Introduction

Artificial intelligence (AI) is becoming the next game changer in materials science[1, 2, 3]. Nowadays, supervised
learning algorithms represent a cutting-edge tool for resolving complex structure–property relationships that
determine a material’s functionality. AI methods have been utilized to examine a plethora of physicochemical
parameters, including thermodynamic[4, 5, 6], electronic[7, 8, 9], mechanical[10, 11, 12], adsorption[13, 14, 15],
and catalytic[16, 17, 18] properties. Deep learning models[19] show state-of-the-art predictive performance
by extracting crucial features from input data, e.g., chemical composition and crystal structure. Most
representation schemes related to deep learning models in materials informatics require researchers to view
materials from an atomistic standpoint. In particular, crystal graphs (where nodes and edges correspond to
atoms and chemical bonds, respectively) enhance the AI toolset of materials scientists by means of a set of
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diverse graph neural networks[20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Structure-agnostic neural networks[30,
31, 32] handle chemical composition through assigning vector representations (so-called embeddings) to the
chemical elements present in a material.

Atomic-level models are highly effective in representing materials if atoms are considered the most natural
choice for the elementary structural unit. In the inorganic domain, chemical subspaces can be formed through
element substitution in a prototype crystal structure; the resulting material sets have been processed with
predictive models in a high-throughput manner[33, 34, 35]. In contrast, materials representation at a scale
of molecular building units is preferable for crystalline extended structures governed by reticular-chemistry
principles[36, 37]. The most prominent examples of such materials are metal–organic frameworks[38] (MOFs)
and covalent organic frameworks[39] (COFs). In particular, MOFs are formed by linking organic molecules and
metal-containing entities through coordination bonds, whereas COFs are made by stitching organic molecules
through covalent bonds. Some of the synthesized compounds possess exceptional adsorption[40, 41] and
catalytic[42, 43] properties, making them promising candidates for energy-related applications. Moreover, the
modular structure of reticular materials provides a great opportunity for further tuning of relevant properties.
There were recent efforts to develop specialized featurization schemes for reticular design[44, 45, 46, 47, 48].
Global descriptors (e.g., topology, volumetric attributes, and energy grids) incorporated into neural network
architecture improve predictive performance and leave room for interpretability analysis. On the other hand,
the aforementioned attributes constrain the scenarios where the corresponding models can be applied. The
most intriguing data-driven strategy for developing functional materials—inverse design (i.e., “from property
to structure”)—requires synchrony between discriminative and generative models. In particular, the input
data modalities (i.e., materials representation in toto) used in the former models should be validly reproduced
by the latter ones. In this context, the incorporation of energy-grid embeddings into predictive models (e.g.,
MOFTransformer[47]) poses a challenge for inverse materials design owing to the limited reconstruction
ability of existing algorithms. Out of one million structures, only a few zeolite shapes created by a generative
adversarial network (ZeoGAN[49]) have successfully passed all cleanup operations. Other predictive models[48]
for reticular materials directly take into consideration a framework topology, which is unknown a priori
for specified building blocks, e.g., organic linkers and metal-containing units in MOFs. Consequently, the
unpredictable synthetic accessibility of frameworks (in the form of the linkers–nodes–topology triad) created
by generative models has become a cornerstone for practical data-driven design of reticular materials. Recent
findings confirmed concerns that most of relevant studies had overlooked: only 136 frameworks out of 1000
hypothetical structures with the highest hydrogen working capacity were identified as highly synthesizable[50].

By viewing experimental synthesis and characterization of in silico–generated frameworks as the ultimate
goal of AI-assisted materials discovery, we can formulate the main challenge in the field as follows: there
exists a fundamental disparity in how synthetic chemists and AI practitioners perceive reticular materials.
As a result, atomic-level and topology-aware models leverage materials modalities that are not relevant or
accessible in reticular design. To address this issue, we introduce a coarse-grained crystal graph framework;
the performance of neural networks that utilize sets of molecular building units as input is analyzed in terms
of accuracy, energy efficiency, and transferability. In our comparative analysis, we also include the widely used
architectures that are the dominant paradigm in materials representation learning; composition-based and
crystal-structure–aware models are examined. In addition to material-screening applications, the feasibility
of incorporating coarse-grained crystal graph neural networks into an inverse reticular design pipeline is
evaluated as well.

2 Results

2.1 The coarse-grained crystal graph framework

The modern landscape of predictive models in materials informatics[51] is mostly shaped by neural networks
built on crystal graph (V, E), which is a set of vertices (atoms) v ∈ V and edges (bonds) (u → v) ∈ E .
Despite impressive diversity of neural network architectures, most of them have a common foundation in
the message-passing paradigm[52]. Vector representation hv of node v is generated by propagating messages
mu→v from source nodes u to destination node v; messages from all nodes forming neighborhood N (v) of node
v are taken into account. The message-passing procedure may be performed multiple times, and therefore
node representation ht+1

v at step t+ 1 is computed as follows:

mt+1
u→v = ϕ(htu, h

t
v, e

t
u→v) (1)

mt+1
v = ρ(

{
mt+1

u→v,∀u ∈ N (v)
}
) (2)
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ht+1
v = ψ(htv,m

t+1
v ) (3)

where ϕ, ρ, and ψ are (learnable) message, reduce, and update functions, respectively, and etu→v is a vector
representation of edge u→ v at step t; the calculation of node features can optionally include edge features.

Our approach involves applying the message-passing method to learn representations of materials that
consist of molecular building units rather than distinct atoms. The proposed framework heavily relies on
subgraph neural networks[53, 54] and includes steps inherent in their construction. First, the strategy for
sampling/selecting subgraphs needs to be explicitly stated. Following chemical intuition, we decompose MOF
structures (Figure 1a) into inorganic (“metallic”) and organic components (Figure 1b); a similar approach
known as the “standard simplification” algorithm[55] has been previously employed to differentiate MOF
structures. Trivial subgraphs of metal atoms (k ∈ K) (Figure S1) are composed of single nodes in the
crystal graph; intermetallic bonds are ignored. Another set of subgraphs (l ∈ L) is formed by the connected
components of nonmetal atoms. Domain heuristics enable the development of alternative partition schemes
that deconstruct MOFs into organic linkers and inorganic substructures, commonly known as secondary
building units. Our preliminary experiments showed that those methods are not universally applicable and
cannot extract molecular building units for many synthesized MOFs. For instance, 94.5% and 71.8% of entities
from the Computation-Ready, Experimental Metal-Organic Framework (CoRE MOF) database[56, 57] are
correctly processed by the MOFid[58] and moffragmentor[59] packages, respectively. On the other hand,
our implemented scheme achieved identification of metal centers and organic linkers in 99.0% of structures.
Decomposition rates of other databases are similar (Figure S2). In the case of COFs, we apply a similar
methodology, with the only variation being the composition of inorganic nodes in terms of chemical elements;
here boron and silicon are also taken into account (Figure S1). Consequently, the current stage of development
does not support adequate processing of a diverse family of metal-free COF structures within the proposed
framework.

The next step is to define subgraph representations. Crystal graph neural networks appear to be the most
relevant reference in this context; during training, learnable atomic embeddings are commonly generated in
input layers of a model. In contrast, we rely on predefined vectors to characterize both the inorganic K subset
and organic L subset. Specifically, the mol2vec model[60] is implemented to represent molecular fragments,
and matscholar embeddings[61] serve as features for single-node metal subgraphs (Figure 1c).

The considered sets of entities (K and L) form bipartite graph (K,L, E) by design; each edge in the graph
connects species of different types, i.e., an organic linker to a metal center and vice versa. Unfortunately,
reticular design does not provide prior knowledge of the specific bonds that will form in an experimental
crystal structure. To eliminate arbitrariness from the selection of initial connectivity, we postulate every
potential edge thereby forming complete bipartite graph (K,L, Ẽ) called the coarse-grained crystal graph. The
term refers to the coarse-graining modeling approach, which involves simplification of complex atomic systems,
e.g., reducing the number of degrees of freedom by representing groups of atoms as a single pseudoatom.
Similar techniques have been applied to quantify MOF diversity[62, 63] (in an unsupervised manner) and
to establish structure–property relationships in a specific class of hybrid materials[64] (zeolitic imidazolate
frameworks). To the best of our knowledge, this study is the first to use the message-passing paradigm in
order to model reticular materials under the coarse-grained regime.

Coarse-grained crystal graphs can be easily integrated into graph neural networks designed for heterogeneous
graphs. To handle structure–property relationships in reticular materials, we implement a model with
simple architecture (Figure 1d), hereafter designated as the coarse-grained crystal graph neural network
(CG2-NN). Predefined embeddings initiate the sequential update of node representations through the message-
passing procedure occurring in three interaction blocks; each block includes a convolutional layer, layer
normalization[65], and nonlinearity: the Exponential Linear Unit[66] (ELU). Owing to the universal nature
of the proposed structure representation, a wide range of convolutional operations can be integrated into
the interaction block. In this study, we conducted experiments using four message-passing techniques:
Graph Convolutional Network layer[67] (CG2-GCN), SAmple and aggreGatE layer[68] (CG2-SAGE), Graph
ATtention layer[69] (CG2-GAT), and Graph ATtention layer with a universal approximator attention
function[70] (CG2-GATv2). It should also be emphasized that the aggregation phase of message passing is
obviously influenced by the specific topology of the coarse-grained crystal graph (Equation 2). Because each
linker has a neighborhood comprising all metal centers and each metal center has a neighborhood composed
of all linkers, this phase looks as follows:

mt+1
k = ρ(

{
mt+1

l→k,∀l ∈ L
}
) (4)

mt+1
l = ρ(

{
mt+1

k→l,∀k ∈ K
}
) (5)
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Figure 1: The coarse-grained crystal graph framework. The overview of data processing and scalability. (a)
Original crystal structures of notable reticular materials: metal–organic framework HKUST-1 and covalent
organic framework COF-5. Atoms are colored based on their chemical element. (b) The crystal graphs of
HKUST-1 and COF-5 are colored based on their substructure type. The metal and nonmetal atoms are
violet and yellow, respectively. (c) The scheme of the construction of a coarse-grained crystal graph. (d) A
schematic diagram of the coarse-grained crystal graph neural network architecture implemented in this study.
(e) The number of nodes in the coarse-grained crystal graph as a function of the number of atoms in the
corresponding unit cell. The top panel contains the corresponding distribution of the number of atoms.

The calculation of graph level representation is based on the following readout function:

hg =
1

|K|
∑
k∈K

hk +
1

|L|
∑
l∈L

hl (6)

Finally, the output of the CG2-NN is obtained by passing graph level embedding hg through a dense layer.
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In terms of message-passing scalability, the coarse-grained crystal graph framework is expected to outperform
the full crystal graph. The Quantum MOF (QMOF) database[71, 72] contains structures with hundreds of
atoms per primitive cell (Figure 1e). It should be noted that the initial set of candidate materials was compiled
considering the limitations of high-throughput density functional theory (DFT) calculations. The structures
in other experimental MOF subsets, such as the Crystal Structure Database (CSD) MOF Collection[73] and
CoRE MOF database, can contain as many as 10,000 atoms (Figure S3). In contrast, the coarse-grained
crystal graph has a maximum of 9, 17, or 35 nodes in the three databases mentioned above; five or fewer
vertices are common in most coarse-grained crystal graphs (98.1%, 91.1%, and 92.8% of cases). Probably
the most illustrative quantity—the average ratio of nodes in a crystal graph to nodes in the coarse-grained
crystal graph—equals 35.3, 125.6, and 101.8 in the QMOF database, CSD MOF Collection, and CoRE MOF
database, respectively. Nonetheless, the impressive scalability is only partially attributable to coarse-graining
molecular subgraphs. Another factor is the occurrence of multiple identical subgraphs in the primitive cell;
the coarse-grained crystal graph is intentionally free of duplicates, which means that a specific ratio of
building units in the original reticular structure is disregarded. As a result, CG2-NNs are likely to show
worse predictive performance as compared to crystal graph neural networks. The following sections primarily
address the efficiency-vs-accuracy dilemma of the proposed computational framework.

2.2 Predictive performance of CG2-NNs

To evaluate the predictive performance of CG2-NNs, we consider a diverse set of practically important
MOF properties, including the band gap, thermal decomposition temperature, heat capacity, and Henry
coefficients of eight gases (N2, O2, Kr, Xe, CH4, CO2, H2O, and H2S); the tasks in question are all in a
regression setting. In addition to the proposed reticular-specific architecture, several other neural networks
that are composition-based and (crystal-)structure-aware are benchmarked as well. The algorithm designated
as Representation Learning from Stoichiometry[31] (Roost) and a model within the framework of Wyckoff
Representation regression[74] (Wren) form the first group. It is interesting to note that Wren incorporates
Wyckoff representations in addition to stoichiometry, thus introducing the concept of coordinate-free coarse
graining into materials discovery. We categorize this approach as composition-based because the model
does not directly incorporate the full crystal graph. Another group of methods includes four crystal graph
neural networks: Crystal Graph Convolutional Neural Network[20] (CGCNN), MatErials Graph Network[21]
(MEGNet), Global ATtention-based Graph Neural Network with differentiable group normalization and
residual connection[28] (DeeperGATGNN), and Atomistic Line Graph Neural Network[27] (ALIGNN). Aside
from ”general-purpose” structure-aware architectures, a few recent articles introduced neural networks
that integrate domain knowledge related to reticular chemistry; MOFNet[46], MOFTransformer[47], and
MOFormer[48] are worth mentioning. MOF-related models are not a part of our benchmark analysis; the
original studies provide an overall picture of accuracy by comparing with crystal graph neural networks, e.g.,
CGCNN.

Despite acknowledging the criticisms of using the coefficient of determination as a primary predictive
performance measure[75], we still find it useful for identifying general trends (Figure 2a). To ensure
completeness, we provide the corresponding mean absolute error (MAE) and root mean square error (RMSE)
values for all tasks (Figures S4 and S5). From the metrics, we can conclude that CG2-NNs are surprisingly
effective in predicting a DFT band gap. A coefficient of determination for the best models (CG2-SAGE)
proved to be 0.86, 0.85, and 0.76 at three levels of theory (see details in the Methods section). In comparison,
the best crystal graph neural networks (ALIGNN) have a coefficient of determination of 0.90, 0.92, and 0.84
for the same tasks. The accuracy of composition-based models was found to be substantially lower, with a
coefficient of determination of 0.72, 0.75, and 0.54, respectively. The prediction of thermal decomposition
temperature presents a challenge for all implemented models. In particular, CG2-SAGE and ALIGNN reached
a coefficient of determination of 0.38 and 0.44, respectively. We can speculate that the low accuracy is mainly
due to relatively high uncertainty of determining a target value from thermogravimetric analysis (TGA)
data. A typical rounding step of 25 °C (applied to decomposition temperature values[76]) is comparable to
MAE of predictive models: 50 and 47 °C in the case of CG2-SAGE and ALIGNN, respectively. Therefore,
the semiquantitative agreement between experimental and predicted values can hardly be enhanced without
expanding the set of target values and improving the resolution limit of TGA data. Nonetheless, CG2-NNs and
structure-aware models were found to have similar coefficients of determination, 0.32–0.38 vs. 0.30–0.44. The
next endpoint, thermal capacity, poses a different challenge for predictive models. Unexpected model rankings
and ineffective training were caused by a shortage of data points (only 214) in the dataset. Composition-
based Roost and structure-aware ALIGNN showed comparable performance, with an average coefficient
of determination of 0.68 for four temperature values. On the other hand, CGCNN and MEGNet, both
incorporating crystal graph data, demonstrated nearly zero predictive performance. CG2-NNs manifested
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Figure 2: Predictive performance of three model classes. (a) Coefficients of determination (R2) of composition-
based, coarse-grained crystal graph, and crystal-structure–aware neural networks are highlighted in green,
blue, and violet, respectively. (b–d) Mean absolute error (MAE) in the band gap prediction as a function of
training dataset size.

moderate accuracy; CG2-GCN achieved the highest average coefficient of determination of 0.52 among these
models. Finally, Henry coefficients are examined in the analysis (Figure 2a); the following metrics were
calculated by averaging eight endpoint-wise quantities. ALIGNN with a coefficient of determination of 0.67
significantly outperformed all other models; the second best MEGNet showed a coefficient of determination
of 0.54. CG2-SAGE achieved a coefficient of determination of 0.48, surpassing structure-aware CGCNN
(0.46). Both composition-based models, Roost and Wren, showed a limited predictive ability with an average
coefficient of determination of 0.29 and 0.30, respectively. The difference in predictive performance between
ALIGNN and the other models may be due to the significance of the specific geometry of adsorption sites in
MOF; the explicit inclusion of three-body interaction terms in ALIGNN enables precise handling of atomic
environments. To sum up, CG2-NNs manifested accuracy comparable to simplistic structure-aware models,
e.g., CGCNN, and generally outperformed composition-based neural networks.
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Figure 3: Cross-domain (from metal–organic frameworks [MOFs] to covalent organic frameworks [COFs])
transferability of coarse-grained crystal graph neural networks. (a) Mean absolute error (MAE) in the band
gap prediction. MAE values for models pretrained on MOF data are shown in color, while the models
exclusively trained on COF data are gray. (b) A scatter plot of calculated and predicted values of the band
gap. (c) A scatter plot of calculated and predicted values of the band gap; linear scaling to minimize MAE
is applied. (d) The two-dimensional projection of linker chemical space is produced within the Uniform
Manifold Approximation and Projection (UMAP) algorithm from mol2vec embeddings; the linkers from the
Quantum MOF database and from the subset of CURATED COFs are gray and blue, respectively.

Next, we analyze the scalability of the proposed computational framework with respect to the size of the
training dataset (Figure 2b–d) while focusing on the PBE band gap; the models from each of the above-
mentioned classes (composition-based, coarse-grained, and structure-aware) are examined. We approximate
how MAE depends on training-dataset size N using a linear fit on a logarithmic scale for three models:
Wren, CG2-SAGE, and ALIGNN. As follows from fitted coefficients a and b in equation lgMAE = a+ b lgN
(Figure 2b–d), CG2-SAGE and ALIGNN showed similar behavior, whereas the increase in training-dataset
size led to a much smaller boost in performance for Wren. At the same time, most structure-aware models
were outperformed by Wren and another composition-based model (Roost) under the small-data regime (200
points in the training dataset); the observed tendency for heat capacity prediction was reproduced here.

The lack of data for the endpoint of interest can be addressed by leveraging advanced techniques, including
transfer learning[77, 78, 79] and self-supervised learning[80, 81]. To assess potential usefulness of applying
CG2-NNs in conjunction with one of such algorithms, we consider the task of band gap prediction across
different classes of reticular materials: the models pretrained on the MOF band gap are used to evaluate
the same property in COFs (Figure 3a). The models trained from scratch, i.e., without pretraining, serve as
a baseline. CG2-GAT and ALIGNN showed the lowest MAE of 0.31 eV; most of the models performed at
a similar level. In contrast, two structure-aware models—CGCNN and MEGNet—failed to quantitatively
reproduce the target value, judging by the thermal capacity prediction of MOFs (Figure 2a). On the other
hand, the transfer-learning technique resulted in the largest decrease in MAE (i.e., increase in accuracy) for
these models: 0.16 and 0.34 eV, respectively. The lowest MAE of 0.26 eV was achieved by the fine-tuned
ALIGNN model; DeeperGATGNN with MAE of 0.29 eV was the second-best model owing to the moderate
performance improvement (0.05 eV) associated with fine-tuning. Pretraining with MOF data had a minimal
effect on the accuracy of all CG2-NNs. Minor benefits of transfer learning may stem from incorporating
pretrained embeddings into the proposed neural network architecture; at the concept level, this approach is
essentially equivalent to freezing the weights of the input layer. The mol2vec (matscholar) embeddings are
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Figure 4: Interplay between predictive performance and energy efficiency of composition-based, coarse-grained
crystal graph, and crystal-structure–aware models. The following endpoints are considered: (a) the PBE
band gap, (b) the HLE17 band gap, (c) the HSE06 band gap, (d) thermal decomposition temperature, (e)
heat capacity at 250 K, (f) heat capacity at 300 K, (g) heat capacity at 350 K, (h) heat capacity at 400
K, (i) the N2 Henry coefficient, (j) the O2 Henry coefficient, (k) the Kr Henry coefficient, (l) the Xe Henry
coefficient, (m) the CH4 Henry coefficient, (n) the CO2 Henry coefficient, (o) the H2O Henry coefficient, and
(p) the H2S Henry coefficient. For illustrative purposes, the areas of MAE vs. GHG emission space accessible
by different models are highlighted in two colors: yellow regions correspond to the set of composition-based
and structure-aware models, whereas red fields reflect how the Pareto front is reshaped by the introduction of
CG2-NNs.

learned here by exploring vast chemical space, which extends beyond the organic linkers (metal centers) in
reticular materials. In other words, the generalizability of low-level representations of molecular building
units allows for the description of both MOFs and COFs from scratch. The band gap of COFs can be
semiquantitatively reproduced by CG2-GAT trained on MOF data, without additional fine-tuning; only a
linear scaling of the model outputs is needed (Figure 3b,c). From another perspective, common chemical
space is formed by two-dimensional projections of organic linkers in MOFs and COFs; these projections are
generated within the Uniform Manifold Approximation and Projection[82] (UMAP) approach from mol2vec
embeddings (Figure 3d).

8
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2.3 The carbon footprint of training CG2-NNs

The main focus of the materials informatics community has been on enhancing predictive performance of
existing neural network architectures[83], paying little attention to other critical aspects such as computational
efficiency, explainability, transferability, and scalability. As shown in our recent study[84], an excessive focus
on model accuracy has led to exponential growth of trainable parameters and greenhouse gas (GHG) emissions
from model training. Taking into account the decent predictive ability and high scalability (in terms of
input data size) of CG2-NNs, we also estimate the carbon footprint of our models in the hope that the
presented framework can tackle the accuracy–efficiency dilemma in materials property prediction. In Figure
4, the interplay between GHG emissions (measured in kilograms of carbon dioxide equivalents, kgCO2eq)
and predictive performance (expressed in terms of MAE) is analyzed for MOF-related models from the
previous section. It is worth noting that the carbon footprint of the model lifecycle is solely determined by the
electrical energy consumption of the hardware in use. Accordingly, GHG emissions can provide a description
of energy efficiency, in addition to quantifying environmental impacts. In contrast to the issue of ranking
models by the accuracy objective, here we deal with a set of so-called nondominated solutions, i.e., models
that provide a tradeoff between target quantities. For instance, ALIGNN ended up in the low-error section of
the Pareto front in all cases, except for thermal-capacity prediction. The composition-based Roost model
was the only exception, because it showed high predictive performance under the small-data regime. Roost
and CG2-SAGE were found to dominate the low-emission region of the Pareto front, thereby confirming
the impressive computational efficiency of the proposed framework. As we can see, CG2-NNs offer nearly
state-of-the-art performance at a fraction of the computational cost of previous algorithms. For instance, the
PBE band gap MAE of CG2-SAGE can be reduced by 20% (22%) with MEGNet (ALIGNN), causing GHG
emissions to increase 13-fold (89-fold); similar estimates apply to other endpoints as well. Therefore, the
coarse-grained crystal graph concept offers a strong alternative to current dominant methods for representing
reticular materials if predictive performance and energy efficiency are equally important.

2.4 Inverse materials design accompanied with CG2-NNs

CG2-NNs are readily accessible as discriminative algorithms for in silico high-throughput screening of reticular
materials. Nevertheless, the presented computational framework can be integrated into inverse design pipelines
as well. As a proof-of-concept assessment, we investigate maximizing hydrogen storage capacity in MOFs; the
optimization task is given by

x∗ = argmax
x∈X

f(x) (7)

where X is design space represented within the coarse-grained crystal graph framework, f(x) is an objective
function (hydrogen storage capacity) approximated by a CG2-NN, and x∗ is an optimal set of metal centers
K and organic linkers L encoded as complete bipartite graph (K,L, Ẽ). Using IRMOF-20[85] as a prototype,
we apply an iterative evolutionary procedure to modify the linker (thieno[3,2-b]thiophene-2,5-dicarboxylic
acid) and maximize the target property; the metal center (zinc) and another linker (oxygen atom) are kept
unchanged. In other words, we move from a global optimization problem to a local maximization one; our
intention is to confine the design space to the region surrounding the original structure. At each optimization
step (Figure 5a), SELF-referencIng Embedded Strings[86] (SELFIES) representation of a molecular building
block undergoes one of three operations: single-character addition, deletion, or replacement. SELFIES
strings are 100% chemically robust by design, satisfying valence-bond rules under any mutation, but other
specific requirements should also be fulfilled by a potential linker. In particular, the “linker-likeness” and
synthetic-accessibility filters are implemented in the pipeline (see details in the Methods section). The
linkers that meet the above criteria are passed through CG2-SAGE as part of the coarse-grained crystal
graph for predicting hydrogen storage capacity. Next, we evaluate the uncertainty in predictions using
the deep-ensemble method[87]. The variance of model outputs calculated for a set of neural networks may
serve as a reliable measure of epistemic uncertainty, which indicates limitations of a model in reproducing
structure–property relationships outside its domain of applicability. As we can see in Figure 5b, narrower
prediction intervals in terms of percentiles (defined by means of quantile regression[88]) are associated with
lower standard deviation of model ensemble outputs. Accordingly, in-domain MAE decreases with lowering
the upper bound of standard deviation (Figure 5c); the structure is considered to be inside the domain of
applicability if the uncertainty measure is below the predefined threshold. In the context of optimization
problems, the ranking capability of a model appears to be a key parameter; the implied threshold value (2.5
g/l) allowed to reach a Pearson correlation coefficient of 0.86 (Figure 5c). Finally, hydrogen storage capacity
of the generated linker must exceed the lowest one in the previous population.

9
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Figure 5: Inverse reticular design driven by coarse-grained crystal graph neural networks. (a) The schematic
diagram of the linker optimization workflow. SELFIES is an abbreviation of SELF-referencIng Embedded
Strings; UQ stands for uncertainty quantification. (b) Predictive error as a function of model ensemble
standard deviation. The colored areas correspond to the predictive intervals estimated by quantile regression:
within one standard deviation (green), within two standard deviations (orange), and over two standard
deviations (red). (c) In-domain mean absolute error (MAE) and the Pearson correlation coefficient as a
function of model ensemble standard deviation. The threshold value of standard deviation (2.5 g/l) is
indicated by the vertical line. (d) The initial linker (taken from IRMOF-20) and four generated molecules
with the highest hydrogen storage capacity. The two-dimensional projection of linker chemical space is
produced within the Uniform Manifold Approximation and Projection (UMAP) algorithm from mol2vec
embeddings; the linkers from MOFs used for training objective function predictors are shown in gray.

Additionally, the top-performing linkers undergo filtering based on their 3D structure. Rigid molecules with
antiparallel binding sites, e.g., carboxylic groups, are regarded as potential precursors. The set consists of
molecules that possess both the original scaffold (linker 4) and a new one (linkers 1, 2, and 3); they are all
located in the vicinity of the initial compound (thieno[3,2-b]thiophene-2,5-dicarboxylic acid) in the chemical
space (Figure 5d). The parental MOF structure (IRMOF-20) showed nearly record-breaking performance
(experimental volumetric capacity of 51 g/l[89]); therefore, the generated linkers only slightly enhance the
predicted target property value (up to 3.8 g/l). Expanding the design space of the optimization problem, e.g.,
by loosening the uncertainty-quantification criterion, may improve the quality of found solutions; simultaneous
optimization of a metal center and organic linker achieves the same goal. Nonetheless, the molecules that
were identified showed potential as building units for MOFs with high hydrogen working capacity. The
presented inverse-design pipeline provides outputs that can be readily utilized to predict MOF synthesis
parameters[90, 91].

3 Discussion

As demonstrated in the Results section, CG2-NNs are able to compete in predictive performance with models
incorporating information on atomic connectivity. This finding suggests that the underlying topology of
a reticular material can be learned during model training. We intentionally examine datasets containing
experimentally resolved MOFs and COFs; the relationship between a set of molecular building blocks and their
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self-assembled structure is usually straightforward. On the contrary, widely used databases of hypothetical
structures expand the reticular materials genome by providing multiple structures of various topologies
for a specific organic linker and secondary building unit. Obviously, CG2-NNs will fail to distinguish such
structures, although most of in silico–generated MOFs are thermodynamically inaccessible and, as a result,
are not of practical interest. The synthesized MOFs that exhibit polymorphism[92, 93] will cause the same
issue. Incorporating global state attributes, e.g., temperature and pressure, into CG2-NN architecture can
potentially overcome the challenge of polymorphic phase transitions.

By eliminating topology from explicit consideration, we address the key shortcoming of current approaches
to the creation of reticular materials. The entire design space is defined by the linkers–nodes–topology
triad, but the optimization task is constrained by reticular chemistry principles: an experimentally observed
topology is determined by molecular building units and is not an independent variable. The issue has
been mostly ignored in previous studies[44, 94, 95], whereas the energy ranking of polymorphs requires
considerable computing resources[50, 96]. We anticipate that the coarse-grained crystal graph framework
will shift the community’s focus from navigating inaccessible regions of the reticular materials genome to
improving methods for predicting synthesis conditions.

4 Conclusion

The coarse-grained crystal graph framework is intended to make data-driven design of reticular materials
more accessible for synthetic chemists. The efficiency of the presented approach is achieved via integration of
relevant domain knowledge into the neural network architecture. Specifically, pretrained embeddings are used
to represent organic linkers and metal centers, thereby demonstrating the impact of previous community
efforts on AI tools for materials design. We hope that this research will not end here but rather bolster
further enhancement of predictive models.

5 Methods

5.1 Datasets

The QMOF database[71, 72] served as a source for MOF crystal structures and their corresponding band
gap values obtained at three levels of theory: generalized gradient approximation (GGA), meta-GGA, and
screened-exchange hybrid GGA; the density functionals used were Perdew–Burke–Ernzerhof[97] (PBE), High
Local Exchange 2017[98] (HLE17), and Heyd–Scuseria–Ernzerhof[99] (HSE06), respectively. The datasets
consisted of 20237 (PBE endpoint), 10664 (HLE17), and 10718 (HSE06) entities. Another collection of neural
networks was trained by means of a subset of structures (3038 points) from the CoRE MOF 2019 database
and their corresponding decomposition temperatures extracted from the TGA data by Nandy et al.[100]
For the heat capacity prediction, we utilized the values obtained within the harmonic approximation at the
GGA level of theory[101]; 214 MOFs from the CoRE MOF 2019 and QMOF database were examined. Henry
coefficients of eight gases—N2, O2, Kr, Xe, CH4, CO2, H2O, and H2S—computed via grand canonical Monte
Carlo (GCMC) simulations and the corresponding structures from the QMOF database (1431, 1552, 1297,
1205, 1268, 1538, 1482, and 1352 compounds, respectively) were taken from the dataset presented by Jablonka
et al.[59] PBE band gap values[102] of 61 compounds (from the CURATED COFs database[103]) containing
boron or silicon atoms were utilized to estimate the transferability of neural networks of interest. Usable
volumetric hydrogen capacity of MOFs under temperature-pressure swing conditions (77 K/100 bar and 160
K/5 bar) was implemented as an objective in the optimization task; 4146 structures from the CoRE MOF
2019 database and GCMC values from the dataset presented by Ahmed and Siegel[104] were employed to
train an ensemble of CG2-SAGE models.

5.2 Coarse-grained crystal graph processing

The procedure outlined below was applied to construct the coarse-grained crystal graph and assign features
to its nodes. Metals (in MOFs and COFs) and metalloids (in COFs) were completely removed from the initial
crystal structure (the full list of atom types is provided in Figure S1). The removed atoms are regarded as
metal centers, each of them was featurized using 200-dimensional matscholar embeddings[61]. The crystal
structure containing only nonmetal atoms was processed within OpenBabel routines[105] to produce Simplified
Molecular Input Line Entry System[106, 107] (SMILES) strings from connected components in the reduced
crystal graph. SMILES strings were then converted into 300-dimensional mol2vec embeddings[60]. Metallic
and organic units were built into the complete bipartite graph, where each node of one type is connected to
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a node of another type. In this form, the coarse-grained crystal graph was passed through a graph neural
network.

5.3 Model training

CG2-NNs were built with PyTorch[108] and Deep Graph Library[109] (DGL). The choice of a deep learning
framework has a substantial effect on energy efficiency of model training[110]; therefore, PyTorch-based
implementations were utilized for all other models as well. In the predictive performance (transfer learning)
analysis, we used the Adam optimizer[111] at a learning rate of 10−3 (10−4) and a batch size of 64 (16); the
maximum number of epochs and the early stopping criterion were set to 500 and 50, respectively. Five-fold
cross-validation was performed for model evaluation; one-eighth of training data was used for early stopping.
To evaluate an objective in the optimization task (hydrogen storage capacity), an ensemble of 20 CG2-SAGE
models was trained by means of the Adam optimizer at a learning rate of 10−3 and a batch size of 64.
The holdout cross-validation technique with a training/validation/test ratio of 80:10:10 was applied. The
mean and standard deviation of model ensemble outputs were used to estimate the target property and the
corresponding uncertainty[87]. The Eco2AI library[112] was utilized to estimate GHG emissions of model
training; the emission intensity coefficient was set to 240.56 kgCO2e/MW·h (Moscow). All experiments in
the study were conducted on a workstation equipped with two Intel® Xeon® CPUs E5-2695 v4 @ 2.10GHz,
144 GB RAM, and NVIDIA GeForce RTX 3090 Ti.

5.4 Inverse reticular design

The linker optimization algorithm was heavily inspired by previously developed methods[113, 114, 115].
Three symbolic operations (addition, deletion, and replacement) were applied to modify SELFIES strings[86];
each optimization step included one to 20 randomly selected mutations and several filtering procedures
described below. The initial population was produced by generating 100,000 mutants from the SELFIES
string corresponding to the parent structure (thieno[3,2-b]thiophene-2,5-dicarboxylic acid); 100 strings with
the highest hydrogen storage capacity were subjected to further processing. Then, 1000 mutation steps
were carried out. At each iteration, the population was updated by including a newly generated molecule
if its objective was higher than the lowest value in the current generation; the number of molecules in the
population was maintained at 100. Three filters were implemented to exclude irrelevant molecules. First,
we assumed exactly two binding sites (carboxylic groups) in a molecule by applying the “linker-likeness”
filter. Second, the molecules with low synthetic accessibility (SAscore[116] higher than 5.0) were also ignored.
Third, 20 CG2-SAGE models were used to assess uncertainty in predictions of the target property by means
of deep-ensemble learning[87]. If the standard deviation of model ensemble outputs exceeded 2.5 g/l, then
the corresponding molecule was discarded as well. One hundred launches of the optimization procedure were
carried out in total.

The SELFIES strings included in the last generations were transferred into 3D atomic coordinates. In particular,
the Experimental-Torsion basic Knowledge Distance Geometry[117] (ETKDG) approach implemented in
the RDKit library was employed to generate 30 conformers for each of the 30 molecules with the highest
hydrogen storage capacity. Then, local geometry optimization was performed using the ANI-2x neural-network
potential[118] and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with the convergence criterion of
10−3 eV/Å for forces. Two quantities were calculated for each ensemble of conformers: 1) the mean angle
between two vectors oriented from the carbon atom to the midpoint between oxygen atoms in carboxyl groups
and 2) standard deviation of pairwise distance between carbon atoms in carboxyl groups. A molecule was
included into the final set if the former value was higher than 150° and the latter one was less than 0.5 Å; the
linker optimization was completed on four structures.
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8 Data availability

All datasets used in the study are publicly available: band gap values and the correspond-
ing MOF structures (https://doi.org/10.6084/m9.figshare.13147324.v14), thermal decomposition
data (https://doi.org/10.5281/zenodo.5737968), CoRE MOF structures (https://doi.org/10.5281/
zenodo.7691378), heat capacity data (https://doi.org/10.24435/materialscloud:p1-2y), adsorp-
tion data (https://doi.org/10.24435/materialscloud:qt-cj, https://datahub.hymarc.org/dataset/
computational-prediction-of-hydrogen-storage-capacities-in-mofs), band gap values (https://
doi.org/10.5281/zenodo.7590815) and the corresponding COF structures (https://doi.org/10.24435/
materialscloud:z6-jn).

References

[1] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine
learning for molecular and materials science. Nature, 559(7715):547–555, 2018.

[2] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL Marques. Recent advances and
applications of machine learning in solid-state materials science. npj Computational Materials, 5(1):83,
2019.

[3] Kevin Maik Jablonka, Daniele Ongari, Seyed Mohamad Moosavi, and Berend Smit. Big-data science
in porous materials: materials genomics and machine learning. Chemical reviews, 120(16):8066–8129,
2020.

[4] Bryce Meredig, Ankit Agrawal, Scott Kirklin, James E Saal, Jeff W Doak, Alan Thompson, Kunpeng
Zhang, Alok Choudhary, and Christopher Wolverton. Combinatorial screening for new materials in
unconstrained composition space with machine learning. Physical Review B, 89(9):094104, 2014.

[5] Jonathan Schmidt, Jingming Shi, Pedro Borlido, Liming Chen, Silvana Botti, and Miguel AL Marques.
Predicting the thermodynamic stability of solids combining density functional theory and machine
learning. Chemistry of Materials, 29(12):5090–5103, 2017.

[6] Christopher J Bartel, Amalie Trewartha, Qi Wang, Alexander Dunn, Anubhav Jain, and Gerbrand
Ceder. A critical examination of compound stability predictions from machine-learned formation
energies. npj computational materials, 6(1):97, 2020.

[7] Joohwi Lee, Atsuto Seko, Kazuki Shitara, Keita Nakayama, and Isao Tanaka. Prediction model of band
gap for inorganic compounds by combination of density functional theory calculations and machine
learning techniques. Physical Review B, 93(11):115104, 2016.

[8] Ya Zhuo, Aria Mansouri Tehrani, and Jakoah Brgoch. Predicting the band gaps of inorganic solids by
machine learning. The journal of physical chemistry letters, 9(7):1668–1673, 2018.

[9] Shuaihua Lu, Qionghua Zhou, Yixin Ouyang, Yilv Guo, Qiang Li, and Jinlan Wang. Accelerated discov-
ery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nature communications,
9(1):3405, 2018.

[10] Jack D Evans and François-Xavier Coudert. Predicting the mechanical properties of zeolite frameworks
by machine learning. Chemistry of Materials, 29(18):7833–7839, 2017.

[11] Aria Mansouri Tehrani, Anton O Oliynyk, Marcus Parry, Zeshan Rizvi, Samantha Couper, Feng
Lin, Lowell Miyagi, Taylor D Sparks, and Jakoah Brgoch. Machine learning directed search for
ultraincompressible, superhard materials. Journal of the American Chemical Society, 140(31):9844–
9853, 2018.

[12] Peyman Z Moghadam, Sven MJ Rogge, Aurelia Li, Chun-Man Chow, Jelle Wieme, Noushin Moharrami,
Marta Aragones-Anglada, Gareth Conduit, Diego A Gomez-Gualdron, Veronique Van Speybroeck, et al.
Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter,
1(1):219–234, 2019.

[13] Michael Fernandez, Peter G Boyd, Thomas D Daff, Mohammad Zein Aghaji, and Tom K Woo. Rapid
and accurate machine learning recognition of high performing metal organic frameworks for co2 capture.
The journal of physical chemistry letters, 5(17):3056–3060, 2014.

[14] Cory M Simon, Rocio Mercado, Sondre K Schnell, Berend Smit, and Maciej Haranczyk. What are the
best materials to separate a xenon/krypton mixture? Chemistry of Materials, 27(12):4459–4475, 2015.

13

https://doi.org/10.6084/m9.figshare.13147324.v14
https://doi.org/10.5281/zenodo.5737968
https://doi.org/10.5281/zenodo.7691378
https://doi.org/10.5281/zenodo.7691378
https://doi.org/10.24435/materialscloud:p1-2y
https://doi.org/10.24435/materialscloud:qt-cj
https://datahub.hymarc.org/dataset/computational-prediction-of-hydrogen-storage-capacities-in-mofs
https://datahub.hymarc.org/dataset/computational-prediction-of-hydrogen-storage-capacities-in-mofs
https://doi.org/10.5281/zenodo.7590815
https://doi.org/10.5281/zenodo.7590815
https://doi.org/10.24435/materialscloud:z6-jn
https://doi.org/10.24435/materialscloud:z6-jn


Coarse-grained crystal graph neural networks A Preprint

[15] Seyed Mohamad Moosavi, Aditya Nandy, Kevin Maik Jablonka, Daniele Ongari, Jon Paul Janet,
Peter G Boyd, Yongjin Lee, Berend Smit, and Heather J Kulik. Understanding the diversity of the
metal-organic framework ecosystem. Nature communications, 11(1):1–10, 2020.

[16] Zheng Li, Siwen Wang, Wei Shan Chin, Luke E Achenie, and Hongliang Xin. High-throughput
screening of bimetallic catalysts enabled by machine learning. Journal of Materials Chemistry A,
5(46):24131–24138, 2017.

[17] Andrew F Zahrt, Jeremy J Henle, Brennan T Rose, Yang Wang, William T Darrow, and Scott E
Denmark. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning.
Science, 363(6424):eaau5631, 2019.

[18] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020 (oc20)
dataset and community challenges. Acs Catalysis, 11(10):6059–6072, 2021.

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.
[20] Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and

interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.
[21] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal

machine learning framework for molecules and crystals. Chemistry of Materials, 31(9):3564–3572, 2019.
[22] Vadim Korolev, Artem Mitrofanov, Alexandru Korotcov, and Valery Tkachenko. Graph convolutional

neural networks as “general-purpose” property predictors: the universality and limits of applicability.
Journal of chemical information and modeling, 60(1):22–28, 2020.

[23] Cheol Woo Park and Chris Wolverton. Developing an improved crystal graph convolutional neural
network framework for accelerated materials discovery. Physical Review Materials, 4(6):063801, 2020.

[24] Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wang, Yuqi Song, Fei Liu, and Jianjun Hu. Graph
convolutional neural networks with global attention for improved materials property prediction. Physical
Chemistry Chemical Physics, 22(32):18141–18148, 2020.

[25] Mohammadreza Karamad, Rishikesh Magar, Yuting Shi, Samira Siahrostami, Ian D Gates, and
Amir Barati Farimani. Orbital graph convolutional neural network for material property prediction.
Physical Review Materials, 4(9):093801, 2020.

[26] Jiucheng Cheng, Chunkai Zhang, and Lifeng Dong. A geometric-information-enhanced crystal graph
network for predicting properties of materials. Communications Materials, 2(1):92, 2021.

[27] Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials
property predictions. npj Computational Materials, 7(1):185, 2021.

[28] Sadman Sadeed Omee, Steph-Yves Louis, Nihang Fu, Lai Wei, Sourin Dey, Rongzhi Dong, Qinyang
Li, and Jianjun Hu. Scalable deeper graph neural networks for high-performance materials property
prediction. Patterns, 3(5):100491, 2022.

[29] Keqiang Yan, Yi Liu, Yuchao Lin, and Shuiwang Ji. Periodic graph transformers for crystal material
property prediction. Advances in Neural Information Processing Systems, 35:15066–15080, 2022.

[30] Dipendra Jha, Logan Ward, Arindam Paul, Wei-keng Liao, Alok Choudhary, Chris Wolverton, and
Ankit Agrawal. Elemnet: Deep learning the chemistry of materials from only elemental composition.
Scientific reports, 8(1):17593, 2018.

[31] Rhys EA Goodall and Alpha A Lee. Predicting materials properties without crystal structure: Deep
representation learning from stoichiometry. Nature communications, 11(1):6280, 2020.

[32] Anthony Yu-Tung Wang, Steven K Kauwe, Ryan J Murdock, and Taylor D Sparks. Compositionally
restricted attention-based network for materials property predictions. Npj Computational Materials,
7(1):77, 2021.

[33] Felix A Faber, Alexander Lindmaa, O Anatole Von Lilienfeld, and Rickard Armiento. Machine learning
energies of 2 million elpasolite (a b c 2 d 6) crystals. Physical review letters, 117(13):135502, 2016.

[34] Weike Ye, Chi Chen, Zhenbin Wang, Iek-Heng Chu, and Shyue Ping Ong. Deep neural networks for
accurate predictions of crystal stability. Nature communications, 9(1):3800, 2018.

[35] Prasanna V Balachandran, Antoine A Emery, James E Gubernatis, Turab Lookman, Chris Wolverton,
and Alex Zunger. Predictions of new ab o 3 perovskite compounds by combining machine learning and
density functional theory. Physical Review Materials, 2(4):043802, 2018.

14



Coarse-grained crystal graph neural networks A Preprint

[36] Omar M Yaghi, Michael O’Keeffe, Nathan W Ockwig, Hee K Chae, Mohamed Eddaoudi, and Jaheon
Kim. Reticular synthesis and the design of new materials. Nature, 423(6941):705–714, 2003.

[37] Hao Lyu, Zhe Ji, Stefan Wuttke, and Omar M Yaghi. Digital reticular chemistry. Chem, 6(9):2219–2241,
2020.

[38] Hailian Li, Mohamed Eddaoudi, Michael O’Keeffe, and Omar M Yaghi. Design and synthesis of an
exceptionally stable and highly porous metal-organic framework. nature, 402(6759):276–279, 1999.

[39] Adrien P Cote, Annabelle I Benin, Nathan W Ockwig, Michael O’Keeffe, Adam J Matzger, and Omar M
Yaghi. Porous, crystalline, covalent organic frameworks. science, 310(5751):1166–1170, 2005.

[40] Hao Wang, William P Lustig, and Jing Li. Sensing and capture of toxic and hazardous gases and
vapors by metal–organic frameworks. Chemical Society Reviews, 47(13):4729–4756, 2018.

[41] Rui-Biao Lin, Shengchang Xiang, Huabin Xing, Wei Zhou, and Banglin Chen. Exploration of porous
metal–organic frameworks for gas separation and purification. Coordination chemistry reviews, 378:87–
103, 2019.

[42] Li Zhu, Xiao-Qin Liu, Hai-Long Jiang, and Lin-Bing Sun. Metal–organic frameworks for heterogeneous
basic catalysis. Chemical reviews, 117(12):8129–8176, 2017.

[43] Yuan-Biao Huang, Jun Liang, Xu-Sheng Wang, and Rong Cao. Multifunctional metal–organic framework
catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1):126–157, 2017.

[44] Sangwon Lee, Baekjun Kim, Hyun Cho, Hooseung Lee, Sarah Yunmi Lee, Eun Seon Cho, and Jihan
Kim. Computational screening of trillions of metal–organic frameworks for high-performance methane
storage. ACS Applied Materials & Interfaces, 13(20):23647–23654, 2021.

[45] Zhenpeng Yao, Benjamín Sánchez-Lengeling, N Scott Bobbitt, Benjamin J Bucior, Sai Govind Hari
Kumar, Sean P Collins, Thomas Burns, Tom K Woo, Omar K Farha, Randall Q Snurr, et al. Inverse
design of nanoporous crystalline reticular materials with deep generative models. Nature Machine
Intelligence, 3(1):76–86, 2021.

[46] Pin Chen, Rui Jiao, Jinyu Liu, Yang Liu, and Yutong Lu. Interpretable graph transformer network for
predicting adsorption isotherms of metal–organic frameworks. Journal of Chemical Information and
Modeling, 62(22):5446–5456, 2022.

[47] Yeonghun Kang, Hyunsoo Park, Berend Smit, and Jihan Kim. A multi-modal pre-training transformer
for universal transfer learning in metal–organic frameworks. Nature Machine Intelligence, 5(3):309–318,
2023.

[48] Zhonglin Cao, Rishikesh Magar, Yuyang Wang, and Amir Barati Farimani. Moformer: self-supervised
transformer model for metal–organic framework property prediction. Journal of the American Chemical
Society, 145(5):2958–2967, 2023.

[49] Baekjun Kim, Sangwon Lee, and Jihan Kim. Inverse design of porous materials using artificial neural
networks. Science advances, 6(1):eaax9324, 2020.

[50] Junkil Park, Yunsung Lim, Sangwon Lee, and Jihan Kim. Computational design of metal–organic
frameworks with unprecedented high hydrogen working capacity and high synthesizability. Chemistry
of Materials, 35(1):9–16, 2023.

[51] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for materials
science and chemistry. Communications Materials, 3(1):93, 2022.

[52] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

[53] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. Subgraph neural networks.
Advances in Neural Information Processing Systems, 33:8017–8029, 2020.

[54] Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S Yu, and Lifang He. Sugar:
Subgraph neural network with reinforcement pooling and self-supervised mutual information mechanism.
In Proceedings of the Web Conference 2021, pages 2081–2091, 2021.

[55] Senja Barthel, Eugeny V Alexandrov, Davide M Proserpio, and Berend Smit. Distinguishing metal–
organic frameworks. Crystal growth & design, 18(3):1738–1747, 2018.

15



Coarse-grained crystal graph neural networks A Preprint

[56] Yongchul G Chung, Jeffrey Camp, Maciej Haranczyk, Benjamin J Sikora, Wojciech Bury, Vaiva
Krungleviciute, Taner Yildirim, Omar K Farha, David S Sholl, and Randall Q Snurr. Computation-ready,
experimental metal–organic frameworks: A tool to enable high-throughput screening of nanoporous
crystals. Chemistry of Materials, 26(21):6185–6192, 2014.

[57] Yongchul G Chung, Emmanuel Haldoupis, Benjamin J Bucior, Maciej Haranczyk, Seulchan Lee, Hongda
Zhang, Konstantinos D Vogiatzis, Marija Milisavljevic, Sanliang Ling, Jeffrey S Camp, et al. Advances,
updates, and analytics for the computation-ready, experimental metal–organic framework database:
Core mof 2019. Journal of Chemical & Engineering Data, 64(12):5985–5998, 2019.

[58] Benjamin J Bucior, Andrew S Rosen, Maciej Haranczyk, Zhenpeng Yao, Michael E Ziebel, Omar K
Farha, Joseph T Hupp, J Ilja Siepmann, Alán Aspuru-Guzik, and Randall Q Snurr. Identification
schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis. Crystal
Growth & Design, 19(11):6682–6697, 2019.

[59] Kevin Maik Jablonka, Andrew S Rosen, Aditi S Krishnapriyan, and Berend Smit. An ecosystem for
digital reticular chemistry. ACS Central Science, 9(4):563–581, 2023.

[60] Sabrina Jaeger, Simone Fulle, and Samo Turk. Mol2vec: unsupervised machine learning approach with
chemical intuition. Journal of chemical information and modeling, 58(1):27–35, 2018.

[61] Leigh Weston, Vahe Tshitoyan, John Dagdelen, Olga Kononova, Amalie Trewartha, Kristin A Persson,
Gerbrand Ceder, and Anubhav Jain. Named entity recognition and normalization applied to large-scale
information extraction from the materials science literature. Journal of chemical information and
modeling, 59(9):3692–3702, 2019.

[62] Thomas C Nicholas, Andrew L Goodwin, and Volker L Deringer. Understanding the geometric
diversity of inorganic and hybrid frameworks through structural coarse-graining. Chemical Science,
11(46):12580–12587, 2020.

[63] Thomas C Nicholas, Eugeny V Alexandrov, Vladislav A Blatov, Alexander P Shevchenko, Davide M
Proserpio, Andrew L Goodwin, and Volker L Deringer. Visualization and quantification of geometric
diversity in metal–organic frameworks. Chemistry of Materials, 33(21):8289–8300, 2021.

[64] Zoé Faure Beaulieu, Thomas C Nicholas, John LA Gardner, Andrew L Goodwin, and Volker L Deringer.
Coarse-grained versus fully atomistic machine learning for zeolitic imidazolate frameworks. Chemical
Communications, 59(76):11405–11408, 2023.

[65] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[66] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[67] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[68] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[69] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[70] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

[71] Andrew S Rosen, Shaelyn M Iyer, Debmalya Ray, Zhenpeng Yao, Alan Aspuru-Guzik, Laura Gagliardi,
Justin M Notestein, and Randall Q Snurr. Machine learning the quantum-chemical properties of
metal–organic frameworks for accelerated materials discovery. Matter, 4(5):1578–1597, 2021.

[72] Andrew S Rosen, Victor Fung, Patrick Huck, Cody T O’Donnell, Matthew K Horton, Donald G
Truhlar, Kristin A Persson, Justin M Notestein, and Randall Q Snurr. High-throughput predictions of
metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data
exploration. npj Computational Materials, 8(1):112, 2022.

[73] Aurelia Li, Rocio Bueno Perez, Seth Wiggin, Suzanna C Ward, Peter A Wood, and David Fairen-
Jimenez. The launch of a freely accessible mof cif collection from the csd. Matter, 4(4):1105–1106,
2021.

[74] Rhys EA Goodall, Abhijith S Parackal, Felix A Faber, Rickard Armiento, and Alpha A Lee. Rapid
discovery of stable materials by coordinate-free coarse graining. Science Advances, 8(30):eabn4117,
2022.

16



Coarse-grained crystal graph neural networks A Preprint

[75] David LJ Alexander, Alexander Tropsha, and David A Winkler. Beware of r2: simple, unambiguous
assessment of the prediction accuracy of qsar and qspr models. Journal of chemical information and
modeling, 55(7):1316–1322, 2015.

[76] Colm Healy, Komal M Patil, Benjamin H Wilson, Lily Hermanspahn, Nathan C Harvey-Reid, Ben I
Howard, Carline Kleinjan, James Kolien, Fabian Payet, Shane G Telfer, et al. The thermal stability of
metal-organic frameworks. Coordination Chemistry Reviews, 419:213388, 2020.

[77] Hironao Yamada, Chang Liu, Stephen Wu, Yukinori Koyama, Shenghong Ju, Junichiro Shiomi, Junko
Morikawa, and Ryo Yoshida. Predicting materials properties with little data using shotgun transfer
learning. ACS central science, 5(10):1717–1730, 2019.

[78] Dipendra Jha, Kamal Choudhary, Francesca Tavazza, Wei-keng Liao, Alok Choudhary, Carelyn
Campbell, and Ankit Agrawal. Enhancing materials property prediction by leveraging computational
and experimental data using deep transfer learning. Nature communications, 10(1):5316, 2019.

[79] Vishu Gupta, Kamal Choudhary, Francesca Tavazza, Carelyn Campbell, Wei-keng Liao, Alok Choudhary,
and Ankit Agrawal. Cross-property deep transfer learning framework for enhanced predictive analytics
on small materials data. Nature communications, 12(1):6595, 2021.

[80] Yuta Suzuki, Tatsunori Taniai, Kotaro Saito, Yoshitaka Ushiku, and Kanta Ono. Self-supervised
learning of materials concepts from crystal structures via deep neural networks. Machine Learning:
Science and Technology, 3(4):045034, 2022.

[81] Vadim Korolev and Pavel Protsenko. Accurate, interpretable predictions of materials properties within
transformer language models. Patterns, 4(10):100803, 2023.

[82] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[83] Daniel Probst. Aiming beyond slight increases in accuracy. Nature Reviews Chemistry, 7(4):227–228,
2023.

[84] Vadim Korolev and Artem Mitrofanov. Carbon footprint of artificial intelligence in materials science:
Should we be concerned? ChemRxiv, 2023.

[85] Jesse LC Rowsell and Omar M Yaghi. Effects of functionalization, catenation, and variation of the
metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-
organic frameworks. Journal of the American Chemical Society, 128(4):1304–1315, 2006.

[86] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024, 2020.

[87] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[88] Vadim Korolev, Iurii Nevolin, and Pavel Protsenko. A universal similarity based approach for predictive
uncertainty quantification in materials science. Scientific Reports, 12(1):14931, 2022.

[89] Alauddin Ahmed, Yiyang Liu, Justin Purewal, Ly D Tran, Antek G Wong-Foy, Mike Veenstra, Adam J
Matzger, and Donald J Siegel. Balancing gravimetric and volumetric hydrogen density in mofs. Energy
& Environmental Science, 10(11):2459–2471, 2017.

[90] Yi Luo, Saientan Bag, Orysia Zaremba, Adrian Cierpka, Jacopo Andreo, Stefan Wuttke, Pascal
Friederich, and Manuel Tsotsalas. Mof synthesis prediction enabled by automatic data mining and
machine learning. Angewandte Chemie International Edition, 61(19):e202200242, 2022.

[91] Zhiling Zheng, Oufan Zhang, Christian Borgs, Jennifer T Chayes, and Omar M Yaghi. Chatgpt
chemistry assistant for text mining and the prediction of mof synthesis. Journal of the American
Chemical Society, 145(32):18048–18062, 2023.

[92] Darpandeep Aulakh, Juby R Varghese, and Mario Wriedt. The importance of polymorphism in
metal–organic framework studies. Inorganic Chemistry, 54(17):8679–8684, 2015.

[93] Remo N Widmer, Giulio I Lampronti, Siwar Chibani, Craig W Wilson, Simone Anzellini, Stefan
Farsang, Annette K Kleppe, Nicola PM Casati, Simon G MacLeod, Simon AT Redfern, et al. Rich
polymorphism of a metal–organic framework in pressure–temperature space. Journal of the American
Chemical Society, 141(23):9330–9337, 2019.

17



Coarse-grained crystal graph neural networks A Preprint

[94] Musen Zhou and Jianzhong Wu. Inverse design of metal–organic frameworks for c2h4/c2h6 separation.
npj Computational Materials, 8(1):256, 2022.

[95] Yigitcan Comlek, Thang Duc Pham, Randall Q Snurr, and Wei Chen. Rapid design of top-performing
metal-organic frameworks with qualitative representations of building blocks. npj Computational
Materials, 9(1):170, 2023.

[96] Yunsung Lim, Junkil Park, Sangwon Lee, and Jihan Kim. Finely tuned inverse design of metal–organic
frameworks with user-desired xe/kr selectivity. Journal of Materials Chemistry A, 9(37):21175–21183,
2021.

[97] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made
simple. Physical review letters, 77(18):3865, 1996.

[98] Pragya Verma and Donald G Truhlar. Hle17: An improved local exchange–correlation functional
for computing semiconductor band gaps and molecular excitation energies. The Journal of Physical
Chemistry C, 121(13):7144–7154, 2017.

[99] Aliaksandr V Krukau, Oleg A Vydrov, Artur F Izmaylov, and Gustavo E Scuseria. Influence of the
exchange screening parameter on the performance of screened hybrid functionals. The Journal of
chemical physics, 125(22), 2006.

[100] Aditya Nandy, Gianmarco Terrones, Naveen Arunachalam, Chenru Duan, David W Kastner, and
Heather J Kulik. Mofsimplify, machine learning models with extracted stability data of three thousand
metal–organic frameworks. Scientific Data, 9(1):74, 2022.

[101] Seyed Mohamad Moosavi, Balázs Álmos Novotny, Daniele Ongari, Elias Moubarak, Mehrdad Asgari,
Özge Kadioglu, Charithea Charalambous, Andres Ortega-Guerrero, Amir H Farmahini, Lev Sarkisov,
et al. A data-science approach to predict the heat capacity of nanoporous materials. Nature materials,
21(12):1419–1425, 2022.

[102] Beatriz Mourino, Kevin Maik Jablonka, Andres Ortega-Guerrero, and Berend Smit. In search of covalent
organic framework photocatalysts: A dft-based screening approach. Advanced Functional Materials,
33(32):2301594, 2023.

[103] Daniele Ongari, Aliaksandr V Yakutovich, Leopold Talirz, and Berend Smit. Building a consistent and
reproducible database for adsorption evaluation in covalent–organic frameworks. ACS central science,
5(10):1663–1675, 2019.

[104] Alauddin Ahmed and Donald J Siegel. Predicting hydrogen storage in mofs via machine learning.
Patterns, 2(7), 2021.

[105] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R
Hutchison. Open babel: An open chemical toolbox. Journal of cheminformatics, 3(1):1–14, 2011.

[106] David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology
and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36, 1988.

[107] David Weininger, Arthur Weininger, and Joseph L Weininger. Smiles. 2. algorithm for generation of
unique smiles notation. Journal of chemical information and computer sciences, 29(2):97–101, 1989.

[108] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

[109] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan
Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural
networks. arXiv preprint arXiv:1909.01315, 2019.

[110] Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Federica Sarro, and Ying Zou. Green ai: Do
deep learning frameworks have different costs? In Proceedings of the 44th International Conference on
Software Engineering, pages 1082–1094, 2022.

[111] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[112] Semen Andreevich Budennyy, Vladimir Dmitrievich Lazarev, Nikita Nikolaevich Zakharenko, Aleksei N
Korovin, OA Plosskaya, Denis Valer’evich Dimitrov, VS Akhripkin, IV Pavlov, Ivan Valer’evich
Oseledets, Ivan Segundovich Barsola, et al. Eco2ai: carbon emissions tracking of machine learning
models as the first step towards sustainable ai. In Doklady Mathematics, volume 106, pages S118–S128.
Springer, 2022.

18



Coarse-grained crystal graph neural networks A Preprint

[113] Yi Bao, Richard L Martin, Cory M Simon, Maciej Haranczyk, Berend Smit, and Michael W Deem.
In silico discovery of high deliverable capacity metal–organic frameworks. The Journal of Physical
Chemistry C, 119(1):186–195, 2015.

[114] Yi Bao, Richard L Martin, Maciej Haranczyk, and Michael W Deem. In silico prediction of mofs with high
deliverable capacity or internal surface area. Physical Chemistry Chemical Physics, 17(18):11962–11973,
2015.

[115] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan Aspuru-Guzik.
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (stoned)
algorithm for molecules using selfies. Chemical science, 12(20):7079–7090, 2021.

[116] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules
based on molecular complexity and fragment contributions. Journal of cheminformatics, 1:1–11, 2009.

[117] Sereina Riniker and Gregory A Landrum. Better informed distance geometry: using what we know to
improve conformation generation. Journal of chemical information and modeling, 55(12):2562–2574,
2015.

[118] Christian Devereux, Justin S Smith, Kate K Huddleston, Kipton Barros, Roman Zubatyuk, Olexandr
Isayev, and Adrian E Roitberg. Extending the applicability of the ani deep learning molecular potential
to sulfur and halogens. Journal of Chemical Theory and Computation, 16(7):4192–4202, 2020.

19


	Introduction
	Results
	The coarse-grained crystal graph framework
	Predictive performance of CG2-NNs
	The carbon footprint of training CG2-NNs
	Inverse materials design accompanied with CG2-NNs

	Discussion
	Conclusion
	Methods
	Datasets
	Coarse-grained crystal graph processing
	Model training
	Inverse reticular design

	Acknowledgements
	Code availability
	Data availability

