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Abstract

Predicting the rate of nonfacilitated permeation of solutes across lipid bilayers is important to drug 

design, toxicology, and signaling. These rates can be estimated using molecular dynamics 

simulations combined with the inhomogeneous solubility-diffusion model, which requires 

calculation of the potential of mean force and position-dependent diffusivity of the solute along 

the transmembrane axis. In this paper, we assess the efficiency and accuracy of several methods 

for the calculation of the permeability of a model DMPC bilayer to urea, benzoic acid, and 

codeine. We compare umbrella sampling, replica exchange umbrella sampling, adaptive biasing 

forces, and multiple-walker adaptive biasing forces for the calculation of the transmembrane PMF. 

No definitive advantage for any of these methods in their ability to predict the permeability 
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coefficient Pm was found, provided that a sufficiently long equilibration is performed. For 

diffusivities, a Bayesian inference method was compared to a Generalized Langevin method, both 

being sensitive to chosen parameters and the slow relaxation of membrane defects. Agreement 

within 1.5 log units of the computed Pm with experiment is found for all permeants and methods. 

Remaining discrepancies can likely be attributed to limitations of the force field as well as slowly 

relaxing collective movements within the lipid environment. Numerical calculations based on 

model profiles show that Pm can be reliably estimated from only a few data points, leading to 

recommendations for calculating Pm from simulations.

Introduction

Cells are the basic unit of life. An essential feature of cells is their encapsulating 

phospholipid membrane. Due to the hydrophobic effect,1,2 individual phospholipids do not 

diffuse and tumble randomly. Instead they form a bilayer structure with polar phosphate 

head groups on each side, facing the bulk solvent, with the apolar lipid tails forming a 

hydrophobic slab in between. This densely packed structure serves two primary purposes: 

(1) to contain and protect cellular machinery from the harsh external environment, and (2) to 

maintain ionic gradients to later harvest as energy. Lipid bilayers are an effective barrier to 

passive diffusion of ions and hydrophilic small molecules, such as carbohydrates, but many 

molecules can permeate bilayers through passive diffusion at rates that depend on bilayer 

composition and properties of the permeating solute. The semi-permeable nature of the 

membrane results in an effective “selectivity,” where small apolar compounds can cross the 

membrane at appreciable rates. In contrast to transmembrane ion channels and transporters 

that are carefully controlled by the cell, passive selectivity is not actively regulated, but 

instead arises intrinsically from the forces and fluctuations present across the membrane 

environment. Despite the enormous importance of passive permeability to basic cell 

function, a detailed mechanistic understanding of this phenomenon has yet to be achieved.

Estimation of passive permeation rates is of key importance, primarily for the delivery of 

candidate drugs to intracellular targets, as well as for later excretion of metabolites. For 

example, in 1991, ~40% of all attrition of drug candidates was related to adverse 

pharmacokinetic (PK) and bioavailability results.3 PK attrition rates have since been reduced 

to about 10%4 primarily by high-throughput experimental measures of permeability such as 

the parallel artificial membrane permeability assay (PAMPA)5,6 and the cell-based CaCo-2 

assay. 7,8 Although these empirical methods have become a mainstay in industry, they 

provide little to no insight into the biophysics of membrane permeation. To gain rational 

insight, assay results can be used to inform linear response models such as the quantitative 

structure permeability relationship (QSPR).9,10 Due to the nature of training models, QSPR 

exhibits mediocre predictive performance when compared across a broad range of 

experimental test sets.11,12 Despite advances in these technologies, neither experimental nor 

QSPR methods provide detailed atomistic insight into the permeation process.

To gain atomistic insight into the passive permeability process, physics-based methods, such 

as molecular dynamics (MD), have become increasingly popular. While the application of 

MD to passive permeability is alluring, broad adoption of the method is limited by several 
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major outstanding challenges. First, there is much debate on the ability of current force 

fields to reproduce system thermodynamics and kinetics correctly.13–15 Second, the 

computational and human time burden is large; calculating the permeability of individual 

compounds can require thousands of CPU-years and months of work by an experienced 

researcher. Thus, in order to bring MD-based methods for passive permeability into broad 

practice, systematic studies addressing force field accuracy and computational efficiency of 

potential methods are warranted. Given the plethora of new experimental results, compound 

permeability is an ideal benchmark system for both computational free-energy and kinetics 

calculations that exist.

Passive membrane permeability has traditionally been studied using the homogeneous 

solubility-diffusivity model.16 Later work incorporating the heterogeneous nature of lipid 

bilayers led to the development of the inhomogeneous solubility-diffusion model.17,18 The 

inhomogeneous solubility model is derived from the steady-state flux and assumes 

equilibrium across the membrane. Mathematically the potential of mean force (PMF), W(z), 

and local diffusivity coefficient, D(z), are related to the resistivity, R, and permeability, P, 

via the equation

(1)

where β is the thermodynamic beta (β = 1/kBT), and z is a collective variable describing the 

relative position of the solute along the transmembrane axis. The integration bounds, z1 and 

z2, are points along this axis on opposing sides of the membrane. Both W(z) and D(z) can be 

estimated from MD simulations, provided that all z’s are well sampled. Due to the nature of 

Boltzmann sampling, conventional MD is not ideal for sampling rare transition states. In 

order to obtain sufficient sampling of transition states, various importance sampling 

techniques have been developed. Some examples include umbrella sampling (US),19 

adaptive biasing force (ABF),20–23 metadynamics,24 and the Wang–Landau algorithm.25 In 

general, many methods can be implemented with multiple replicas (RE) or walkers (MW) to 

further enhance sampling.26

MD simulations have long been applied to study the mechanisms and rates of permeability; 

for a review please refer to Ref. 27. Many works have used various forms of US,12,28–41 

adaptive biasing force,42,43 metadynamics,44 and kinetic master equations.45 Passive 

membrane permeability can also be calculated without the use of the solubility-diffusion 

equation via methods such as milestoning or directional milestoning.46–49 For example, 

milestoning has been used to determine the permeability of water as well as blocked 

tryptophan.50,51

While the aforementioned studies have examined the membrane permeability of individual 

solutes, there has not yet been a systematic examination of what the most effective method is 

for calculating W(z) and D(z). In particular, accurate calculations of W(z) are difficult 

because of slowly converging orthogonal degrees of freedom, namely those related to 
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membrane distortion and relaxation.52,53 Umbrella sampling (US) is the canonical 

methodological approach, in which the solute is restrained at regular intervals along z. The 

effect of the restraints are analytically removed from the probability distributions calculated 

from the US simulations. These distributions are then combined into a single PMF covering 

the complete interval of the coordinate, employing a post-treatment analysis, e.g., the 

weighted histogram analysis method. Replica-exchange US improves the sampling 

ergodicity of US simulations by attempting periodic exchanges between neighboring 

replicas. Conversely, the adaptive biasing force (ABF) algorithm adjusts the biasing force 

over time to sample the coordinate uniformly, whereas multiple walker ABF (MW-ABF) 

extends this further by spawning additional concurrent simulations in poorly explored 

regions of the coordinate.

In the present work, we systematically compare four methods: US, REUS, ABF, and MW-

ABF, by calculating the permeability of urea, benzoic acid and codeine through a DMPC 

bilayer.

Results and Discussion

Below, we report the membrane permeability coefficients (Pm) of urea, benzoic acid, and 

codeine computed with four different methods, namely, US, REUS, ABF and MW-ABF. We 

also present a detailed analysis of two methods for the computation of diffusivity, namely, a 

Bayesian inference method and a Generalized Langevin method. While we did not test 

metadynamics, another common free-energy method, it has recently been favorably 

compared with US for water-membrane partitioning, nonetheless while suffering the same 

short-comings. 54 Initial states, i.e., positions of the permeant within the bilayer, were 

generated using 100-ns steered MD simulations55,56 in which the permeant is pulled from 

one side of the membrane to the other (see Methods).

The three permeants studied here, shown in Fig. 1, are chosen for their diverse chemical 

properties: their molecular weights range from 60 g/mol (urea) to 299 g/mol (codeine); their 

hydrophilicity, as measured by the octanol:water partition coefficient, differs by over two 

orders of magnitude; and most importantly, the experimentally determined Pm of the three 

permeants span five orders of magnitude (Table 1), making them a relatively robust test set 

for Pm calculation via different methods. Of the three permeants, benzoic acid is the only 

permeant that exhibits a formal charge at pH=7. Nonetheless, only its neutral form is 

considered in our calculation. This treatment is consistent with the corresponding 

experimental protocol,57 where fluxes at several pH values are measured to determine the 

‘intrinsic permeability’ corresponding to the un-ionized form of a given molecule. The 

underlying assumption of such a protocol, i.e., only the non-ionized form of benzoic acid 

contributes significantly to Pm, has been confirmed experimentally.57

Computed vs. experimental Pm

The computed logPm of the three permeants are listed in Table 1, along with the 

corresponding experimental references obtained from egg phosphatidylcholine bilayers 

(urea,58 codeine59 and benzoic acid57). From Table 1, it is clear that the majority of 

computed Pm values exceed the corresponding experimental data by 1–2 orders of 
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magnitude. For comparison, we define , where  and 

 are the computed and experimental logPm, respectively. Negative ΔlogPm values are 

only observed for urea, the most hydrophilic of the three permeants. Results obtained with 

different methods also show the largest discrepancy for urea: the US and REUS methods 

underestimate logPm by 0.87 and 0.51, whereas ABF and MW-ABF overestimate it by 0.71 

and 1.14, respectively. For benzoic acid and codeine, all the methods overestimate logPm by 

0.71 to 1.67.

Fig. 2 also reveals that with the possible exception of urea, increasing simulation time does 

not significantly improve agreement with experiment. Even for urea, the computed Pm tends 

to plateau once the total simulation time exceeds 1 μs. It is unlikely that Pm has converged, 

however, but requires much longer time scales (milliseconds) to sample very slow membrane 

reorganization processes.52

Potentials of Mean Force

In the solubility-diffusion model, the PMF is a critical component of the permeability (see 

Eq. 1). Given its exponential weighting, the PMF may even be considered the greatest 

contributor to the permeability, making its accurate calculation of paramount importance. To 

determine the best approach for calculating the PMF, we have compared four methods 

mentioned earlier and investigated the appropriate balance between equilibration time and 

sampling time.

The PMFs were determined by bringing the permeant across the entire membrane and then 

symmetrizing the resulting profile, i.e., the profiles were adjusted to be identical on either 

side of the membrane center and to both start and end at 0. The resulting symmetrized PMFs 

for all three permeants are shown in Fig. 3A–C. Each plot shows varying levels of 

disagreement between the methods, although no method is consistently different. For 

example, while for codeine, ABF and US are in agreement and MW-ABF is the most 

discrepant, for benzoic acid, MW-ABF and US are in agreement but different from REUS 

and ABF. Thus, it is not apparent from these three permeants that any one method for 

determining the PMF converges more rapidly than the others.

The original profiles, prior to symmetrization, reveal a disturbing degree of asymmetry, and 

therefore accumulated error. The evolving unsymmetrized profiles for urea are shown in Fig. 

3D and for codeine and benzoic acid in Fig. S1. After 720 ns (10 ns/window), the 

asymmetry between the two end points is ~5 kcal/mol. This asymmetry decreases at a rate of 

only 1 kcal/mol per 720 ns, and still persists at ~1.5 kcal/mol after over 4 μs of sampling. 

Trajectory snapshots from US of codeine bowing the interfacial phosphates as well as urea 

coordinating waters at the membrane core are shown in Fig. S2 and S3, respectively, 

highlighting potentially slow converging orthogonal degrees of freedom.

One reason for the growing error in the PMF as the permeant goes through the membrane is 

the residual disturbance to the membrane structure from the steered MD used to generate the 

starting states. The time blocked probability distributions of headgroup phosphates and 

water in the vicinity of urea (shown in Fig. S4) support the existence of non-equilibrium 

artifacts. One way to ameliorate this disturbance is longer equilibration of the starting states. 
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As a test of this idea, selected starting states for urea were equilibrated for a particular 

amount of time, dependent on their distance from the membrane center, namely 100 ns at the 

center; 50 ns at ±5 Å, ±10 Å, and ±15 Å; 25 ns at ±20 Å; 15 ns at ±25 Å; and 10 ns at ±30 

Å, giving a total of 500 ns of equilibration. Intermediate windows at each ångstrom were 

then generated from these equilibrated states. The unsymmetrized PMF resulting from 720 

ns of sampling with REUS is shown as the solid black line in Fig. 3D. It is immediately 

apparent that this newly generated PMF and its asymmetry after only 720 ns are comparable 

to those after 4.3 μs of sampling without sufficient equilibration. Thus, starting states should 

be sufficiently equilibrated in order to avoid artifacts resulting from their initial setup, in 

agreement with earlier recommendations by Paloncýová et al.38

In the preceding calculations, we determined the PMF for the entire permeation process, i.e., 

from z = 36Å to −36 Å, after which the resulting PMF was symmetrized about the 

membrane center. However, noting the expectation of a symmetric PMF, for many published 

cases the PMF is only determined from z = 36 to 0 Å.31,60,61 Given a finite amount of time 

for sampling, one may ask which is better — to sample the full range of permeation for time 

t or to sample half of the range for time 2t and then mirror it across the membrane center? 

These two possibilities are compared in Fig. S5. When considering the unsymmetrized PMF 

from 10 ns/window of the full range (10 ns × 72 windows), the maximum value of 10.0 

kcal/mol is a full 1.8 kcal/mol greater than the (presumably) converged result from 60 ns/

window (8.3 kcal/mol). For 20 ns/window over half of the range (20 ns × 36 windows), the 

maximum in the PMF is 9.4 kcal/mol, apparently a better result than simulating over the full 

range. However, once the result over the full range is symmetrized, the peak shifts to 8.0 

kcal/mol, significantly closer to the final result than the half-range peak. Thus, the 

combination of simulating over the entire range along with the requirement of 

symmetrization appears to produce a more accurate result than simulating over half of the 

range for twice as long.

Diffusivities

The second key component of the solubility-diffusion model is the position-dependent 

diffusivity, D(z). However, some commonly used methods for estimating diffusivity from 

simulations are not applicable to the heterogeneous membrane environment. One of the most 

common means of calculating the diffusion coefficient of a solute dissolved in a liquid is the 

Einstein–Smoluchowski equation. In the one-dimensional long-time limit, this equation 

relates the diffusivity, D(z) to the mean square deviation of the position of the solute,

(2)

This relationship is only valid for solutes undergoing a random walk in a homogeneous 

liquid and offers a very poor approximation of the true diffusivity in a membrane, where 

most solutes encounter free-energy barriers with heights greater than kBT. For similar 
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reasons, estimates based on a Green–Kubo relation of the velocity are expected to be equally 

poor.62

Marrink and Berendsen calculated the diffusivity profile for the permeation of water using 

the force autocorrelation function,18,60

(3)

This method requires that the solute be constrained to a point z on the coordinate, which 

makes it relatively difficult to apply because the equations of motion of the MD integration 

must be modified to impose the constraint.62,63 As a result, it is far more common to 

perform simulations where the solute is simply restrained to remain near a given value of z 
with a biasing potential. As the solubility-diffusion model requires the determination of 

W(z) and D(z) over the full bilayer, it would be preferable for the method used to provide 

both of these profiles from one set of simulations.

In the following sections, we present two strategies for calculating D(z) for the permeation 

of a solute across a lipid bilayer using biased MD simulations. The first is based on the 

generalized Langevin equation for a harmonic oscillator. The second employs Bayesian 

inferences on the likelihood of the observed dynamics of the solute.

The Generalized Langevin method

The generalized Langevin equation provides straightforward methods to calculate position-

dependent diffusion coefficients from restrained MD simulations. In these methods, the 

solute is restrained by a harmonic potential so that it oscillates at a point along the 

coordinate. The solute can now be described as a harmonic oscillator undergoing Langevin 

dynamics, where the remainder of the system serves as the frictional bath for the solute. 

Implicitly, describing the system as a harmonic oscillator requires the restraining potential to 

be dominant over the underlying free energy surface, i.e., the latter is effectively a 

perturbation on the former. Otherwise, the assumption that the bilayer serves only as a 

frictional bath to the oscillating solute may not be valid. Values of the spring constant 

sufficiently large to justify this assumption also tend to be too large for umbrella sampling 

simulations, meaning that it may not be possible to use the same simulation to calculate 

W(z) and D(z).

Once a time series of the z position of the solute is collected, the diffusion coefficient for 

that point can be calculated from the position or velocity autocorrelation functions (ACF and 

VACF, respectively). These methods were originated by Berne and coworkers for the 

calculation of reaction rates,64 and elaborated by Woolf and Roux to calculate position 

dependent diffusion coefficients.65 In their approach, the diffusion coefficient is calculated 

from the VACF. This approach requires the numerical Laplace transform of the VACF for 

several values of the transform parameter s and extrapolation to the limit of s = 0. Hummer 

proposed a simpler method to calculate diffusion coefficients from harmonically restrained 
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simulations66 in which the diffusion coefficient is calculated directly from the integral of the 

ACF, Czz, of z and the variance of z,

(4)

This method is attractive because it is simple to impose a harmonic restraint on a solute and 

save a time series of the z-position of this trajectory in most MD codes. It also avoids the 

need for multiple numerical Laplace transforms of the VACF. The ACF can be calculated 

directly from this time series,67

(5)

where δz(t) = z(t) − 〉z〈. Our code for calculating the ACF from a NAMD68 time series is 

provided in the SI. Although this method is a straightforward way to calculate membrane 

diffusion coefficient profiles, there are several practical issues associated with its use. We 

illustrate these issues by presenting the ACFs calculated from a simulation of urea restrained 

at three positions in the model bilayer system: z = 0 Å, z = 10 Å, and z = 36 Å (see Fig. 4).

Correlation functions typically require extensive sampling to achieve convergence, 

particularly for long correlation times. Heterogeneity of the bilayer environment can cause 

the ACF calculated from different simulations at the same z-reference value to be 

significantly discrepant, a particularly serious for hydrogen-bonding solutes that remain 

partially coordinated by water molecules inside the membrane such as urea (see Fig. S3). 

This issue can be addressed in part by performing several simulations, with a long 

equilibration period for each. The correlation functions can then be calculated from long 

time series, e.g., > 1 ns, collected from each of these simulations.

The general features of the ACFs can be interpreted based on the analytical solution to the 

autocorrelation function of a harmonic oscillator undergoing Langevin dynamics,69

(6)

where γ is the friction coefficient, ω̂ is the renormalized frequency of the oscillator, and μ is 

its reduced mass. μ determines the rate of decay of the ACF. The expected behavior of the 

ACF based on Eq. 6 is that for damped periodic oscillations; however, if the friction 

coefficient, γ, is high, the ACF may decay to zero before there are any significant 

oscillations. This decay is apparent in the ACF when the solute is restrained at z = 36 Å 

(bulk water; see Fig. 4), which decays to zero within 0.5 ps, but then has a short second peak 
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extending to 1.2 ps. The calculation of the diffusion coefficient formally requires the 

integration of the ACF in Eq. 4 over the interval [0,∞], but the ACF will decay to zero 

within ~ 2 ps in most fluid environments. Even if extensive sampling has been performed, 

there can be significant noise in the ACF at long times. Hummer noted that this noise causes 

the calculated diffusion coefficients to be sensitive to the interval of integration.66 The 

g_wham code,70 one of the tools provided with Gromacs, limits the contribution of noise by 

cutting off the integration when the ACF drops below a threshold value of 0.05 × var(z). 

This cutoff is not appropriate in all instances because the ACF can go through multiple 

oscillations before converging to zero. Nevertheless, it can provide reasonably accurate 

results if the autocorrelation function decays rapidly (i.e., in a high friction regime).

Compared to bulk water, the autocorrelation functions in the lipid tail region are much 

slower to converge. The ACFs from simulations with z0 = 10 Å and z0 = 0 Å only decay to 8 

and 13% of their initial values in 5 ps, respectively. A consequence of the failure to converge 

to zero is that the integrated ACF increases almost linearly, causing the calculated diffusion 

coefficients to be sensitive to the interval over which the ACF is integrated. Typically, this 

sensitivity will cause the integrated ACF to be larger than it should be, so that the calculated 

diffusion coefficient is erroneously underestimated.

The slow convergence of the ACF is consistent with the work of Neale et al.,52 which 

showed that the convergence of US simulations of solute permeation into bilayers can 

require μ s-ms-length simulations. Long correlation times are due to slow diffusion of the 

lipid tails, variations in the hydration of the solute, and inhomogeneities in the bilayer 

interface that form over very long time scales.71 While US simulations of the bilayer PMF 

can achieve convergence by running for a very long time, the lack of ergodicity in sampling 

is inconsistent with the underlying model of harmonic oscillator in frictional bath that is 

used to derive Eq. 4.

The issues noted above for calculating diffusivity in the membrane are typically not 

significant for small solutes like water,39,41 but they are severe for larger, more complex 

ones, such as urea, which are more prone to have long-time correlations. Under such 

circumstances, the Generalized Langevin method is not appropriate for calculating D(z). To 

determine if convergence issues are significant for a given system, the ACF should be 

calculated and plotted for several z-positions in the bilayer. If the ACF has not decayed to 

values near zero at long time scales (e.g., 5 ps), the Generalized Langevin method is 

probably not appropriate for calculating the position-dependent diffusivity for that solute.

In the Generalized Langevin approach, a prerequisite noted above is that the force constant 

of the harmonic restraint should be sufficiently large to render the underlying free-energy 

surface a small perturbation on the harmonic potential. The force constant used for the US 

simulations, 1.5 kcal/mol/Å2, may be too small for application of this approach. To test its 

applicability, we ran additional 2-ns simulations for each window for urea using a much 

larger restraining force constant of 10 kcal/mol/Å2. However, as shown in Fig. S6, the 

differences between the D(z) profiles for the two cases are practically negligible at nearly all 

points. At a few data points in the membrane interior, urea under a higher restraint gives a 

diffusivity as much as twice that of urea under a lower one. Yet, because the permeability 
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depends linearly on D(z) (see Eq. 1), but exponentially on W(z), even a factor of two in the 

diffusivity across the entire permeation pathway contributes only ~0.3 to logPm. Thus, for 

permeability calculations, it is acceptable to use the same simulations for calculation of both 

W(z) and D(z).

The Bayesian inference method

A fundamentally different approach for the determination of position-dependent diffusivities 

employs Bayesian inferences to reconcile thermodynamics and kinetics.66,72,73 This 

approach is especially suited for calculations within lipid membranes because no 

assumptions are made regarding the form of the free-energy landscape on which diffusion 

occurs. Furthermore, such an approach is compatible with a wide variety of biasing schemes 

used in MD, and thus, allows the practitioner more flexibility in simulation design. This 

approach may be viewed as the inverse solution of the Smoluchowski equation, which yields 

consistent estimates of W(z) and D(z), given the trajectory obtained from biased simulations. 

These biases may also be time-dependent, as is the case for the metadynamics and ABF 

algorithms. Since the latter free-energy calculation algorithms are designed for the accurate 

description of W(z), one may use it as a consistency check of the solution provided by the 

Bayesian inference method. Alternatively, W(z) as determined by a free-energy algorithm 

can serve as a prior in the Bayesian scheme, increasing the reliability of D(z) in situations 

where statistics are poor. In a nutshell, the Bayesian scheme uses as parameters the values of 

the transition coordinate, z, along the trajectory, together with the force, F(z, t), which is the 

sum of the time-dependent bias and the intrinsic system force, equal to −∇W(z). Under the 

stringent assumption of a diffusive regime, the motion is propagated using a discretized 

Brownian integrator,

(7)

where β = (kBT)−1, Δt = t2 − t1 and g(t) is a Gaussian white noise of zero mean and variance 

equal to unity. Propagation along the transition coordinate can be recast as the sum of a drift 

and a noise term, i.e., Δz = μ + σg(t), where μ and σ2, the variance, are defined by,

(8)

Propagation of motion obeys a Gaussian-distributed probability of observing the transition 

from z1 at time t1 to z2 at time t2,

(9)
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which assumes the system is in the overdamped Langevin dynamics regime and satisfies the 

fluctuation-dissipation theorem. It is worth noting that in contrast with related schemes, the 

present formalism, embodied in Eq. 7, features a gradient term, ∇D(z1)Δt, which has been 

shown to improve the accuracy of the predicted intrinsic system force, or gradient of the 

PMF. See the SI for more details on applying the scheme to MD simulations.

As shown in Fig. 4, the motion of permeants within the membrane is complex and 

correlations in such motion are much longer in the membrane environment than in solutions 

(at least several picoseconds). These long correlation times complicate calculating the 

diffusivity by most available methods, including the Bayesian inference method described 

herein. A crucial component of this scheme is the time step, Δt. The correlations shown in 

Fig. 4 violate the assumptions of overdamped Brownian motion leading to Eq. 7; thus, we 

found that Δt values of a few picoseconds yield substantial overestimates of the diffusivity. 

Δt should be chosen to be much larger than any correlation time of the motion; however, 

there is also an upper bound on Δt because the discretization implicit in Eq. 7 requires only 

small changes in F(z1, t1) and D(z) over the duration of Δt. Errors due to the violation of this 

requirement are apparent when W(z) as predicted by the Bayesian scheme diverges 

substantially from that obtained by the free-energy calculation technique (here, ABF). For 

the permeants examined in the present work, we found Δt = 32 ps still gives consistent W(z) 

functions while minimizing errors due to correlation.

Comparison of the two approaches

As is clear from Eq. 1, logPm is much more sensitive to W(z) than to D(z). However, as 

shown in Fig. 5, there are some notable differences in the results of the Generalized 

Langevin and Bayesian inference approaches, which have an appreciable effect on the 

predicted permeability. For the four methods used to determine the PMF, the Generalized 

Langevin approach for calculating D(z) was used for US and REUS, while the Bayesian 

inference method was used for ABF and MW-ABF. Under the conditions described above, 

i.e. the restraint strength used in the US and REUS simulations and the Δt chosen for the 

Bayesian scheme, we obtain smaller diffusivity values using the Generalized Langevin 

approach than using the Bayesian approach. These differences are most notable near z = 0, 

where the value of D(z) most influences the permeability for urea due to the maximum of 

W(z). For example, the much larger diffusivity of urea near the center of the membrane as 

determined by the Bayesian scheme compared to the Generalized Langevin scheme (see Fig. 

5) results in the ABF and MW-ABF methods having larger logPm values by more than an 

order of magnitude, despite the fact that the height of the free energy barrier calculated by 

ABF is significantly larger than that for the other methods (see Fig. 3). The generally larger 

D(z) values given by the Bayesian scheme are likely due to the fact that the scheme used in 

the present work is limited to relatively small values of Δt, a consequence of the Gaussian 

approximation for the probability profile (Eq. 9). We have found that the motion of the 

permeants is not strictly diffusive at the Δt values used here and that the diffusivity appears 

to decrease continuously with Δt. We are currently working to improve the Bayesian scheme 

to overcome the limitations on Δt, which will be addressed in subsequent work. Hence, 

although it plays a less dramatic role in Eq. 1 than W(z), D(z) is also highly influential and 

the approach to calculating it must be carefully considered.
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Comparison of methods and tolerance to error

Results presented up to this point do not favor any one method over another. For example, 

while REMD-US is more accurate for urea, it is less so for the other two permeants (see 

Table 1). To examine if the rate of convergence depends on the method employed, we have 

plotted for each method and permeant logPm as a function of simulation time in Fig. 2. For 

codeine and benzoic acid, the variance in logPm for a given method is quite small, no more 

than 0.25 log units, even between 360 ns and almost 3 μs, suggesting that as much as 90% of 

the simulation time invested was unnecessary. On the other hand, there is a clear effect of 

time on logPm for urea, with it changing by as much as two log units over time. The 

downward trend for urea’s logPm is an effect of the shrinking peak in the PMF (Fig. 3C). A 

similar trend for codeine or benzoic acid is likely not observed because the peaks in their 

PMFs, i.e., those parts above 0 that contribute most significantly to logPm, are almost non-

existent. Regardless, for codeine and benzoic acid, the disagreement with experiment is 

notable in part because the simulated values are consistently greater by 0.5 to 1.5 log units.

After examining the PMFs and diffusivities in great detail, it is useful to consider their 

individual contributions to the permeability and, thus, how accurate each of them ought to be 

to give logPm at a chosen level of accuracy. To explore how these two parameters contribute 

to the permeability, a program to generate arbitrary PMFs and diffusivities was written. This 

program creates smooth profiles based on input values of the PMF and diffusivity at the 

interfacial region and at the center of the membrane (see Methods for more details). We first 

used the program to test molecules with a single barrier (or valley) at the membrane center, 

varying the barrier’s height and width. As seen in Fig. 6A, the contribution of the width is 

negligible, while the height of the barrier dominates logPm. For positive PMF values at the 

center, there is roughly a correspondence of 2 kcal/mol to one log unit for logPm. Changing 

the diffusivity by a factor of 10 (range of 10−6 to 10−5 cm2/s) has a similar effect of one log 

unit, as expected from the linear dependence of the permeability on D(z) (see Fig. 6B). 

Nearly identical behavior was observed when two barriers were placed at the interfacial 

region, with only the height and not the position of the barriers contributing (see Fig. S7).

While permeants for which the PMF barrier is pronounced have their logPm values 

dominated by the barrier height, others may exhibit more subtle dependencies. To test this 

possibility, a PMF in which the barriers are less than 1 kcal/mol at the interfacial regions of 

the membrane, akin to the PMFs for codeine or benzoic acid, was created and the diffusivity 

profile varied. As shown in Fig. 6B, the diffusivity at the PMF barriers contributes to logPm, 

but that at the core (a minimum in the PMF) does not. As a final test of the minimal amount 

of information necessary to calculate logPm, we generated PMFs and diffusivities to match 

those from simulation based solely on the PMF value at the peak(s) and D(z) at that position. 

Comparison of each generated profile to the computed ones is presented in Fig. S8. The 

obtained logPm values are 0.31 (benzoic acid), 0.44 (codeine), and −5.82 (urea). While urea 

is identical to the value estimated with REUS (see Table 1), the other two permeants are 

slightly below their computed values (difference of 0.85 and 0.63, respectively), although 

they are closer to experimental values. Regardless, our models demonstrate that logPm can 

be obtained from surprisingly few data points to a high degree of accuracy.
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In lieu of determining the full PMF, which can require microseconds of simulation, one can 

use alternative methods to sample the critical points, i.e., at the interface and/or at the center. 

As a proof-of-concept, we ran alchemical free energy perturbation (FEP) to calculate the 

solvation free energy of urea in the membrane core and in water. We found ΔG = 9.26 

kcal/mol (~1–1.5 kcal/mol higher than predicted by our PMFs in Fig. 3) and D(0) = 1.25 × 
10−6 cm2/s. When combined with a very simple interpolated PMF curve that goes smoothly 

to 0 at z = ±20 Å, we find logPm= −5.26. This is within < 3% of the experimental value, 

despite requiring significantly less simulation time: 200 ns for FEP vs. at least 1 μs for the 

full-PMF approach. However, one loses insight into the details of the permeation process 

when using FEP over a PMF-based method.

Conclusions

We have computed the membrane permeability to three compounds using a variety of 

simulation-based methods, namely US and ABF, along with their multiple-copy variants, 

REUS and MW-ABF, respectively. These three compounds, codeine, benzoic acid, and urea, 

span a range of chemical properties and, most importantly, permeabilities (see Table 1). All 

simulation methods were able to predict the permeability within one log unit typically, 

except in a few cases that were off by 1.5 (see Fig. 2). Interestingly, of the four methods 

tested, none stood out as unequivocally better than the others. The root-mean-square error in 

log units for each method was 0.821 (US), 1.23 (REUS), 1.33 (ABF), and 1.08 (MW-ABF).

Because of their similar performances, no one simulation method is recommended over 

another. However, regardless of the method chosen, certain procedures can improve 

convergence. It was found that simulation over the entire range, i.e., from one side of the 

membrane to the other, followed by symmetrization of the resulting PMF converged much 

faster than simulating over just half the range, i.e., from one side to the membrane center 

(see Fig. S5). Additionally, the states used to seed the windows for production sampling 

should be well equilibrated. Methods such as SMD used to produce these initial states 

induce significant non-equilibrium perturbations to the membrane that may take hundreds of 

nanoseconds or more to equilibrate. Alternatives to SMD include building the membrane de 
novo around the permeant at varying depths74 or introducing the permeant in a perturbative 

fashion at different values of z. Regardless of the method, equilibration should be carried out 

for as long as is feasible (50–100 ns/window at least, depending on membrane depth), 

particularly when the permeant’s stability relies upon the spontaneous formation of 

membrane defects and penetration of water.

Two methods for calculating the diffusivity were explored. The first, more commonly used 

Generalized Langevin method, based on restraining the solute and measuring the correlation 

of the system forces acting on it, was combined with the PMFs in the US and REUS; the 

second, the Bayesian inference method, was combined with PMFs from ABF and MW-ABF. 

Both methods present a number of subtleties that prevent a straightforward calculation of 

D(z), e.g., a proper choice of the force constant in the Generalized Langevin method or the 

discretization time step in Bayesian inference. Furthermore, they are both plagued by long 

correlation times that are not amenable to the usual MD time scales. Despite these caveats, 

they produced diffusivity profiles in rough agreement, although those from the Bayesian 
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inference method are consistently slightly higher in the membrane than those from the 

Generalized Langevin method (see Fig. 5).

Because the solubility-diffusion model relies on two position-dependent quantities, the PMF 

and the diffusivity, it is natural to assume they must be calculated to determine the 

permeability. However, as demonstrated in the section “Comparison of methods and 

tolerance to error”, only a few data points contribute significantly to it. Therefore, 

permeability can be estimated from a handful of parameters, namely the values of W(z) and 

D(z) at the membrane/water interface and at the membrane center, with the remainder 

interpolated from an expected smooth topology. Going even further, extrapolating from just 

a single value each of the PMF and the diffusivity at the membrane center for urea (see Fig. 

6A) produced a logPm almost identical to the experimental value. Thus, we recommend that 

sampling be focused on critical regions where barriers are expected, e.g., the membrane core 

and/or interfacial region.

Taken together, the results show the robustness of a variety of MD-based methods in 

calculating membrane permeability for small molecules. In particular, all methods appear to 

converge on sub-μs time scales, although the determined logPm values are nearly all 0.5 to 

1.5 log units above the experimental values. This consistent overestimation is in agreement 

with a previous MD study from 2004,31 despite using 10–100× longer simulations in the 

current study. The membranes compared, DMPC in simulation with egg PC in experiment, 

are not identical, which may contribute to the discrepancy. Another possible reason could be 

slow membrane reorganization that occurs on a time scale even an additional 2–3 orders of 

magnitude greater.52 The lack of polarizability is another tempting possibility, given the 

vastly different environments experienced by the permeating molecule.39 Similarly, the most 

commonly used force fields (including CGenFF used in this study) are primarily 

parameterized to reproduce phenomena obtained in aqueous environments. Thus, it may be 

unrealistic to expect that solute phenomena within the non-polar membrane environment is 

as well represented. Therefore, further exploration of the force-field effects within lipid-like 

or non-polar environments are warranted. In particular, inclusion of explicit polarizability 

may improve accuracy, although at a computational cost of 2–6×.75,76 However, given the 

lack of convergence of the four methods to a single value for each permeant, all of which use 

the same force field, it cannot be known a priori to what degree, if any, changes to the force 

field will improve agreement with experiment. Additionally, the assumptions of the 

solubility-diffusion model, such as the reliance on a single reaction coordinate and that 

permeation obeys classical diffusion, may need to be challenged to obtain improved 

quantitative agreement with experimental measures.45,77,78

Finally, we draw attention to the potential benefit of our results to QSPR models. We have 

shown that only one or two points in the PMF and diffusivity contribute significantly to the 

permeability. Thus, calculations for a single permeant focusing on these critical points could 

be done in hours on a sufficiently fast cluster. Furthermore, the location of these points, 

typically at the membrane center or at the water/membrane interface, suggest reduced 

systems that could represent them reasonably well, e.g., octanol for the interfacial region. 

Combined with improved force fields, fast calculations on such reduced systems could 
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augment the molecular descriptors used to design QSPR models, similar to the “membrane-

interaction QSAR” approach pioneered by Hopfinger et al.79,80

Methods

System preparation

We constructed a model membrane bilayer consisting of pure dimyristoyl 

phosphatidylcholine (DMPC) using the CHARMM-GUI membrane builder.81 The 

membrane consists of 64 lipids per leaflet solvated by 30-Å water pads on either side. The 

number of lipids was selected to provide balance between the accuracy of the free energy 

calculations and the bilayer size.82 All simulations were run using TIP3P water83 and 

CHARMM36 lipid parameters.84 Previously it has been identified that CHARMM36 is a 

good choice for small molecule permeability calculations.13 Small-molecule parameters 

came from the CGenFF force field.85 In the case of codeine, which is not part of the 

standard CGenFF distribution, compatible parameters were obtained from the Paramchem 

webserver.86,87

The membrane-water system was minimized and equilibrated in multiple stages. During the 

first stage, the membrane was constrained and water was allowed to minimize for 5,000 

steps. During the second stage, the membrane was allowed to minimize for 5,000 steps and 

the water was constrained. During the third stage, both the water and membrane were 

minimized for 10,000 steps in the absence of constraints. Following minimization, 10 ns of 

NPT equilibration was carried out using a Lowe-Andersen thermostat88,89 and Langevin 

barostat90 at a temperature of 298.15 and pressure of 1 atm. The Lowe-Andersen cutoff and 

coupling rate was set to 2.7 Å and 50 ps−1, respectively. The barostat period and decay times 

were set to 100 and 50 fs respectively. A 2-fs time step was used. The SETTLE algorithm91 

was used to constrain all covalent bonds to hydrogen atoms. The long-range cutoff was set to 

12 Å, and short-range non-bonded and bonded interactions were calculated every time step. 

Long-range electrostatics were calculated using the Particle Mesh Ewald method92 every 

two time steps. All minimization, equilibration, and production dynamics were carried out 

using the NAMD molecular dynamics engine.68

Steered MD55,56 simulations were used to pull each permeant through the membrane at a 

speed of 0.7 Å/ns (100 ns in total). Coordinates of the system with the permeant at equally 

spaced locations over the permeation pathway were extracted from the trajectories and used 

as initial states for all subsequent simulations.

Umbrella Sampling

The reaction coordinate was defined as the z-component of the distance separating the center 

of mass of lipid phosphorous atoms and the heavy atoms of the permeant. For each of the 

permeants, a total of 71 windows spaced 1Å apart were used with a biasing harmonic 

constraint with a strength of 1.5 kcal/mol/Å2 using the collective variables module of 

NAMD.93 Each window was run for a total of at least 20 ns, totaling 1.42 μs of sampling per 

permeant (40 ns/window and 2.84 μs overall in the case of urea). The resulting biased 

probability distributions were then reweighted using the weighted histogram model 
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(WHAM),94–96 implemented in the g_wham software,70 to obtain the PMF. The local 

diffusivity was estimated using the Hummer positional autocorrelation extension of the 

Woolf-Roux estimator65,66

(10)

where δz(t) = z(t) − 〈z〉. For the actual numerical calculation of D(z) the integrated 

autocorrelation times with a sigma of 0.1 was obtained from g_wham. We performed a 

linear interpolation of the resulting PMF and D(z) values at 1-Å intervals. The results were 

used to numerically integrate the inhomogeneous solubility-diffusion equation, Eq. 1.

Replica-exchange umbrella sampling

For Hamiltonian replica-exchange US (REUS), the same parameters as plain US were used, 

namely the window spacing and force constant. One additional window in bulk water was 

added, bringing the total to 72, in order to distribute evenly across available resources. 

Window exchanges were attempted every 2 ps. Exchange ratios varied between 20 and 30%, 

which is above a minimum threshold of 10%.97 Simulations were run for 20 ns for codeine 

and benzoic acid and 60 ns for urea.

Adaptive biasing force

For each permeant, ABF calculations were performed on nine 12-Å windows, centered at z 
= −30, −22, −14, −6, 0, 6, 14, 22, 30 Å, respectively. In order to prevent the permeant from 

leaving the boundary of a window, a wall force constant of 20 kcal/mol/Å2 was used. ABF 

forces were collected with a bin width of 0.1 Å. A minimum of 500 samples were collected 

in each bin prior to applying the biasing force. For urea and benzoic acid, each ABF window 

was simulated for 100 ns, rendering a total of 0.9 μs of sampling. For codeine, each ABF 

window was simulated for 300 ns, producing a total of 2.7 μs of sampling. The final PMFs 

were obtained by integrating the gradient force along the reaction coordinate via NAMD. 

The resulting PMFs were then symmetrized by averaging of data in the +z and -z directions.

Multiple-walker ABF

The underlying idea of multiple-walker ABF is to explore simultaneously different portions 

of the transition coordinate in multiple replicas of the simulation system. Multiple-walker 

ABF with N walkers consists of N separate simulation systems, each including only a single 

permeant. The only interaction between the separate systems is indirect: the force samples 

accumulated by all walkers up to the current time are combined to give the biasing force 

experienced by each. However, as the calculation converges, the biasing force approaches a 

fixed profile and even this indirect interaction between the walkers becomes negligible. The 

role of multiple-walker ABF is to circumvent possible non-ergodicity scenarios, wherein 

hidden barriers in orthogonal space hamper diffusion along the transition coordinate. The 

primary limitation of multiple-walker ABF lies in the possibility that certain walkers become 

trapped in basins of the free-energy landscape, thereby diminishing the efficiency of the 
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algorithm. To overcome this limitation, an extension of the approach, based on Darwinian 

selection, eliminates the least effective walkers, i.e., the walkers present in already well-

sampled portions of the transition coordinate, while replicating the most effective ones.98,99 

An implementation of the multiple-walker adaptive biasing force algorithm is available in 

the popular molecular dynamics program NAMD,68 relying on its replica-communication 

infrastructure. For the different free-energy calculations reported herein, eight walkers were 

used. Force buffers were synchronized every 5,000 molecular dynamics steps.

Matlab-generated PMFs and D(z) profiles

The phospholipid bilayer may be regarded as juxtaposed regions with distinct properties and 

characteristics approximately related to the lipid headgroup and tail densities.18 At the bulk 

water-membrane interface, the headgroup density is low. Next, progressing farther into the 

membrane, one encounters a strongly hydrophilic and high headgroup density region, then a 

strongly hydrophobic and high tail density region, and finally a low tail density region at the 

core of the membrane. The regions of highest PMF contribute the most to the permeability, 

as implied by Eq. 1. With these regions in mind, a rough estimate of the permeability may be 

determined strictly from analysis of the region of greatest PMF and interpolation to the other 

regions (the PMF always begins at ends at zero in the bulk water). We combined the 

simplified membrane model with this interpolation assumption in a Matlab program 

(provided in the SI). With values for the PMF and diffusivity provided at up to five points, at 

the center and the two interfacial regions as well as two more intermediate points, this 

program performs a piecewise Hermite polynomial fit to emulate a PMF and diffusivity 

landscape, which is then integrated according to Eq. 1. By varying the parameters in this 

script, we can determine the contribution of particular characteristics of the solute-

membrane interaction to the resulting permeability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Three permeants tested shown as 2D schematics (top) and 3D structures rendered with the 

±5 kT/e electrostatic potential isosurfaces using the assigned CGenFF charges (bottom). (A) 

codeine. (B) Benzoic acid (neutral). (C) Urea.
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Figure 2. 
ΔlogPm of urea (red), benzoic acid (blue) and codeine (black) as a function of simulation 

time. Results obtained with different methods are indicated using the following symbols: US 

(circle), REUS (star), ABF (square), MW-ABF (triangle).
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Figure 3. 
Potentials of Mean Force (PMFs) for the permeants (A) codeine, (B) benzoic acid, and (C) 

urea. In each case, four PMFs from each of the methods are given: US (black, solid), REUS 

(red, large dashes), ABF (green, medium dashes) and MW-ABF (blue, small dashes). All 

PMFs have been symmetrized about the membrane center. (D) Convergence of the 

unsymmetrized PMF for urea. PMFs determined using REUS for a total simulation time of 

720 ns – 4.3 μs are shown as various colored, dashed lines. The PMF determined after 500 

ns of total equilibration and 720 ns of sampling is also shown (solid black line) and is 

comparable to that from 4.3 μs of sampling with less equilibration. See Fig. S1 for the 

unsymmetrized PMFs for codeine and benzoic acid.
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Figure 4. 
Time autocorrelation function of urea in the model DMPC bilayer restrained at various 

values of z0 using a harmonic potential ( , k = 10 kcal/(mol Å2)). The black 

lines are the cumulative ACF calculated from three 1-ns simulations. The ACF from each 1-

ns trajectory alone is presented in grey. The red lines (secondary axis) show the integral of 

the ACF over the interval [0, t].
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Figure 5. 
Diffusivity profiles for each permeant, (A) codeine, (B) benzoic acid, and (C) urea. In green 

and orange are the umbrella-based methods, US and REUS, for which the Generalized 

Langevin approach was used to determine D(z). In blue and red are the ABF-based methods, 

for which the Bayesian scheme was used.
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Figure 6. 
logPm as a function of modeled input. In both parts, the input PMF and D(z) are shown on 

top and the dependence of logPm on them on bottom. In each contour plot, the red and blue 

circles correspond to the red and blue PMF or diffusivity above. (A) logPm as a function of 

PMF barrier height and width. D(z) is held constant. (B) logPm as a function of diffusivity 

profile. The PMF is held constant. D(z) is varied at z = ±20Å (interface) and at z = 0Å 

(center). The range of logPm values is 0.55 to 1.55, with contour values given in the figure.
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Table 1

logPm of the three permeants examined in this study. The unit of Pm is cm/s. Experimental values are obtained 

from 59, 58 and 57. For each computed logPm, the length of the simulation used in the computation is shown 

in parenthesis.

Urea Benzoic Acid Codeine

Experiment −5.4 −0.26 −0.85

US −6.27 (2.8 μs) 0.45 (1.4 μs) 0.03 (1.4 μs)

REUS −5.91 (4.3 μs) 1.17 (1.4 μs) 0.64 (1.4 μs)

ABF −4.69 (0.9 μs) 1.16 (0.9 μs) 0.82 (2.7 μs)

MW-ABF −4.26 (1.4 μs) 0.81 (0.7 μs) 0.18 (1.1 μs)
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