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Selection of putative binding poses is a challenging part of virtual screening for protein-
protein interactions. Predictive models to filter out binding candidates with the highest bind-
ing affinities comprise scoring functions that assign a score to each binding pose. Existing
scoring functions are typically deduced collecting statistical information about interfaces of
native conformations of protein complexes along with interfaces of a large generated set of
non-native conformations. However, the obtained scoring functions become biased toward the
method used to generate the non-native conformations, i.e. they may not recognize near-native
interfaces generated with a different method.

Present study demonstrates that knowledge of only native protein-protein interfaces is
sufficient to construct well-discriminative predictive models for the selection of binding candi-
dates. Here, we introduce a new scoring method that comprises a knowledge-based potential
called KSENIA deduced from the structural information about the native interfaces of 844
crystallographic protein-protein complexes. We derive KSENIA using convex optimization
with a training set composed of native protein complexes and their near-native conformations
that are obtained using deformations along the low-frequency normal modes. As a result,
our knowledge-based potential has only marginal bias toward a method to generate putative
binding poses. Furthermore, KSENIA is smooth by construction, which allows to use it along
with a rigid-body optimization to refine the binding poses. Using several test benchmarks
we demonstrate that our method discriminates well native and near-native conformations of
protein complexes from the non-native ones. Our methodology can be easily adapted to the
recognition of other types of molecular interactions, such as protein-ligand, protein-RNA, etc.
KSENIA will be made publicly available as a part of the SAMSON software platform at
https://team.inria.fr/nano-d/software.
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1 Introduction

Protein-protein interactions play crucial role
in the human interactome, orchestrating most
of the signaling network processes. Abrupt
changes in protein-protein interactions lead to
various kind of diseases, which makes protein
structure prediction an important challenge in
rational drug design. However, generally it is
very difficult to experimentally obtain struc-
tures of protein complexes, thus computational
molecular docking techniques are often used
nowadays for protein-protein structure predic-
tion. Typically, molecular docking as an in-
tegral part of the drug discovery process in-
volves the scoring stage, where one selects the
best putative binding candidates from the set
of binding poses by assigning the score or the
energy value F to each candidate. The scoring
stage incorporates sophisticated scoring func-
tions,! which are obtained with the empirical
force-fields or using information derived from
experimentally obtained structures of protein
complexes. The latter type of scoring functions
belongs to the family of the knowledge-based or
statistical scoring functions. The majority of
modern knowledge-based scoring functions for
the protein-protein interactions are developed
following the observation that the distances be-
tween the atoms in experimentally determined
structures follow the Boltzmann distribution.*
More precisely, using ideas from statistical
theory of liquids, effective potentials between
atoms are extracted using the inverse Boltz-
mann relation, E;;(r) = —kgT log(P;(r)/Z),
where kg is the Boltzmann constant, P;;(r) de-
notes the probability to find two atoms of cer-
tain types ¢ and j at a distance r, and Z de-
notes the probability distribution in the refer-
ence state. The latter is the thermodynamic
equilibrium state of the protein when all in-
teractions between the atoms are set to zero.
The score of a protein conformation is then
given as a sum of the effective potentials be-
tween all pairs of atoms. Although this concept
is old and originates from the work of Tanaka
and Scheraga,” Miyazawa and Jernigan,® and
Sippl,®™ it is still under debates.®™ Partic-
ularly, the computation of the reference state

is a challenging problem.*# Although some as-
sumptions were made to ease the expression of
the reference state for protein monomers,>4312
to deduce scoring functions for the protein-
protein docking, one usually computes the ref-
erence state based on a large set of generated
non-native conformations of protein complexes
(decoys). 1T Another type of statistical poten-
tials is constructed using the discriminative ma-
chine learning, specifically, the linear program-
ming approach.’®“3 The basic idea behind this
approach is to solve a system of inequalities
that demand the energy of the native confor-
mation to be lower than the energy of all the
decoy conformations for a particular complex,
E(Pnative) _ E(Edecoy) < O, V‘Pidecoy c Pdecoy'
Although this approach circumvents the com-
putation of the reference state, its success crit-
ically depends on the chosen set of decoy con-
formations P4°Y. Thereby, the obtained sta-
tistical potential depends on the sampling algo-
rithm used to generate the decoy conformations
and, generally, might not distinguish the native
structures equally well from decoys obtained by
another sampling algorithm.

In this study we discovered that knowledge
of only native protein-protein interfaces is suf-
ficient to construct well-discriminative predic-
tive models for the selection of putative bind-
ing candidates. Namely, we introduce a new
scoring method that comprises a knowledge-
based potential called KSENIA deduced from
the structural information about the native in-
terfaces of 844 crystallographic protein-protein
complexes. As a result, our approach does not
require neither the computation of the reference
state nor the ensemble of non-native complexes.
Thus, it can have only a marginal bias toward a
method to generate putative binding poses. To
the best of our knowledge, this is the first inves-
tigation of the knowledge-based potential that
needs no information derived from non-native
protein-protein interfaces. More precisely, we
use convex optimization to train the knowledge-
based potential on sets of near-native confor-
mations with the average root mean square de-
viation (RMSD) between monomers of 1 A.
These are composed using the deformations
along the directions of low-frequency normal



modes computed at the native conformations.
We demonstrate that the obtained knowledge-
based potential is capable to distinguish the
native and near-native protein-protein interac-
tions from the non-native ones. Given that
rigid-body minimization refinement improves
the scoring performance,** we also implement a
rigid-body optimization protocol using the de-
rived knowledge-based potential. Finally, we
verify the robustness of our method on several
protein-protein docking benchmarks.

2 Theoretical Basis

We consider N native protein-protein complex
conformations Prative j = 1..N. For each pro-
tein complex 7 we generate D decoys, Pgecoy,
j = 1..D, where the first index runs over dif-
ferent protein complexes and the second index
runs over generated decoys. Then we find a lin-
ear scoring functional F, defined for all possible
complexes, such that for each native complex ¢

and its decoy j the following inequality holds:
native deco
F(P; ) < F(P; Y) (1)

We express the scoring functional which fulfills
these assumptions in the following form:

where n*!(r) is the number density of atom pairs
at a distance r between two atoms of types k
and [ (kl-pair), with one atom located in the
larger protein (receptor), and the other atom lo-
cated in the smaller protein (ligand). Here, M
is the total number of different atom types. We
used M = 20 atom types provided by Huang
and Zou,™® which were defined by the classifica-
tion of all heavy atoms in standard amino acids
according to their element symbol, aromatic-
ity, hybridization, and polarity. The functions
U*(r) are unknown scoring potentials, which
we determine below.The number density n*!(r)
is computed as a sum over all kl-pairs in a given
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protein complex via:

_ (r—r;)*

B

1
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n(r) = E e
(r) r vV 2ro?

Here, each kl-pair at a distance r;; is repre-
sented by a Gaussian centered at r;; with the
standard deviation of o, which takes into ac-
count possible inaccuracies and thermal fluctu-
ations in the protein structure. In our work we
chose o = 0.4 A, since this value demonstrated
the best results in the holdout cross-validation
tests“? (see Section 2 of Supporting Informa-
tion for more details). We considered only atom
pairs at distances below the threshold distance
P = 10 A. Using Eq. , we can rewrite the
scoring functional F' (see Eq. (2)) as the sum
over all kl-pairs of atoms ¢ and j at a distance
Tiji

Tmax 5
_ (r=ry)

’ (4)

We will refer to the functions

Tmax

1 _(a=r)?

Nz e 22 UM(z) dv, (5)
0

TH(r) =

which are the Gauss transform of the scoring
potentials UM (x), as to the scoring functions.

In order to determine unknown scoring po-
tentials U*(r) (see Eq. (2)), we decompose
them along with the number densities n*(r) in
a polynomial basis:

UM (r) = D why(r), 7 € [0; il

(6)
W) = 3wl (), € [0,

where ),(r) are orthogonal basis functions on
the interval [ry; o], and w* with 2* are the ex-
pansion coefficients of U*(r) and n*!(r), respec-
tively. Here, we use a set of shifted rectangular
functions as the basis.“® Given this, the scoring
functional F' (see Eq. ) can be expanded up

wd UM (r)dr = TH(ry)
ij



to the order ) as:

M M Q
F(P) ~ Z Z wa;la:l;l = (wW-x),

k=1 1=k gq (7)

W, X € RQXMX(M+1)/2’

where we use the order of expansion () = 40.
We will refer to the vector w as to the scoring
vector and to the vector x as to the structure
vector. Then, we can rewrite the set of inequal-
ities as a soft-margin quadratic optimization
problem: %"

Minimize (in w, b;, &;): %W -w + Zij Ci&ij
Subject to:

§i; >0

(8)
Here, index ¢ runs over different protein com-
plexes and index j runs over different confor-
mations of the i-th protein complex. Particu-
larly, protein conformations with 7 = 0 are na-
tive with the corresponding constants y;0 = +1
and protein conformations with j = 1..D are
the decoys with the corresponding constants
yi; = —1. Parameters Cj; can be regarded
as regularization parameters, which control the
importance of different structure vectors. We
found the optimal values of Cj; parameters
using the holdout cross-validation procedure
(see Section 2 of Supporting Information). The
scoring vector w, the offset vector b and the
slack variables ;; are the parameters to be op-
timized. The size of the optimization problem is
determined by the dimensionality of the struc-
ture and the scoring vectors, which is equal to
Qx M x(M+1)/2 = 8400, and by the size of the
training set, N = 844 and D = 225. The lat-
ter is composed based only on local information
about the native interfaces of protein-protein
complexes and no other information is used (see
Section . We solve problem in its dual
form using the block sequential minimal opti-
mization (BSMO) algorithm as explained else-
where.?" Finally, given the solution of problem
, i.e. the scoring vector w, one may restore
the scoring potentials U (r) (see Eq. (), the
scoring functions T*(r) (see Eq. (5))), and com-

pute the score of a protein complex according

to Eq. ().

3 Materials and Methods

3.1 Rigid-Body Minimization

The scoring functions Y*(r) (see Eq. (f])) are
smooth by construction. This fact allows to
use these functions for the structure optimiza-
tion. More accurately, for a given kl-pair of
atoms at a distance 7;;, the negative gradient
—VY*(r;;) could be regarded as the force with
which one atom acts on the other atom. Thus,
one may use the set of derived functions YT* ()
to optimize a particular conformation of a pro-
tein complex until a local minimum is reached,
provided VY*(r;;) = 0 for each pair of atoms.
Since special calibration is required to retain
structure integrity of a complex, a more rele-
vant structure optimization would be the rigid-
body optimization, where instead of force min-
imization over each pair of atoms, one mini-
mizes the net force and the net torque acting
on each monomer. The rigid-body optimiza-
tion with functions Y*(r) could be useful as a
refinement step to process docking predictions.
It was shown that rigid-body refinement could
improve docking predictions dramatically.?* In
contrast to our scoring functions Tkl(T), most
of modern statistical potentials are not differen-
tiable. 1428750 Thereby, to perform structure op-
timization with such potentials, one either uses
a smooth interpolation of potentials, or employs
various derivative-free optimization strategies,
e.g. Nelder-Mead=! or Powell*? methods and
their modifications, where the convergence rate
is much slower compared to first- or higher- or-
der optimization strategies. Following this idea,
we implemented the local rigid-body minimiza-
tion protocol to explore whether such an opti-
mization improves scoring capabilities of KSE-
NIA . General work-flow for the local rigid-body
minimization is listed in Table [II

3.2 Normal Modes

Let us consider a system of N particles with 3V
degrees of freedom near the equilibrium state



Table 1: The rigid-body minimization work-flow.

1 | Set initial parameters for the structure optimization.

the rigid-body space.

Compute the score U, of the current conformation and the descent direction dj in

Xk+1 = Xk + ozdk.

Find an appropriate step size @ and make a step toward the descent direction:

4 | Repeat steps 2-3 until desired tolerance or maximum number of iterations is achieved.

5 | Take the last computed score as the final score of the optimized conformation.

Xg. The potential energy of the system can be
approximated as a quadratic form:

| 3N 3N
U(z1,22,...,235) = U(Xo) + §Zzej%‘$g‘,

i=1 j=1
(9)
where elements of the matrix of the quadratic

form Fj; = ( 82U > are the force constants
X0

dxidx;

at the equilibrium state xg. There exist a dif-
ferent set of coordinates y;, where both the ki-
netic K and the potential U energies have the
diagonal form and thus the Newton’s equations
of motion are uncoupled. This means that the
solution for the equations of motion for each co-
ordinate can be obtained separately. These co-
ordinates y; are called the normal coordinates,
and the corresponding energy terms have the
following form:

3N
1 2
Uy, ¥2,- .., Ysn) = U(X0)+§;)\iym

13N
.9
i
i=1
(10)
The transition matrix between the two coor-

dinate bases is obtained via diagonalization of
. 1 1
matrix M—2FM~z = LDLT:

1

K(y17y2a"'7y3N) =

1 1 1 1
U-U(xo) = X Fx = éxTMELDLTfo = inDy,

2
(11)
where M is the diagonal mass matrix, i.e.
M;; = m;é;;. Thus, the connection between
the two coordinate systems is given as a linear
transformation

x = M zLy (12)

Normal coordinates provide a convenient way
to describe molecular fluctuations of a system
near the equilibrium state. Particularly, the
evolution of the system in the normal basis is
the superposition of the independent harmonic
oscillations along each normal coordinate ;.
Such oscillations are called normal modes®® and
are expressed as:

yi(t) = A; cos (wit + 6;), (13)

where w; = v/D;; and 6; correspond to the fre-
quency and the phase of the -th mode, respec-
tively. The factor A; = /2kgT /w; is the am-
plitude of the fluctuation. Given the transition
matrix L between the two bases (see Eq. (12))),
oscillations in the Cartesian basis can be writ-
ten as:

Thus, all atoms in a molecule for a given mode
1 oscillate with the same frequency and phase.
However, the amplitude of the fluctuation of the
Cartesian coordinate xy, corresponding to the
oscillation of the mode y;, is different for each
coordinate k and is defined by the i-th column
of the transition matrix L:

(x3); = L3;A?{cos (w;t + 52-)2>/mk

_ e g kBT (15)
ka kit kzmkwg

(2

When all the modes are active, the amplitude
of the fluctuation of the Cartesian coordinate

xj, reads:
_ kgT L3,

() > (16)
mi p Wy




We use this theoretical framework to construct
the training set of protein-protein complexes.
A deeper discussion of normal modes analysis
and its applications in structural biology can be
found elsewhere. "% =1

3.3 Training Set
3.3.1 Native Complexes

We used the training database of 851 non-
redundant protein-protein complex structures
prepared by Huang and Zou.'® This database
contains protein-protein complexes extracted
from the PDB*® and includes 655 homodimers
and 196 heterodimers. We updated three PDB
structures from the original training database:
2Q33 supersedes 1N98, 2Z0Y supersedes 1V7B,
and 3KKJ supersedes 1YVV. The training
database contains only crystal dimeric struc-
tures determined by X-ray crystallography at
resolution better than 2.5 A. Each chain of the
dimeric structure has at least 10 amino acids,
and the number of interacting residue pairs, as
defined as having at least 1 heavy atom within
4.5 A, is at least 30. Each protein-protein inter-
face consists only of 20 standard types of amino
acids. No homologous complexes were included
in the training database. Two protein com-
plexes were regarded as homologues if the se-
quence identity between receptor-receptor pairs
and between ligand-ligand pairs was > 70%. Fi-
nally, Huang and Zou"*® manually inspected the
training database and left only those structures
that had no artifacts of crystallization.

3.3.2 Near-native Decoys

To exclude any possible bias to computational
methods and potentials for the generation of
putative binding poses, we do not use standard
methods for the generation of non-native de-
coys, but instead we construct our training set
using structural information about only pro-
tein complexes in their native conformations.
For the initial set of 844 native protein com-
plexes we generated near-native conformations,
i.e. conformations within RMSD = 3 A, for
each native complex as follows. First, given
the coordinate vector X"®ve of each monomer

in a protein complex, we computed its ten
lowest-frequency normal modes. Then, we
formed fifteen near-native conformations for
each monomer using the linear combinations of
these modes :

M)

Wi

A

10
X =Xt kg TM™2 Y oy
1=1

where kg1 is the temperature factor, M is
the diagonal mass matrix, i.e. My = mudy,
r; is the random weight for each mode ranging
from -1 to 1, L; is the i-th column of the transi-
tion matrix between the Cartesian and the nor-
mal mode bases, and w; is the frequency of the
i-th mode. The temperature factor /kgT af-
fects the amplitude of the deformation, hence,
too large temperatures cause a monomer to de-
form significantly breaking the covalent bonds.
We tested several values of the temperature fac-
tor and found the optimal value of \/kgT to be
10 kJ2 (see Section 2 of Supporting Informa-
tion). To ensure the absence of non-relevant
conformations, we measured the RMSD be-
tween the native and the generated conforma-
tions. Indeed, the average RMSD is equal to
1.02 A, which means that the deformations with
the given temperature factor keep all generated
conformations non-disrupted. At the last step,
we combined conformations X of two monomers
representing one protein complex, resulted in
15 x 15 = 225 near-native conformations. To
summarize, the composed training set to derive
the knowledge-based potential contains 844 as-
semblies, where each assembly consists of one
native protein complex and 225 generated near-
native conformations.

We used the MMTK library*” to perform the
normal mode analysis for protein molecules and
the OPLS-UA force-field*" to compute the force
constants (see Eq. (9)). Since normal modes
are defined for the equilibrium state of the sys-
tem, we minimized each monomer of a dimer
in a vacuum using 50 steps of the steepest de-
scent algorithm with the relative energy toler-
ance of le — 3 and the cut-off distance for all
non-bonded interactions of 5 A. We chose such
a relatively small number of minimization steps
in order to not significantly deform the X-Ray



structure of a monomer. Indeed, the RMSD be-
tween the initial and the minimized monomer
structures did not exceed 0.5 A. Given each
monomer near the equilibrium state, we used
the Fourier subspace for the reduced-basis nor-
mal modes computations.** We picked up ten
first low-frequency modes from the Fourier ba-
sis to generate different local deformations of
the protein complexes. We should note that we
excluded the first six modes that correspond to
the rigid-body motion.

Finally, we want to stress that all gener-
ated conformations represent near-native pro-
tein structures. Indeed, we use directions along
the slowest normal modes to locally deform
the monomers, however, the orientations of the
monomers with respect to each other are fixed.
Since all the monomer conformations differ only
slightly from the native monomers (the aver-
age RMSD is 1.02 A), the interaction inter-
faces of all generated complexes undergo mod-
erate changes keeping the major part of the
native contacts. To conclude, we composed
the training set based only on local informa-
tion about the native interfaces and no other
information was used. In the Results section we
demonstrate the knowledge-based potential for
protein-protein interactions derived using this
training set.

3.4 Test Benchmarks

Here, we describe the composed benchmarks
to test and validate the KSENIA potential.
For the accurate validation it is very impor-
tant to ensure that the test and the train-
ing sets do not overlap. The first test bench-
mark consists of the complexes from the train-
ing set, however with different binding inter-
faces. The other benchmarks are built using
the interfaces from the protein-protein dock-
ing benchmark v. 2, 3 and 4.4¥ We ran the
align program from the FASTA2 package®?
in order to calculate the number of the ho-
mologous interfaces between the training set
and the protein-protein docking benchmark.
There are no intersections between the two sets

with the sequence similarity greater than 70%,
there is one pair (ILEW-20ZA) with the sim-

ilarity of 61 % and 12 pairs (IAVW-1AVX,
1BIS-2B4J, 1CSO- 35GQ), 1E96- 1E96, 1KLJ-
1FAK, IMCV- 1FLE, 1ISBW- 2UUY, 1SCJ-
2SNI, 1SFI-2UUY, 1UJZ- 7CEI, 1ZBX- 1ZHI,
2NGR~- 1GRN) with the similarity in between
50% and 60%. For each of the benchmarks, we
evaluate the success rate of our method with
respect to other tested methods, which is de-
fined as the percentage of protein complexes for
which docking predictions of a certain quality
are ranked at the top positions.

3.4.1 Hex Test Benchmark

For the first test, we constructed a rigid-body
benchmark starting from the native structures
in the training set. More precisely, to gener-
ate decoys we used the Hex rigid-body dock-
ing program.®*4> For the Hex input, we used
polar Fourier shape expansions to polynomial
order of 31, the real-space angular search step
of 7.5°, the radial search range of 40 A with
a translation step of 2.5 A and the subsequent
sub-step of 1.25 A. We ran Hex for each native
complex in the training set and clustered the
docking solutions with a threshold of 8 A. Top
200 docking predictions were added to the test
benchmark in addition to the native complexes,
resulting in 201 x 844 = 169, 644 protein com-
plexes. Finally, we evaluated the success rate
of the Hex scoring function on the constructed
benchmark according to the quality of the dock-
ing poses. Here we define the quality according
to the value of RMSD of the backbone atoms
of the ligand (Lgrygsp) after the receptors in the
native and the decoy conformations have been
optimally superimposed (see Table . To do
so, we used the fast open-source RigidRMSD
library4® that computes RMSDs given spatial
transforms of the docking poses.

Table 2: Quality with respect to the value of Lrmsp.

’ Quality ‘ LRMSD( A) ‘
1 Lrnvsp <1
2 1 < Lrmsp <5
3 5 < Lpmsp < 10




3.4.2 Zdock Test Benchmark

For the second test benchmark we used the
protein-protein docking benchmark v3.0 com-
posed by Hwang et al., which consists of 124
non-redundant protein-protein complexes.*"
Then, we employed Zdock v.3.0.1 rigid-body
docking software,*® which uses a grid-based
representation of two proteins and a three-
dimensional fast Fourier transform to explore
the search space of rigid-body docking posi-
tions. We used the bound conformation of each
monomer in the benchmark for the Zdock in-
put, randomly set initial protein orientations
and used the default parameters for the docking
predictions. Finally, we chose 2000 best gener-
ated rigid-body docking poses according to the
Zdock v.3.0.1. scoring function for each com-
plex. Thus, the second test benchmark consists
of 124 x 2,000 = 248,000 protein complexes.

To evaluate the success rate of this scor-
ing function on the constructed benchmark,
we use the Critical Assessment of PRediction
of Interactions (CAPRI) criterion*” for a cor-
rect prediction (Table [3). This is a more so-
phisticated criterion compared to the one used
above. More precisely, in addition to the ligand-
RMSD, it involves the fraction of native con-
tacts in the docking prediction f,.;, and the
interface RMSD, Irmsp. The fhae parameter
is the ratio of the number of native residue-
residue contacts in the predicted complex to
the number of residue-residue contacts in the
crystal structure. A pair of residues from dif-
ferent monomers are considered to be in con-
tact if they are within 5 A from each other.
The Ixmsp parameter is the RMSD of the in-
terface region between the predicted and native
structures after optimal superimposition of the
backbone atoms of the interface residues. A
residue is considered as the interface residue if
any atom of this residue is within 10 A from the
other partner.

3.4.3 ItScoreTest Benchmark

Following Huang et al., we generated the
[tScore test set using 91 protein complexes and
Zdock v.2.1 docking program as it is described
in the original ItScore paper.t® Overall, this test

set comprises 2000 decoys together with the na-
tive structure per each of 91 protein complexes
and we will refer to this set as to the ItScore
test benchmark. We evaluated the success rates
on this set using the CAPRI prediction quality
criterion (Table [3)).

3.4.4 Rosetta Test Benchmark

Gray et al. generated the Rosetta benchmark
using 54 complexes from the protein-protein
docking benchmark version 0.0°” in both the
bound and the unbound conformations. For
each complex, the authors generated 1,000
bound and 1,000 unbound decoys following the
flexible docking protocol, which is a part of the
RosettaDock suite.?! The first step in the pro-
tocol is the random translation and rotation of
one of the proteins constituting the complex.
Afterwards, the side chains are optimized si-
multaneously with the rigid-body displacement
of the protein. Finally, the full-atom minimiza-
tion is performed to refine the conformation of
the complex. We calculated the success rate of
the RosettaDock protocol using the same qual-
ity criterion as in CAPRI?? (Table[3). Both the
bound and the unbound Rosetta benchmarks
consist of 54 x 1,000 = 54,000 protein com-
plexes.

3.4.5 SwarmDock Test Benchmark

Finally, we tested our scoring function on the
unbound decoy set prepared by Moal et al.l
and generously provided by Mieczyslaw Tor-
chala from Biomolecular modelling group of the
Francis Crick Institute. The SwarmDock de-
coy set was generated using the SwarmDock
docking server®® with initial structures in the
unbound state taken from the protein-protein
docking benchmark v.4.0.4% In total, the de-
coy set consists of about 500 conformations per
each of 176 protein complexes, and there is at
least one correct prediction of at least accept-
able quality (according to the CAPRI criterion,
Table [3) for 122 complexes. Using this bench-
mark, Moal et al. compared performance of
115 various scoring functions,” including finite-
and coarse- grained docking potentials, their



Table 3: CAPRI criterion to estimate the quality of docking predictions.

’ Quality ‘ Condition

1 fnat Z 0.5 and (LRMSD S 1.0 or ]RMSD S 10)

5 (03 < faaa < 0.5)and (Lgmsp < 5.0 0r lgusp <
20) or (fnat > 0.5 and Lrymsp > 1.0 and Irymsp > 10)

5 (0.1 < faar < 03and (Lpmsp < 10.0 or Igmsp <
40) or (fnat > 0.3 and Lrymsp > 5.0 and Irymsp > 20)

constitutive terms, molecular mechanics energy
functions, and protein folding potentials. This
comparison provides a good reference point of
predictive capabilities for different scoring func-
tions.”® To be consistent with the assessment
pipeline of Moal et al., in this test we did
not use the refinement procedure and calcu-
lated the success rates of KSENIA solely based
on the initial scores of the decoys. Following
Moal et al., for the test we used only com-
plexes from the protein-protein docking bench-
mark "v.4.0 update” in order to exclude bias
in performance of scoring functions trained on
the previous versions of this benchmark. This
update consists of 52 protein-protein complexes
non-homologous to the previous version of the
benchmark.

3.5 Computational Considera-

tions

Here we briefly describe the computational de-
tails of the potential derivation and the scoring
procedure with the KSENIA potential. The po-
tential is derived off-line by solving problem
in its dual form using the BSMO algorithm as
explained elsewhere.” This procedure is itera-
tive and takes minutes to hours depending on
the desired convergence, the number of avail-
able CPU cores and the amount of memory.
Then, for practical applications, as it is de-
scribed in more detail in Supporting Informa-
tion, we use a cubic spline interpolation of the
obtained potential. More precisely, for each of
210 types of interactions, the spline coefficients
are pre-computed off-line at forty equidistant
points.?* To compute the value of the scoring
function for a protein complex, we construct the
list of intractions using the linked-cell neigh-

bourlist algorithm. Then, for each pair of in-
teractions from the list, we evaluate the value
of the potential and, if necessary, its derivative
from the spline interpolation.
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Figure 1: Distribution of the interval lengths in the
four-dimensional manifold where the partial deriva-
tives of the scoring functional are the constant-sign
functions. These distributions are computed using
the native structures in the training set. Blue, solid:
interval length for the d-coordinate, which is the dis-
tance between the centers of mass of two monomers.
Green, dashed: interval length for the a-coordinate,
which is the angle of rotation of the ligand about the
axis connecting the centers of mass. Orange, dotted:
interval length for the - and - coordinates, which
are the angles of rotation about two other orthogonal
axes.

4 Results

4.1 Scoring Functional

Figure [2| presents three derived scoring func-
tions (dashed) for different atom pairs. As one
can see, at short separation distances the scor-
ing functions tend to zero. This is the arti-
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Figure 2: Examples of the derived distance-dependent scoring functions between atoms of types N2+ — O2- ,
C3 — C3 and C,, — C,, respectively. Here, N2+ are guanidine nitrogens with two hydrogens, O2- are oxygens
in carboxyl groups, C3 are aliphatic carbons bonded to carbons or hydrogens only and C, are the backbone C,
atoms. Black, dashed: initially derived scoring functions without taking into account the absence of statistics
at short distances. Blue, solid: re-defined scoring functions that take into account the absence of statistics at

short distances.

fact of the training set, and is mainly caused
by the absence of observations of atom pairs
at distances close to zero. However, we want
our scoring functions to be able to penalize con-
formations in which steric clashes between the
monomers are present. Thus, we re-define the
scoring functions at short distances to form ar-
tificial potential barriers (see Section 1 of Sup-
porting Information). The initial scoring func-
tions along with the modified scoring functions
are shown in Figure 2] We refer to the latter
as to KSENIA, which stands for Knowledge-
based Scoring function Employing only Native
Interfaces .

The scoring functional F (see Eq. ({)) of
a particular protein complex P is computed
as the sum of separate scores for each pair of
atoms within the cutoff distance r,... Thus,
F, as a function of 3 x (N4 + Np) variables,
where Ny and Np are the numbers of atoms
in molecules A and B respectively, is not iden-
tically zero only in the conformational volume
where at least one pair of atoms is within 7.
distance. Since KSENIA typically possesses
several maxima and minima (see Fig. [2)), F is
likely to be a rugged function in this volume.?>
However, we want to demonstrate that since
our scoring functions were derived from the lo-
cal deformations of the native conformations,
the scoring functional F' is smooth at least in
the neighborhood of the native conformation.
To show this, we explored the behavior of the
scoring functional F' in the four-dimensional
manifold of the 3 x (N4 + Np) conformational
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space. Namely, given two monomers, one of
which is fixed, we consider four coordinates cor-
responding to the rigid-body degrees of free-
dom: the distance d between the centers of
mass of the two monomers, the rotation of the
free molecule about the axis connecting the cen-
ters of mass by an angle « , and two rota-
tions about two other orthogonal axes by an-
gles # and ~. Then, starting from the native
conformation of the complex (dy, av, 5o, 70), We
calculate partial derivatives in the vicinity of

this conformation. More precisely, we sam-

0F(d
ple the first partial derivative 0F(d, o, B,7)

at points {eg £ €,e9 + 2¢,¢9 £ 3e, . .. },ewhere
e € {d,a,B,7}, and € is a sufficiently small
positive value. At the point where the partial
derivative changes its sign, we can not expect
a gradient-based local minimization algorithm
to find the nearest local minimum to the point
(do, v, Bo,Y0)- Thus, one can characterize the
smoothness of the scoring functional F' at the
point (do, o, Bo,70) by four intervals (eg — me
, €0 + ne), where the partial derivative is a
constant-sign function. Figure [I] shows the dis-
tribution of such interval lengths over the native
conformations in the training set. The most
probable size of the smooth region around the
native conformation is 2.2 A, 0.42 rad, 0.22 rad,
0.22 rad in four degrees of freedom, respectively.
Practically, it means that the rigid-body mini-
mization started from an arbitrary point within
this region is expected to optimize the confor-
mation corresponding to this point toward the



conformation corresponding to the local mini-
mum of this region, assuming that F'is convex
in the neighborhood of the native conformation.

40-
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Figure 3: Histogram representing the distributions of
the RMSDs between the native and minimized con-
formations in the training set using the rigid-body
minimization protocol.

Finally, it remains to prove that the point rep-
resenting the native conformation in the four-
dimensional manifold lies close to the local min-
imum. To demonstrate this, we measured the
RMSD between the native conformation and
the conformation obtained after the rigid-body
minimization with the KSENIA potential start-
ing from the native conformation. Figure
shows the distribution of such RMSDs in the
training set. As it could be seen, the min-
imized and native structures are very similar
and the corresponding RMSD does not exceed
2 A. Moreover, the most probable RMSD be-
tween the two conformations is 0.1 A.

To summarize, we demonstrated that the
scoring functional F' is a smooth function in
the vicinity of the native conformation. Hence,
the rigid-body minimization is expected to im-
prove predictions if started at an arbitrary point
in this vicinity. Below, we provide numerical
experiments that demonstrate the practical im-

portance of the rigid-body minimization with
KSENIA.

4.2 Performance on the Test

Benchmarks

The aim of any scoring function is to dif-
ferentiate the native and near-native confor-
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mations of protein complexes from the non-
native ones. In this section we demonstrate
that observing only the native protein com-
plexes is sufficient to build a powerful and well-
discriminative knowledge-based potential. Us-
ing six different protein-protein benchmarks de-
scribed in Section [3.4) we evaluate the suc-
cess rate of our method as described above.
For each benchmark we also provide success
rates of the widely-used scoring functions of
Hex,** Zdock,* Rosetta,?! ItScore-PP4% and
those tested by Moal et al.¥ as the reference.

4.2.1 Hex Test Benchmark

In the first test, we used the Hex test bench-
mark (see Section [3.4.1). Although the train-
ing set and this benchmark share the same na-
tive structures, their decoys are very different.
More precisely, for the training, we generated
local deformations at the protein-protein inter-
faces for all native complexes using directions
along the low-frequency normal modes. On
the other hand, to generate decoys for the test
benchmark, we performed the exhaustive search
in the six-dimensional space of rigid-body mo-
tions. Consequently, many different interfaces
for each native complex are present. Further-
more, owing to the clustering of spatially close
docking predictions, there are no similar inter-
faces in the test benchmark. Thus, the goal of
the first test is to demonstrate that employing
only local information about the native inter-
faces is sufficient to derive a well-discriminative
scoring function.

We ranked all docking poses in the training
set according to the values of the initial scor-
ing functions and the values of KSENIA. Figure
presents the corresponding success rates for
the top predictions. Clearly, the derived scor-
ing functions predict the native interfaces very
well, providing the success rates of more than
90% for the top one predictions. To explore
if our scoring functions can distinguish correct
interfaces (generated by Hex with quality-one,
-two or -three) from the non-native ones, we
removed the native structures from the test
benchmark, leaving only predictions with non-
zero rotational part of the spatial transform.
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Figure 4: Performance of the scoring functions on the
Hex test benchmark. Success rates of the initial scor-
ing functions (Initial SFs) are depicted with the blue
rectangles. Success rates of KSENIA are depicted
with the yellow rectangles. TopN value is defined as
the percentage of protein complexes for which at least
one of the docking prediction with the corresponding
quality ¢ is found within the first N docking poses.
The quality of predictions ¢ is evaluated according to
the value of Lrmsp (see Table .

B |Initial SFs KSENIA [ KSENIA+RBM H Hex |

75% |

50% |

Success rate

25% |
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Figure 5: Performance of the scoring functions on the
reduced Hex test benchmark. Success rates of the ini-
tial scoring functions (Initial SFs) are depicted with
the solid blue rectangles. Success rates of KSENIA
are depicted with the solid yellow rectangles. Suc-
cess rates of KSENIA along with the rigid-body mini-
mization (KSENIA4+RBM) are depicted with the solid
green rectangles. Success rates of the Hex scoring
function are depicted with the solid purple rectangles.
Hollow rectangles of the corresponding color repre-
sent the maximum achievable success rates. TopN
value is defined as the percentage of protein com-
plexes for which at least one of the docking predic-
tion with the corresponding quality ¢ is found within
the first IV docking poses. The quality of predictions
q is evaluated according to the value of Lgmsp (see

Table .
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We will refer to the obtained set as to the re-
duced Hex test benchmark. Figure |5 shows re-
computed success rates for the top predictions
(solid rectangles). In this figure, we also list
the maximum success rates of the scoring func-
tions (hollow rectangles) as the percentage of
protein complexes for which Hex could predict
poses of the corresponding quality. From Fig-
ure [5| one can see that the derived scoring func-
tions provide a similar success rate as the Hex
scoring function, which is solely based on the
shape-complementarity term. However, the ini-
tial scoring functions slightly out-perform KSE-
NIA on the reduced Hex test benchmark. Pre-
sumably this is because we lose some informa-
tion when re-defining potentials at short dis-
tances (see Section 1 of Supporting Informa-
tion). Nonetheless, KSENIA is dedicated to
be used with the local rigid-body minimiza-
tion for the refinement of the docking predic-
tions. Thereby, at the next step we used the
rigid-body minimization protocol (see Section
and Table 1)) to optimize the docking poses.
Then, we ranked the optimized docking predic-
tions according to the values of KSENIA and
re-evaluated the success rates (Figure , green
solid rectangles). We found that the rigid-body
minimization dramatically improves the scoring
results. In particular, the rigid-body minimiza-
tion increased the total number of quality-one
poses, improving near-natives poses towards
natives and rising the maximum success rate
from 28% to 66%. Moreover, the corresponding
success rates are more than twice better com-
pared to both the success rates of Hex and the
success rates of scoring without the refinement
procedure. Such a significant improvement can
be explained by the fact that the initial Hex
predictions have moderate steric clashes and
thus are not very suitable for the scoring with
KSENIA without subsequent docking pose op-
timization. To summarize, we demonstrated
that employing structural information of only
native interfaces, it is possible to distinguish
near-native conformations of protein complexes
from the non-native decoys. We have also
shown that it is possible to refine docking pre-
dictions using a smooth knowledge-based statis-
tical potential with a rigid-body minimization



procedure, which improves the quality of the
predictions and the overall performance of the
scoring method. Below, we further investigate
the capability of our approach on more compli-
cated test benchmarks.

4.2.2 Zdock Test Benchmark

For the Zdock benchmark set (see Section|[3.4.2)
we applied the rigid-body minimization pro-
tocol with KSENIA, as in the previous sec-
tion, ranked the poses and compared the suc-
cess rates against Zdock v.3.0.1 scoring func-
tion, which includes the shape-complementarity
term, the electrostatic term and the desolvation
term. Figure [6] shows results obtained on this
benchmark. Our approach shows around three
times better success rate for the top one quality-
one, -two or -three predictions. We observed
that similarly to the Hex test benchmark, the
rigid-body minimization improves the results
of scoring significantly, indicating that the re-
finement procedure is very crucial for KSE-
NIA. We should also note, however, that for
eight complexes in the benchmark, the rigid-
body minimization deteriorated several quality-
one predictions to quality -two or -three. Thus,
the maximum number for the top one quality-
one predictions is reduced from 97% to 91%.
Nonetheless, our method demonstrates around
seven times better success rate for the top one
predictions with the highest quality compared
to the Zdock v.3.0.1 scoring function.

4.2.3 Comparison with the ItScore-PP
potential

The results of the previous sections show that
KSENIA outperforms simple empirical scoring
functions that include shape, electrostatic, and
desolvation terms. This indicates that native
protein complexes contain themselves all nec-
essary information to derive robust knowledge-
based scoring function. In order to support this
claim further, we compared the performance of
the KSENIA potential with the performance
of the ItScore-PP potential. 18 The ItScore-PP
potential is a distance-dependent knowledge-
based scoring function obtained using an it-
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Figure 6: Performance of the scoring functions on
the Zdock test benchmark. Success rates of KSE-
NIA along with the rigid-body minimization (KSE-
NIA+RBM) are depicted with the solid green rect-
angles. Success rates of the Zdock scoring function
are depicted with the solid purple rectangles. Hol-
low rectangles of the corresponding color represent
the maximum achievable success rates. TopN value
is defined as the percentage of protein complexes for
which at least one of the docking prediction with the
corresponding quality ¢ is found within the first IV
docking poses. The quality of predictions ¢ is eval-
uated according to the CAPRI criterion (see Table

3).

erative technique that avoids the explicit es-
timation of the reference state probabilities.
[tScore-PP was derived using the same atom
typization and the same set of native complexes
for its training as our scoring function. Further-
more, the authors also used ItScore-PP in com-
bination with the refinement procedure when
optimizing the docking candidates. Thus, it is
very interesting to compare the scoring power
of ItScore-PP and KSENIA.

Similarly to the previous tests and following
the scoring procedure used by ItScore-PP, we
ran KSENIA in combination with the rigid-
body refinement, ranked the predictions with
respect to the score and evaluated the success
rates according to the CAPRI criterion. The
obtained results are presented in Figure[7] The
success rates of the Zdock v.2.1 and Zdock v.2.3
scoring functions are adapted from Huang et
al.18 and plotted for the reference comparison.
The former scoring function evaluates only the
shape complementarity term, the latter also ac-
counts for electrostatic and desolvation effects.
As one can see, our scoring function slightly
outperforms the ItScore-PP potential, provid-



ing 100% success rate for the top 10 predictions
of acceptable quality. It is very important to
note that, except for nine complexes, there is
neither repetition nor highly homologous com-
plexes in the test set compared to the training
set.T8 Hence, there is no bias due to the overlap
between the training and the test sets and the
true success rates are represented.

We should note that here we did not verify
the performance of KSENIA on the protein-
protein unbound benchmark generated with the
Zdock software. More precisely, after the rigid-
body docking applied to the monomers in the
unbound conformations, side-chains of the in-
terface residues are, generally, in non-optimal
conformations, which might be crucial for KSE-
NIA. Instead, we verified the performance of
KSENIA on the Rosetta bound and unbound
test benchmarks and also using the SwarmDock
test set, where side-chain conformations are op-
timized.

B Zdock 2.1 Zdock 2.3 | ItScore-PP KSENIA+RBM|

Success rate

Top1, 9=1,2,3 Top10, g=1,2,3

Figure 7: Performance of the scoring functions on
the ItScore test benchmark. Success rates of KSE-
NIA along with the rigid-body minimization (KSE-
NIA+RBM) are depicted with the solid purple rectan-
gle. Success rates of the ItScore-PP scoring function
are depicted with the solid green rectangle. Success
rates of the Zdock v.2.1 and v.2.3 scoring functions
are depicted with the solid blue and yellow rectangles,
respectively. Results for the [tScore-PP potential as
well as for the Zdock v.2.1 and v.2.3 scoring func-
tions are adapted from Huang et al.?® TopN value
is defined as the percentage of protein complexes for
which at least one of the docking prediction with at
least the acceptable quality is found within the first V
docking poses. The quality of predictions is evaluated
according to the CAPRI criterion (see Table [3)).
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4.2.4 Rosetta Test Benchmark

Comparison of the performance of the Rosetta’s
scoring function against our rigid-body min-
imization with KSENIA is presented in Fig-
ure [§ for both the bound and the unbound
benchmarks. As one can see, although Rosetta

[ KSENIA+RBM (Bound) M Rosetta (Bound)
[l KSENIA+RBM (Unbound) [l Rosetta (Unbound)

Success rate

Top10, g=1

Top1, g=1,2,3 Top10,g9=1,2 Top1, g=1

Figure 8: Performance of the scoring functions on the
Rosetta bound and unbound test benchmarks. Suc-
cess rates of KSENIA along with the rigid-body mini-
mization (KSENIA+RBM) are depicted with the solid
green and the solid blue rectangles for the Rosetta
bound and unbound test benchmarks, respectively.
Success rates of the Rosetta scoring function are de-
picted with the solid red and the solid purple rectan-
gles for the Rosetta bound and unbound test bench-
marks, respectively. Hollow rectangles of the cor-
responding color represent the maximum achievable
success rates. Top/NV value is defined as the percent-
age of protein complexes for which at least one of the
docking prediction with the corresponding quality ¢ is
found within the first N docking poses. The quality
of predictions ¢ is evaluated according to the CAPRI
criterion (see Table 3)).

itself performs slightly better, our approach
still demonstrates very good results despite
the complexity of these benchmarks. Indeed,
the native contacts for all the complexes in
the benchmark are disturbed owing to the
side-chain re-packing or homologous replace-
ment, for example. In addition, our scoring
method does not take into consideration the
individual scores of the monomers. In par-
ticular, it does not penalize rare rotameric
states of the side-chains, which are present in
the benchmark. Nonetheless, using only dis-
tance distributions between the atoms in differ-
ent monomers at their native and near-native



states, our knowledge-based potential is capa-
ble to rank quality-one poses at the top position
for around 60 % of cases for the Rosetta bound
benchmark, and to rank quality-one, -two or -
three poses at the top position for around 45 %
of cases for the Rosetta unbound benchmark.

4.2.5 SwarmDock Test Benchmark

Moal et al. compared the performance of
115 various scoring functions® on a decoy set
was generated using the SwarmDock docking
server.”#? The corresponding success rates of
the best 40 scoring functions provided by Moal
et al.X along with the success rates of KSENIA
are presented in Figure [9

As one can see, the KSENIA potential per-
forms relatively well compared to the rest of
the assessed potentials, being among best 40
potentials out of 115. The detailed performance
of each scoring function on the entire protein-
protein docking benchmark v.4.0 is listed in
Table [S1] from Supporting Information. While
the problem of rigid-body pair-wise docking is
considered to be solved,®” the flexible docking
problem still remains to be a challenge. Thus, it
is interesting to see the success rates of scoring
functions on the medium and difficult cases of
protein-protein docking benchmark v.4.0. Here,
we used the full benchmark, otherwise there are
too few complexes for the test. We evaluated
the corresponding performance of KSENIA and
compared it with the success rates of other scor-
ing functions provided by Moal et al.¥ Remark-
ably, KSENIA performs very competitively, re-
sulted in 6 correctly predicted complexes, and
only six scoring function out of 115 performed

better (see Figure [10).

4.3 Crystallographic Symmetry
Mates as Docking Predic-
tions

We observed that in several cases non-native de-
coys replace near-native predictions at the top
positions after the rigid-body minimization ap-
plied. As the result, the success rate becomes
less than it could be, since the near-native pre-
dictions get a lower rank. For example, Table
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lists scores before and after the rigid-body min-
imization applied to the protein complex 1ZC6
from the Hex test benchmark.

In terms of the ligand-RMSD, the decoy
structure significantly differs from the native
one: Lpmsp > 60 A. However, we found that
the interface formed by the decoy monomers is
similar to the one of the crystal-packing inter-
faces that are observed in the crystal structure.
Typically, only one of the interfaces presented
in the crystal is considered to be the native in-
terface, and other crystal-packing interfaces or
crystal contacts are considered to be the ar-
tifacts of crystallization (Fig. [11)). However,
distinguishing between the native interface and
the crystal contacts is a challenging problem,
since both are formed following the same phys-
ical principles.”®? For the case of homodimer
12C6, Lrysp between the decoy and the com-
plex forming the crystal contact is about 2.8 A.
We found these observations to be the addi-
tional evidence of the prediction capability of

KSENIA.

4.3.1 Performance in CAPRI

To conclude the Results section we briefly
overview performance of our team in CAPRI®
rounds 26, 27 and 30, where the KSENIA scor-
ing function was used. First, we used the
Hex software®® in order to generate preliminary
docking poses. Then, we refined the poses us-
ing the rigid-body minimization algorithm in
combination with the KSENIA potential. Ad-
ditionally, the SCWRL4 package® was used at
each iteration of the rigid-body minimization in
order to optimize side-chain conformations. Fi-
nally, the best ten candidates were selected as
the submission models for CAPRI. Figure
presents correct predictions for protein-protein
CAPRI targets of Rounds 26-27 obtained with
the described docking pipeline.

For the Targets 53-54 there were no unbound
structure of one of the monomers and thus
the homology modeling with the I-TASSER
server® was used in order to generate initial
docking models. For Target 53 our docking
pipeline succeeded to provide one acceptable-
quality prediction among ten top-ranked mod-
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Table 4: Scores for the native and one of the decoy structures before and after the rigid-body minimization.

’ 172C6 \ Score \ Score after the rigid-body minimization
Udecoy -1594.740 -3036.307 (rank 1)
Unative | -1810.758 (rank 1) -2144.868

Figure 11: Schematic representation of the native
interface (orange, solid) and crystal contacts (blue,
dashed). The unit cell is depicted as the gray par-
allelogram encompassing monomers A and B, which
form the native interface.

Figure 12: The native and predicted structures of the
protein-protein complexes for CAPRI Targets. Left:
native structure of Target 53 (grey) and acceptable-
quality model produced by the docking pipeline (the
two monomers are coloured in red and blue, respec-
tively). Right: native structure of Target 58 (grey)
and medium-quality model produced by the docking
pipeline (the two monomers are coloured in red and
blue, respectively).

17

els. However, there were no successful predic-
tions for Target 54, probably due to the large
difference between the true structure and the
homologue model (only 4 teams out of 42 suc-
ceeded to produce acceptable-quality predic-
tions). For Target 58 we obtained one medium-
quality prediction and only four other teams out
of 22 succeeded to produce predictions of the
same quality. CAPRI Targets 55 and 56 were
aimed to test methods for evaluating the effect
of point mutations on protein-protein interac-
tion affinity. Predictors were provided with the
comprehensive datasets on the effects of every
point mutant of two designed protein binders
of influenza hemagglutinin® . Generally, point
mutations stabilized the protein folds and some
of them also provided effect on the binding of
the complex. It turned out to be very diffi-
cult to predict the effect of the mutations fol-
lowing physics-based principles. As a result,
only machine-learning methods provided statis-
tically significant correlation between the pre-
dicted values and the measured K, constants.
Particularly, we obtained a good correlation be-
tween our score and the binding affinity for
point mutations corresponding to four residues
lying on the interface between the two proteins
and failed otherwise® . CAPRI Round 30 was
launched in collaboration with the Critical As-
sessment of Structure Predictions of proteins
(CASP).5% Overall, 42 interfaces in 25 targets
were designated to CAPRI, comprising 19 pro-
tein dimers and 6 tetramers. In this round, we
obtained correct predictions for 11 targets, in-
cluding 10 predictions of medium quality.

4.4 Discussion

Reference state-based statistical methods re-
quire a large set of false-positive examples of
protein complexes, i.e. mnon-native conforma-
tions, in order to compute the reference state.



Linear and quadratic programming approaches
when training scoring functions also use a set
of generated false-positive examples in order to
construct the system of inequalities . It is
a common practice in protein-protein docking
to select as false-positive examples those de-
coys that possess the best score according to
some well-accepted scoring function. 24021 On
the contrary, we have selected false-negative ex-
amples purely based on the structure of pro-
tein complexes in their native conformations.
More precisely, our decoy sets were generated
in such a way that the average RMSD between
the corresponding monomers in the decoys and
in the native structures is about 1 A, keep-
ing the relative orientation of the monomers
fixed. Nonetheless, despite our training set
does not contain non-native conformations with
large RMSDs with respect to the native struc-
tures, we are able to reconstruct the atom-
atom distance-dependent scoring functions (see
Eq. (0)). As we have shown above, the
obtained potentials demonstrate surprisingly
good results on different protein-protein dock-
ing benchmarks. We would like to emphasize
that all the benchmarks mostly consist of non-
native decoys that have large RMSDs with re-
spect to the native structures. Thus, our results
strongly suggest that the native protein com-
plexes themselves contain all necessary struc-
tural information to build well-discriminative
potentials that recognize native and near-native
protein-protein conformations.

Regarding the disadvantages of the proposed
methodology, i.e. derivation of the KSENIA
potential, we can point out two aspects. First,
current statistic observations do not take into
account conformations of individual monomers.
This means that, in principle, we can imagine a
situation when two very unrealistic structures
of two monomers (all atomic coordinates inside
each monomer are the same, for example) result
in a good score of the complex. To circumvent
this problem, one may either collect extra geo-
metric information, such as triplet, quadruplet,
etc. distributions of atoms in the complex, or
additionally score individual monomers. Sec-
ond, in our training set there are no statis-
tics at short separation distances between the
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monomers inside a complex. Thus, as a result,
we need to define potential barriers at short dis-
tances for the proper behaviour of the obtained
scoring functions.

We would also like to stress that even though
the KSENIA potential is derived using local
perturbations of the native protein structures,
it generally has no bias toward a method to gen-
erate docking predictions. This is because for
the construction of the training set we did not
use any standard docking prediction method.
Thus, the rigid-body minimization is very im-
portant for the success of the proposed scoring
methodology. Namely, the minimization is re-
quired to resolve steric clashes that often ap-
pear in docking predictions produced by vari-
ous methods, particularly those that use a grid
search without subsequent refinement of the
docking predictions. For example, Zdock and
Hex use a soft shape complementarity poten-
tial, which permits moderate overlaps between
the monomers in a complex. Generally, we be-
lieve that structure optimization should be the
inevitable step of a general scoring procedure
when one has no information about docking
predictions to score.

Our method does not, in principle, require ex-
ternal packages, potentials, or algorithms nei-
ther to generate the training set, nor to for-
mulate and solve the optimization problem. In
the present study, to generate the local defor-
mations, we computed low-frequency normal
modes using the MMTK package with a united-
atom force-field.”” However, the normal modes
can be computed in a simpler way using, e.g.
the elastic-network model,%” the gaussian net-
work model,®® the rotation-translation of blocks
method,“? etc. Thus, methodology presented in
this paper can be easily adapted to the recog-
nition of other types of molecular interactions,
such as protein-ligand, protein-RNA, etc., pro-
vided that the atom types assignment is modi-
fied appropriately.

5 Conclusions

Present study demonstrates that knowledge of
only native protein-protein interfaces is suffi-



cient to construct well-discriminative predic-
tive models for the selection of binding candi-
dates. Namely, we introduced a new scoring
method that comprises a knowledge-based po-
tential called KSENIA deduced from the struc-
tural information about the native interfaces of
844 crystallographic protein-protein complexes.
The knowledge-based potential relies on the
information obtained thanks to the deforma-
tions of these interfaces computed along the
low-frequency normal modes. As a result, in
contrast to existing scoring functions, our po-
tential does not require neither the computa-
tion of the reference state nor the ensemble
of non-native complexes. Thus, it can have
only a marginal bias toward a method to gen-
erate putative binding poses. Moreover, KSE-
NIA is smooth by construction, which allows
to use it along with the gradient-based rigid-
body minimization. Particularly, we showed
that the rigid-body optimization of the dock-
ing poses improves the scoring stage of molec-
ular docking. Using several test benchmarks
we demonstrated that our method out-performs
the Hex scoring function, which is based on the
shape complementarity between the monomers
in a complex, and the Zdock scoring function,
which also includes the electrostatic and de-
solvation terms. We have also demonstrated
that the KSENIA potential slightly outper-
forms the ItScore-PP potential, which is the
atomic distance-dependent scoring function de-
rived using the same set of native complexes.
We find remarkable that the native protein
complexes themselves contain all necessary in-
formation to derive a successful and well-
discriminative knowledge-based potential. Al-
though our method performs slightly worse on
the Rosetta test benchmark and SwarmDock
test benchmark compared to the more sophisti-
cated scoring functions, we believe that further
improvements of KSENIA, e.g. accounting for
the integrity of monomers, rotamer optimiza-
tion, etc., will eliminate this disadvantage.
Methodology presented in this paper can
be easily adapted to the recognition of other
types of molecular interactions, such as protein-
ligand, protein-RNA, etc. Finally, we want to
note that we have successfully used KSENIA in
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the CAPRI protein docking experiment start-
ing from Round 26.°Y We will make KSENIA
publicly available as a part of the SAMSON
software platform developed in our group at
https://team.inria.fr/nano-d/software.
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