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Abstract

The 2013/2014 Community Structure–Activity Resource (CSAR) challenge was designed to 

prospectively validate advancement in the field of docking and scoring receptor–small molecule 

interactions. Purely computational methods have been found to be quite limiting. Thus, the 

challenges assessed methods that combined both experimental data and computational approaches. 

Here, we describe our contribution to solve three important challenges in rational drug discovery: 

rank-ordering protein primary sequences based on affinity to a compound, determining close-to-

native bound conformations out of a set of decoy poses, and rank-ordering sets of congeneric 

compounds based on affinity to a given protein. We showed that the most significant contribution 

to a meaningful enrichment of native-like models was the identification of the best receptor 

structure for docking and scoring. Depending on the target, the optimal receptor for cross-docking 

and scoring was identified by a self-consistent docking approach that used the Vina scoring 

function, by aligning compounds to the closest cocrystal or by selecting the cocrystal receptor with 

the largest pocket. For tRNA (m1G37) methyltransferase (TRMD), ranking a set of 31 congeneric 

binding compounds cross-docked to the optimal receptor resulted in a R2 = 0.67; whereas, using 

any other of the 13 receptor structures led to almost no enrichment of native-like complex 

structures. Furthermore, although redocking predicted lower RMSDs relative to the bound 

structures, the ranking based on multiple receptor structures did not improve the correlation 

coefficient. Our predictions highlight the role of rational structure-based modeling in maximizing 

the outcome of virtual screening, as well as limitations scoring multiple receptors.
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 INTRODUCTION

Computational screening methods continue to be developed and improved as credible and 

complementary alternatives to high-throughput biochemical compound screening (HTS).–

However, purely computational approaches are not able to predict binding free energies.,

Thus, rational or expert-guided approaches are required to improve hit rates., To 

prospectively assess and benchmark methodologies, the Community Structure–Activity 

Resource (CSAR) developed a set of challenges to identify robust methods and to improve 

computational methods for drug discovery. In particular, the challenges included rank-

ordering congeneric compounds, identification of a near-native pose out of a set of docked 

decoy poses, and rank-ordering primary protein sequences based on affinity to a single 

compound.

Structure-based virtual screening consists of examining a database of 100–100 000 000 

compounds and selecting a small set that are most likely to bind in an experiment. There are 

many established methods for achieving this including pharmacophore based methods–,– and 

molecular docking.,– In pharmacophore-based methods, virtual screening is performed by 

matching a specified set of features that describe the structural arrangement of an interaction 

to a given receptor. After this search, further refinements are often applied such as energy 

minimization and scoring. Docking-based virtual screening methods use molecular docking 

tools to predict how each compound in the database binds with respect to a protein receptor 

and uses the score of the poses to determine which compounds in the database are likely 

binders. In both of these cases, the scoring function plays a critical role in the success of the 

method at all levels.–

Essential for the success of structure-based virtual screening is an accurate structure of the 

receptor. Many times an X-ray or solution structure of the protein of interest is known, 

however this is not the case for many proteins. Moreover, it is often the case that differences 

between apo and holo structures can make a given structure useless for docking and/or 
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scoring. When no structure is available, it is possible to build a homology model based on 

known structures of related proteins., However, it is well-known that homology models are 

only as good as the similarity of the homologous proteins and the quality of the sequence 

alignment. Low sequence similarity (<30%) or a suboptimal sequence alignment has a 

detrimental impact on the quality of the homology model. Moreover, protein flexibility or 

induced fit structural rearrangements upon ligand binding are also unsolved challenges in 

structure prediction.– The latter is the main reason why most virtual screening efforts treat 

the receptor structure as fixed, or at most sample a limited number of side chain 

conformations. And, as expected, the choice of the receptor structure is a major determinant 

of the success of the screen.

The CSAR experiment was developed to prospectively test computational tools capable to 

address some of the aforementioned challenges in structure-based virtual screening. The 

combined 2013/2014 experiments contained five phases with different challenges. Namely, 

predicting the affinity of a compound to a protein given only the primary amino acid 

sequence, choosing the correct binding pose out of a collection of docked decoy poses, and 

predicting the pose and relative ranking of a set of congeneric compounds. Our lab 

participated and obtained some of the best results in these challenges by testing a variety of 

strategies designed to identify the best possible receptor structure for screening, while 

scoring using two established scoring functions that can be found in the literature, AutoDock 

Vina and the Custom scoring function that we previously developed for the 2012 CSAR 

competition. Our findings underscore that molecular docking can consistently predict and 

score bound-like poses to a bound-like receptor (redocking). Docking to homology models 

is still challenging, yet predicting druggable pockets and docking to multiple models 

allowed us to identify the targets of digoxigenin among a set of 14 protein sequences. 

Ranking of congeneric compounds depends on having the right open pocket for docking. We 

showed that out of a set of 14 more or less equivalent small molecule bound receptor 

structures, only one produced a meaningful affinity ranking with an overall R2 = 0.67. What 

distinguished this structure from the rest was that it had the largest open pocket-binding site. 

On the contrary, if the pocket is constrained, then substructure alignment leads to better 

enrichment than docking. In retrospect, our results suggest that despite the limitation of the 

scoring functions, a strong indication of the druggability of the receptor is the fact that small 

molecules consistently fit/dock in a binding pocket.

 CSAR 2013 Phase 1

Docking to multiple homology models delivers good binding poses.

 Challenge—Predict out of 14 designed protein sequences, which ones bind digoxigenin.

 Methods—For this stage, we submitted four different methods (Group E): Vina-

Docking, Custom-Docking, Neighbor-Joining-Ranking, and Manual-Consensus-Ranking. 

The approach consisted in (a) building 3D homology models of the proteins using the I-

TASSER server,,, (b) using fpocket to find potential binding sites on the models, (c) 

performing molecular docking of the digoxigenin to a bounding box based on the top 

scoring pocket using two scoring functions, an in-house “Custom-Docking” scoring function
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and “Vina-Docking” the AutoDock Vina scoring function, (d) ranking structures based on 

sequence similarity of the structures with best docked models (Neighbor-Joining-Ranking), 

and (e) ranking models using a “human” Manual-Consensus-Ranking based on the available 

data which was outperformed by the semiautomated methods and will not be discussed 

further. For this and all other challenges, molecular docking was performed using smina

which uses the AutoDock Vina scoring function by default. We also note that the in-house 

custom scoring function that was developed for the 2012 CSAR competition was used in 

some phases of the competition and will be denoted as the Custom scoring function.

 Results—Our predictions and results from 2013 Phase 1 are shown in Table 1. Fpocket 

successfully predicted the binding pocket in most models. Molecular docking using Vina- 

and Custom-Scoring identified DIG5 and DIG10, respectively, as the highest ranked docked 

models. Figure 1 shows the Vina-Docking predicted models of DIG5 and DIG10 overlapped 

on the cocrystals of DIG18 and DIG10. These bound models highlight the accuracy of our 

homology models, which for DIG10, DIG18, and DIG19 had an all-heavy atoms RMSD of 

1.95, 2.15, and 2.02 Å, respectively, relative to their own crystals (the crystal structure of 

DIG5 is not available). Visual inspection showed striking chemical complementarity for our 

top models, which further supported our predictions. These included hydrophobic contacts 

with Phe34 and Phe101 for DIG5 and hydrogen bonds with Tyr34 and Tyr101 for DIG10. 

The latter recapitulated the bonds observed in the cocrystal of DIG10 (PDB ID 4J8T). 

However, most docked structures did not get into the pocket, mostly due to the fact that our 

models had an “extra” 13–21 amino acids on the C-terminal that were poorly predicted ab 

initio by I-TASSER. Another issue was that the compound provided for screening (shown in 

Figure 1C) included a longer amide group at one end that is missing from the actual 

cocrystal. Hence, as shown in Figure 1, for both of our models, the extra tail tilted our 

models to find an exit point that avoided the extra helical motif present in our models. And, 

for, say, DIG18 and DIG19, the “extra” amino acids in the receptor overlapped with the 

extended tail of the compound.

Because of the obvious limitations of structure prediction, we postulated that proteins close 

in sequence to DIG5 and DIG10 should provide the best binding proteins. A multiple 

alignment of all 14 sequences resulted in the clustering of DIG5, DIG18, DIG10, and DIG19 

as most similar structures (Figure 2); hence, we ranked proteins according to sequence 

distance from DIG5 (top ranked by Vina-Dock). The Neighbor-Joining-Ranking method, 

which leverages structure and sequence information, successfully predicted the four proteins 

that bind to digoxigenin. Only one other team in the competition performed comparably.

This challenge highlighted several lessons for docking to homology models: namely, (a) the 

importance of having high-quality structures of the receptor, (b) the inability of ab initio 

regions to meaningfully contribute in molecular docking, (c) narrowing the binding surface 

to only the most druggable sites, and (d) the robustness of molecular docking and multiple 

scoring functions to identify good binding pockets.

 CSAR 2013 Phase 2

Molecular docking identifies near-native poses.
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 Challenge—Selecting the pose that is closest to the bound cocrystal out of a set of 200 

decoy poses.

 Methods—For this challenge, we employed and submitted six methods for identifying 

the correct binding pose. We ranked the poses by their Vina score (Vina-Score), Custom 

score (Custom-Score), and solvent accessible surface area score (SASA-Score). We also 

minimized the compounds with the Vina and custom scoring functions (Vina-Min and 

Custom-Min). Finally, we developed a support vector machine (SVM) scoring function 

where we applied machine learning techniques to classify poses as either near-native poses 

(<1 Å RMSD) or decoys (>2 Å RMSD to cocrystal pose). As training data, we redocked the 

ligands from the 343 high quality cocrystal structures from the CSAR NRC High-Quality set

with smina and labeled the docked poses as either near-native or decoys. Poses between 1 

and 2 Å were discarded to mimic the conditions of the test set data which was described as 

having one pose under 1 Å and the rest over 2 Å for each target. We trained our model using 

10-fold cross validation keeping proteins from the same family in the same subsample. 

Forward selection was used to select the most discriminative features. These were the 

AutoDock Vina, the SASA, and the Custom-Score. The full list of features considered is 

listed in Table S1.

 Results—All of our methods ranked the correct pose as the top ranked pose for both 

DIG18 and DIG20 except for Custom-Score on DIG18 and for Custom-Min for DIG18 and 

DIG20, where it was ranked second for each (Figure 3A). Scores are normalized between 0 

and 1. Our SVM-Score also correctly distinguished the near-native pose (<1 Å RMSD) from 

the decoys for both targets however the confidence in the predictions is much higher as 

evidence in the difference between the first and second ranked poses.

Figure 3B shows the RMSD of the DIG20 poses against normalized Vina, Custom, and 

SASA-Score (Figure 3B). We find a striking linearity between the scores and the RMSDs of 

these poses, indicating that the scoring functions are well suited for identifying low RMSD 

poses. Even minimizing the poses using Vina does not change the correlation R2 (see the full 

set of rankings in Figure S1). This challenge reinforces that scoring is capable of validating 

near-native models, particularly when using the AutoDock Vina scoring function.

 CSAR 2013 Phase 3

Molecular docking is an effective tool for rank-ordering of congeneric compounds when a 

template cocrystal is known.

 Challenge—Pose prediction and rank-ordering of 10 congeneric compounds of 

digoxigenin to the crystal structure of DIG10. Known cocrystals of DIG18 and DIG19 were 

available.

 Methods—For this phase, we submitted a total of four methods (Group G). The 

approach consisted of (a) 25 conformers of each compound were generated using Omega2

from OpenEye with default parameters and then substructure alignment was performed 

using obfit to digoxigenin from its cocrystallized pose to DIG18 overlapped in DIG10; (b) 

aligned conformers were minimized with either the Vina (Align-Vina) or the Custom (Align-
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Custom) scoring functions; (c) ranked top conformers for each compound based on affinity 

score; (d) molecular docking of the compounds in the binding pocket of DIG10 performed 

with both Vina (Dock-Vina) or Custom (Dock-Custom) scoring function using smina. Smina 

was run with default settings, which samples nine ligand conformations using the Vina 

docking routine of stochastic sampling.,

 Results—Our method of aligning conformers of the compounds and minimizing with 

Vina (Align-Vina) was the best of all 33 contributors in the competition (R2 = 0.81, Figure 

4). Docking to the protein with Vina (Dock-Vina) also did very well (R2 = 0.72). On the 

other hand, our Custom scoring function yielded significantly poorer affinity predictions 

(Figure S2). This was due to the fact that the Custom scoring function allows for more 

overlaps because its softer contact potential (modeled by an 8–4 Leonard-Jones potential) 

compared to the Vina scoring function (which has a repulsion term)., Hence, since this 

challenge involved docking to bound receptors as opposed to unbound structures, the extra 

sampling afforded by a softer scoring function was detrimental for ranking purposes.

This challenge confirms that Vina score is one of the best open-source scoring functions to 

dock to bound-like receptor structures.

 CSAR 2014 Phase 1

Pose prediction works when an optimal receptor structure exists and it is kept fixed.

 Challenge—Given 200 docked decoy poses, predict the pose closest to the bound 

structure for 22 compounds bound to three different receptors: Factor Xa (FXA), spleen 

tyrosine kinase (SYK), and tRNA (m1G37) methyltransferase (TRMD).

 Methods—This challenge is an extension of CSAR 2013 Phase 2 where we established 

that the Vina score provided excellent discrimination of near-native docked poses (R2 = 

0.72, Figure 3B). Here, we are given a total of 22 bound receptor structures (see Table 2), 

and we used the Vina score to rank the docked poses.

 Results—Scoring the compounds with Vina scoring function correctly identified the 

close-to-crystal poses for all 22 compounds (Figure 5). Furthermore, for the two targets for 

which we have affinity data, SYK and TRMD, Vina correctly predicted the best affinity 

compounds GTC233 and GTC451, respectively. Vina score also correctly predicted GTC446 

and GTC447 to be the two worst compounds for TRMD.

For the 14 bound receptor structures we had for TRMD, we showed that redocking using 

smina with the Vina scoring function predicted almost identical docked poses as those 

provided in this challenge that were generated using DOCK6.5. Perhaps more interesting, 

we show that cross-docking to the GTC451 receptor which resulted in the lowest Vina score 

among the 14 compounds (Figure 5A) and also formed the largest binding pocket (the ligand 

is also the largest), provides a marginally better correlation coefficient for predicted versus 

experimental affinities (Figure 5B).
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Our results demonstrate that molecular docking can detect and predict bound-like docked 

poses in a cocrystal receptor. However, computational affinities associated with those docked 

poses, which for the most part ignore ligand and receptor flexibility and internal energies, 

have limitations. It is noteworthy that free energy perturbation methods have shown 

significant progress in remodeling and ranking docked poses around a congeneric bound 

cocrystal (see, e.g., ref 18). Limitations on this approach are in terms of the computational 

cost involved in running multiple MD simulations for each one of the compounds.

 CSAR 2014 Phase 2

Successful rank-ordering of congeneric compounds depends on a suitable open binding 

pocket.

 Challenge—Rank-order five sets of congeneric compounds based on binding affinity for 

the same three targets from 2014 Phase 1. We were also provided with the cocrystal 

structures of the 22 compounds from 2014 Phase 1. See Table 2 for the number of 

compounds in each of the five test sets and the number of available structures.

 Methods—One advantage that we had in this phase as compared to the similar challenge 

faced in CSAR 2013 Phase 3 is that the target proteins FXA, SYK, and TRMD are fairly 

well-studied and there was a great deal of structural information available. To leverage this 

information, we obtained from the Protein Data Bank (PDB) all of the structures of these 

proteins bound to a small molecule (Table 2).

For this challenge, our goal was to compare affinity rankings based on models of each 

compound aligned to their most similar cocrystal, docked into their optimal cocrystals or 

crossdocked into a unique optimal receptor. For substructure alignments we used 

Open3DAlign, binding site volume was computed using mdpocket, for docking and scoring 

we used smina with the Vina scoring function. Then, the methods tested consisted of the 

following:

a. Align-Close is a method that used Tanimoto score to identify the most similar 

ligand and its receptor among all cocrystals for each compound in the test sets. 

Tanimoto score were computed using OpenBabel. Then, 3D poses were 

generated by aligning 25 conformers of each compound into its most similar 

receptor and minimized. The lowest free energy score for each compound was 

then selected as Align-Close.

b. Align-Cross tested the same method but the conformers were aligned to a 

reference receptor and then minimized. The reference receptor was the one 

with the largest binding site volume.

c. Dock-Close tested whether docking using smina to the most similar receptor 

from each compound in (a) produces better poses than substructure alignment.

d. Dock-Cross tested whether ranking based on docking to a single fixed receptor 

produces better correlations than docking to multiple receptors (even though 

these receptors have compounds that are more similar). Again, the reference 

receptor was chosen to be the one with the largest binding pocket.
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 Results—This was likely the most difficult phase of the competition as it addresses two 

difficult challenges in computational biology: pose prediction and scoring. Due to a 

technical error our predictions were not received, although they were completed before the 

submission deadline. The analysis presented in this section corresponds to our findings using 

similar methodology as the one submitted for CSAR 2013/Phase 3. Here, we only present a 

retrospective analysis of our methods (Figure 6). For FXA set 1, predictions were basically 

random. Indeed, none of the submitted methods from any group were able to outperform the 

null method of simply ranking the compounds based on their molecular weight (R2 = 0.30). 

For FXA set 2 and 3, Dock-Cross produced marginal predictions with R2 ~ 0.2. For SYK, 

Align-Close/Dock methods produced a correlation of R2 = 0.39, but Dock-Cross was 

basically random. Strikingly, Dock-Cross predicted a correlation (R2 = 0.67; Spearman’s 

correlation of 0.62) for TRMD when we docked to the receptor with the most open binding 

pocket and slightly worse for Align-Close/Cross or Dock-Close that use compound 

similarity information.

The most striking observation in our analysis is how choosing any other reference receptor 

than that with the largest binding pocket for TRMD led to marginal correlations for Align-

Cross and random rankings for Dock-Cross (Figure 7). More interestingly, Align-Cross 

performed significantly better than Dock-Cross for these suboptimal receptor structures. The 

latter is consistent with the results for the SYK target, where we had no optimal receptor but 

(Align-Close/Cross) alignment still provided some discrimination. Thus, although we find 

that docking to the cocrystal structure with the largest binding pocket led to the best 

correlations between experimental and predicted (Vina) affinities (Figure 6), a priori it is not 

obvious whether aligning compounds or outright docking compounds would lead to the best 

ranking of binding affinities.

To understand the dichotomy between Alignment and Docking, we compare the RMSD of 

the predicted best poses and the bound ligand structures. Figure 8 shows that consistently the 

minimization of aligned poses led to lower RMSD than Dock-Cross poses. Thus, the ability 

for the compounds to optimize the contacts in a large pocket improves the scores over a 

limited minimization of an aligned pose but not its RMSD. If the pocket is small enough and 

does not allow for the optimization of contacts then crossdocking is futile, whereas the 

aligned compounds will nearly always recover some native contacts.

 DISCUSSION

The purpose of the Community Structure–Activity Resource (CSAR) challenge is to propel 

development of new methods and approaches that address many of the critical and 

outstanding challenges in the field of computation structural drug discovery. Some of these 

problems include the prediction of tertiary protein structure using only the primary sequence 

information and the prediction of binding affinities of sets of congeneric compounds. For the 

five phases of competition, we have employed a number of established tools in addition to 

developing our own custom built tools to form a pipeline where expert structural and 

biochemical knowledge can be applied to enhance predictions.
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In the first phase of the 2013 competition, we were tasked with ranking the affinities of a 

compound to 14 designed proteins with no known structure. Building a large set of models 

allowed us to identify a robust binding site and correlate structure with binding properties 

for the given compound. This approach is quite general and can be applied to other 

problems.

In 2013 Phase 2 and 2014 Phase 1, we were challenged to select the closest-to-native 

structure from a set of 200 docked poses. We used a number of established methods 

including both scoring the poses and redocking with the AutoDock Vina scoring function, 

which performed very well on both data sets (Figures 3, 4, and 5). Moreover, Phase 3 of the 

2013 competition and Phase 2 of the 2014 competition were centered around ranking sets of 

congeneric compounds based on their affinity to a given protein. Our methods that leveraged 

known crystallographic information coupled with the use of the AutoDock Vina scoring 

function performed very favorable when compared with other submissions. While the 

accuracy of our predictions is very far from 100% for ranking affinities, the Vina scoring 

function used in smina represents a robust method for redocking, docking and affinity 

prediction.

The methods that we employed in the five phases of competition underscore the importance 

of using the best receptor structure possible. We showed that the optimal receptor for cross-

docking and scoring was identified by a self-consistent docking approach that used the Vina 

scoring function for DIG homology models; by aligning compounds to the closest cocrystal 

for SYK or by selecting the cocrystal receptor with the largest pocket for TRMD. Of course, 

an optimal receptor structure makes sense when docking assumes a mostly rigid receptor. 

Both aligning compounds to a known cocrystal or crossdocking can provide meaningful 

enrichments. However, exactly when one has an optimal receptor is not obvious.

It seems somewhat counterintuitive that ignoring receptor flexibility would lead to improved 

scoring predictions, especially in light of a major push in the field to understand and capture 

the receptor flexibility.,–, Most likely this view is biased toward the type of problems 

presented in the 2013/2014 CSAR experiment. On the other hand, our results seem to 

suggest that ligand flexibility seems to be appropriate for current scoring functions that have 

yet to reflect the full complexity entailed by the changes of free energy upon binding.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Molecular docking using Vina scoring function produces reasonable poses in binding site of 

homology models. (A) Homology model of DIG10 (white) with top ranked vina pose of 

digoxigenin with the extra amide tail (orange) overlaid on the cocrystal structure of DIG10 

(PDB ID 4J8T, blue) bound to digoxigenin (purple). (B) Homology model of DIG10 

(purple) with top ranked vina pose of digoxigenin with the extra amide tail (green) overlaid 

on the cocrystal structure of DIG18 (yellow) bound to digoxigenin (light blue). Note that, for 

both DIG5 and DIG10, there is an “extra” α-helix that covers the opening to the binding site. 

(C) Ligand structure. Also note that the ligand structure in our model differs slightly from 

the ligand in the cocrystals by the addition of an amide tail (shown in dashed box). These 

two factors preclude the identification of any higher-quality poses.
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Figure 2. 
Phylogenetic analysis of the 14 DIG protein family sequences for CSAR 2013 Phase 1. The 

tree was constructed using BLOSUM62 distance with Jalview v2.8 after multiple sequence 

alignment with Clustal Omega. Red boxes indicate the four sequences that actually bind to 

the compound (information released after competition).
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Figure 3. 
Successful prediction of near-native poses. (A) Scores of six methods for identifying near-

native poses (open circles) out of a set of 200 docked decoy poses (black dots) for CSAR 

2013 Phase 2 for two targets DIG18 and DIG20. The scores of these varied methods have 

been normalized where lower scores are better. (B) RMSD of DIG20 decoy poses plotted 

against their Vina-Score, Custom-Score, and SASA-Score. The red circle indicates the near-

native pose. The blue line indicates the best-fit curve, and the R2 is shown in each of the 

plots.
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Figure 4. 
Vina scoring and docking provides a meaningful rank-ordering of congeneric compounds. 

Binding affinity prediction correlations of 10 compounds to DIG10 from CSAR 2013 Phase 

3 using two different methods. (left) Pregenerated conformers are aligned to a cocrystallized 

ligand and energy minimized or (right) compounds are docked with the Vina scoring 

function. The blue line shows the linear fit, and the correlation coefficient (R2) value is 

shown in each subplot. The similar correlations between Align and Dock attest to the fact 

that docking is sampling ligand rotamers resulting in meaningful docked poses.
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Figure 5. 
Scoring docked decoys with Vina correctly identifies near-native poses. (A) Vina scores of 

the 200 decoy poses (black dots) for the 22 compounds of the CSAR 2014 Phase 1. All the 

closest-to-crystal poses indicated with open circles are ranked with the lowest affinity score. 

(B) Correlation between the predicted and actual affinities for the 14 TRMD compounds 

using (left) Vina to score the given poses to their given cocrystal receptor structure, (center) 

score after redocking the compounds to their cocrystal receptor structure, and (right) score 

from crossdocking the compounds to the TRMD_451 receptor structure. A slight 

improvement in the correlation with the actual affinities is observed when crossdocking to 

TRMD_451, which has the largest open pocket among all cocrystals (see below).
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Figure 6. 
Docking congeneric compounds to optimal fixed receptor predicts meaningful correlations 

of experimental and computational affinities. Affinity predictions for the five sets of 

compounds (rows) using four different methods (columns). Some correlations were 

computed by removing outliers with positive scores, and their R2 are noted in parentheses. 

The blue line shows the linear fit for the nonoutliers, and the R2 value is shown in each 

subplot.
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Figure 7. 
Scoring or docking to the wrong receptor leads to random predictions. The top two panels 

show experimental and predicted binding affinity correlation coefficients R2 for the Align- 

and Dock-Cross methods when aligning and docking to each of the cocrystals provided, 

respectively. Red circles indicate results when using receptor with the largest volume of the 

binding pocket (highest point for each set in the lower panel).
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Figure 8. 
Minimizing aligned conformers produces better RMSD poses than crossdocking. Shown are 

the average and standard deviations of the RMSDs of the 14 TRMD compounds for the 

Align-Cross and Dock-Cross methods, as well as the average across all receptor structures. 

Consistently, substructure alignment and minimization produced superior pose predictions 

even when resulting in lower affinity correlation coefficients.
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Table 1

Leveraging Both Sequence and Structural Information To Improve Protein–Ligand Affinity Predictionsa

Vina-Docking Custom-Docking Neighbor-Joining-Ranking

DIG5 DIG10 DIG5

DIG6 DIG1 DIG18

DIG3 DIG3 DIG10

DIG18 DIG5 DIG19

DIG8 DIG8 DIG4

DIG10 DIG18 DIG12

DIG14 DIG17 DIG7

DIG12 DIG19 DIG17

DIG13 DIG6 DIG6

DIG17 DIG13 DIG2

DIG19 DIG4 DIG14

DIG9 DIG9 DIG9

DIG7 DIG14 DIG13

DIG2 DIG12 DIG8

DIG4 DIG7 DIG1

DIG1 DIG2 DIG3

AUC = 0.81 0.75 1.00

a
Shown are the predicted rankings of the 14 CSAR 2013 Phase 1 protein sequences using our three methods. The actual binders are shown in bold. 

The last row indicates the area under the curve (AUC) of our predictions.
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Table 2

Structural data available for CSAR 2014 Phase 2a

set test set compounds CSAR cocrystals PDB cocrystals

FXA sets 1, 2, 3 44, 66, 50 3 (3) 123

SYK 273 5 (8) 29

TRMD 31 14 (31) 8

a
The number of compounds in the five compound test sets (three sets for FXA) are listed in addition to the number of co-crystal structures available 

from the PDB (at the time of the competition) and from the results of the previous phase. In parentheses are listed the total number of structures 
available after the competition.
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