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Abstract

There is a growing public concern about the lack of reproducibility of experimental data published 

in peer-reviewed scientific literature. Herein, we review the most recent alerts regarding 

experimental data quality and discuss initiatives taken thus far to address this problem, especially 

in the area of chemical genomics. Going beyond just acknowledging the issue, we propose a 

chemical and biological data curation workflow that relies on existing cheminformatics 

approaches to flag, and, when appropriate, correct possibly erroneous entries in large 

chemogenomics datasets. We posit that the adherence to the best practices for data curation is 

important for both experimental scientists who generate primary data and deposit them in 

chemical genomics databases and computational researchers who rely on these data for model 

development.
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1. Introduction

Massive screening of large chemical libraries against panels of biological targets (e.g., 
kinases, GPCRs, or cytochromes)1 have led to the rapid expansion of publicly available 

chemogenomics repositories such as ChEMBL2, PubChem3, or PDSP4. These depositories 

fuel the initiatives such as the Big Data to Knowledge (BD2K) program at the NIH (https://

datascience.nih.gov/bd2k) and enable the development of computational models of chemical 

bioactivity to guide chemical probe and drug discovery projects.5,6

The excitement concerning the growth and availability of chemogenomics data 

notwithstanding, many serious alerts concerning poor quality and irreproducibility of both 

chemical and biological records have appeared in the literature7,8. For example, Olah et al.9 

showed that on average there were two molecules with erroneous chemical structures per 

each medicinal chemistry publication with an overall error rate of 8% for compounds 

indexed in the WOMBAT database10. Similarly, Young et al.11 found error rates for 

chemical structures in several public and commercial databases ranging from 0.1 to 3.4% 

depending on the nature of the database. Conversely, looking at the biological data accuracy, 

Prinz et al.12 observed that only 20–25% of published assertions concerning purported 

biological functions for novel deorphanized proteins was consistent with the Bayer’s in-

house findings. Begley and Ellis13 discussed a similar analysis performed at Amgen, 

yielding an even lower rate of reproducibility of 11%. Kramer et al.14 analyzed the 

experimental uncertainty of 7,667 independent measurements for 2,540 protein-ligand 

systems extracted from ChEMBL12; they found a mean error of 0.44 pKi units and a 

standard deviation of 0.54 pKi units.

In some cases, subtle experimental details such as differences in biological screening 

technologies were the source of inconsistency. For instance, Ekins et al.15 observed that the 

type of dispensing techniques (tip-based versus acoustic) used in HTS could significantly 

influence the experimental responses measured for the same compounds tested in the same 

assay; they also showed that these variations could dramatically affect both the prediction 

performances and interpretation of computational models built for that dataset. While both 

dispensing techniques are acceptable, this example illustrates the sensitivity of molecular 

modeling results to even subtle experimental variations sometimes well understood only by 

specialists in the respective experimental techniques.

A recent editorial in Nature Chemical Biology16 discussed the urgent need to address the 

problem of data reproducibility. This problem was also given scrupulous attention by the 

NIH leadership in another Nature publication17 co-authored by the NIH Director Francis 

Collins and the Principal Deputy Director Lawrence Tabak. A recent virtual issue of Nature 

summarizing all publications on this subject further highlighted the significance of the 

irreproducibility issue for modern research18. In examining various causes of this problem, 

these papers mainly alluded to the incorrect and inappropriate use of statistics, the clear 

limitations of preclinical models, and the selective data presentation combined with poor-to-

mediocre study design. To start dealing with this issue, Nature recently reinforced the 

acceptance criteria for manuscripts by removing the space restrictions for method sections 

and requesting to have external statisticians to verify the correctness of statistical tests 
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reported in the manuscripts considered for publication. This policy change has caused other 

journals of the Nature family to follow the suit19; and now, the NIH maintains the current list 

of journals and associations or societies publishing preclinical research that endorse NIH-

supported principles and guidelines facilitating the reproduction of published experiments. 

NIH also started a new “rigor and reproducibility” web portal20 in order “to communicate 
NIH endorsed principles and guidelines […] concerning rigor and reproducibility”.

Given that even data published in the highest-ranking peer reviewed journals can suffer from 

poor reliability, it is non-trivial to compile, integrate, and utilize chemogenomics data from 

any source without at least minimum scrutiny. Data curation is especially critical for 

computational modelers because their success depends inherently on the accuracy of the data 

used for model development. Previously, we21 and others11 have demonstrated that the 

prediction performances of QSAR models can be affected by inaccurate and inconsistent 

representations of chemical structures. In the first paper of this series, we have proposed a 

workflow focusing on chemical data curation21. However, biological data quality also has a 

direct influence on model accuracy. Recently, we articulated a need to develop a 

comprehensive chemical-biological data curation workflow that addresses the accuracy of 

both chemical structures and bioactivities in chemical genomics datasets22. Herein, we 

extend our previous work on chemical data curation21 and expand upon general principles 

outlined in the recent brief communication.22 We propose an integrated chemical and 

biological data curation workflow incorporation specific protocols for curating both 

chemical structures and bioactivities in chemical genomics databases that should precede 

any model development. We posit that both experimental and computational researchers 

should consider the proposed workflow as a practical guide to the chemogenomics data 

curation that should be accomplished prior to or in conjunction with the data deposition into 

public repositories and databases. We expect that adherence to these best practices will 

prevent the proliferation of irreproducible data in both publications and online repositories 

and improve the accuracy of data models.

2. An Integrated Workflow for Chemical and Biological Data Curation

Curating both chemical and biological data, i.e., verifying the accuracy, consistency, and 

reproducibility of the reported experimental data is critical for the success of any 

cheminformatics studies, but it is especially true for Quantitative Structure-Activity 

Relationships (QSAR) modeling11,21. Curation of chemical structures is a non-trivial task as 

was shown in our previous publication on this subject21 but curation of biological data is 

even more challenging. Indeed, whereas correct canonical chemical structures based on the 

rules of chemistry do exist for nearly all organic molecules, there are no rules that define 

what the true accurate value of a biological measurement should be. Nevertheless, we posit 

that it is possible to flag (and in some cases even fix) suspicious entries in large 

chemogenomics datasets by applying a series of cheminformatics approaches. To this end, 

we propose an integrated chemical and biological data curation workflow (Figure 1), that 

complements our previous protocol for chemical data curation.21 This workflow includes the 

following key steps:
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(1)

Chemical curation steps include both the identification and correction of structural errors for 

a set of compounds. Depending on the type of analysis and/or modeling study, this curation 

process starts with the removal of incomplete or confusing records, such as inorganics, 

organometallics, counterions, biologics, and mixtures, which most programs for computing 

molecular descriptors are not equipped to handle. Curation elements should also include 

structural cleaning (e.g., detection of valence violations or extreme bond lengths and angles), 

ring aromatization, the normalization of specific chemotypes, and the standardization of 

tautomeric forms. For large arrays of chemicals, most but not all of these tasks are fully 

automated. The treatment of tautomers23 is particularly challenging since the ratio of 

tautomeric forms can be context-dependent. Sitzmann et al.24 established empirical rules to 

consistently treat and represent tautomers to account for the most populated tautomers of a 

given chemical. Numerous software tools are available to help users conduct the 

aforementioned tasks such as Molecular Checker/Standardizer (available in Chemaxon 

JChem25, which is free for academic organizations), RDKit program tools26 (free software) 

or LigPrep (available in the Schrodinger Small Molecule Discovery Suite27 but only for 

subscribers of the Schrodinger license). Importantly, one can integrate all these different 

functions for structural cleaning as a sharable Knime28 workflow to streamline curation 

procedures. For instance, the variation of our original data curation workflow21 was reported 

in a recent publication29.

As bioactive chemicals often incorporate stereocenters, it is highly recommended to verify 

the correctness of stereochemistry: the more asymmetric carbons are present in a molecule, 

the more likely are the errors in their assignment. The comparison of that chemical entry to 

similar compounds in online databases may facilitate the detection of incorrect structures 

and erroneous stereocenters. To this end, PubChem3 recently implemented a structural 

standardization workflow for ensuring that all chemicals stored in the database are 

processed, represented, and standardized the same way using a structured and consistent 

protocol. Furthermore, Chemspider30 represents a great example of a crowd-curated 

database illustrating the power of community engagement and expertise for chemical 

structure verification. For any chemical, Chemspider indicates how many stereocenters are 

properly defined and confirmed. Despite these automatic curation tools, manual curation is 

still critical because some errors obvious for chemists are not obvious for computers.

Even in the case of large datasets in excess of thousands of compounds, we strongly 

recommend to check manually at least a fraction of the dataset. For instance, to reduce the 

amount of effort one could check only compounds with complex structures or having a large 

number of atoms. The most obvious advice is to generate a representative sample of the 

dataset and check it for the presence of potential erroneous structures.21 In addition, 

identification of the subset of “suspicious” compounds with high probability of error for 

additional checking is described in the step 7 of the proposed workflow. However, inspection 

or even rejection of the entire data set, however long it may take, may become unavoidable if 

significant amount of errors is found.

Another solution for processing large data sets, where manual checking of structures and 

data is almost impossible, is an engagement of scientific community in crowd-sourced 
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curation efforts. This approach seems to be very promising, especially given the success of 

similar initiatives in Chemspider or Wikipedia, where the quality of crowd-curated chemical 

data is comparable or higher than the quality of expert-curated data in databases such as 

ChemIDPlus, DrugBank, etc.

(2)

Processing of bioactivities for chemical duplicates. Often, the same compound is recorded 

multiple times in chemogenomics depositories31. For instance, identical chemicals ordered 

from different suppliers can be tested in the same assay, sometimes in different laboratories, 

resulting in different internal substance IDs, different experimental responses, and in fine 
multiple records32. QSAR models built with datasets containing many structural duplicates 

will have artificially skewed predictivity (over-optimistic if activities are similar, or of low 

accuracy if activities are dissimilar) due to the likely presence of the same compounds in 

both training and test sets21. Dealing with this issue requires the detection of structurally 

identical compounds in a dataset followed by the comparison of bioactivities reported for the 

retrieved duplicates. The definition of “identical” compounds depends on how the chemical 

similarity is computed and the type of chemical descriptors used (e.g., 1D or 2D descriptors 

cannot differentiate between stereoisomers). Processing of structural duplicates solely based 

on chemical names, SMILES, and/or CAS numbers is inefficient compared to using InChI 

and/or 2D structures (see an example in Figure 2). We use standard molecular indices 

(available in both RDKit and CDK toolkits) and fragment descriptors to compute the 

similarity between any two compounds; if the similarity is equal to 1, then the two 

compounds are recognized as duplicates. Freely-accessible tools such as ISIDA-Duplicates33 

or HiT QSAR34 can identify pairs of duplicates based on molecular descriptors or canonical 

numeration of chemical graphs computed for each molecule. For instance, we have 

identified more than 1,200 pairs of structural duplicates (with different substance IDs from 

different chemical vendors) in the NCGC Cytochrome P450 screening collection32 in which 

over 17,000 compounds were tested against five major P450 isozymes. Importantly, as many 

as 874 out of 1,200 pairs had different reported CYP bioprofiles (see Supplementary Table 

1) requiring further examination and curation prior to QSAR modeling.

Finding duplicates in a set of chemicals is relatively trivial with the aforementioned 

similarity-based programs but the automatic comparison of the bioprofiles for duplicates is 

not. If the two bioprofiles are identical, one structure can simply be deleted. The task 

becomes more difficult and time-consuming when these experimental bioprofiles are not 

identical. In such cases, there are several scenarios to consider:

a. The property value for one compound is clearly wrong (e.g., mis-annotation in 

the database, labelling error, wrong unit) in which case a neighborhood analysis 

can help identifying which value is most likely to be correct (see an example in 

Figure 3);

b. The curation workflow (e.g., the removal of salts and counterions, the 

standardization of chemical groups) has changed the representation of one 

substance (or both) and created duplicates. In this case, one should check the 

original record and verify whether the difference in activity can be explained by 
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the fact that in one case the compound has been tested in its neutral form and in 

the other case, the compound was tested as a salt. As these instances are common 

with salts, we recommend determining early on how many chemical salts are 

present in the dataset and deciding whether only neutral compounds must be 

considered. In the situation when only a few salts have dramatically different 

properties than those compounds in their neutral forms, we recommend 

removing them from the dataset. Otherwise, they will become prediction outliers 

if compounds in neutral form are used for QSAR modeling.

c. Experimental variability may be at the origin of the discordance for the 

duplicates’ bioprofiles. A specific set of actions is required for the analysis of 

experimental variability (see next section).

In our practice, activity values expressed in different units are among the most common 

sources of discordance for duplicates bioprofiles (e.g., a compound recorded as a millimolar 

inhibitor in database A and as a micromolar inhibitor in database B). The automatic 

treatment of duplicates is obviously facilitated when all bioactivities are expressed in the 

same units35. As the last resort, suspicious pairs of duplicates with different bioactivities can 

be discarded altogether; however, the prediction of such compound bioactivity with a QSAR 

model built with the remaining compounds could help establishing which of the conflicting 

values is likely to be correct (see also step 7 for more details).

(3)

Analysis of inter- and/or intra-lab experimental variability. The analysis of bioactivities for 

duplicate compounds also enables the evaluation of both inter- and intra-lab experimental 

variability. It is a common laboratory practice to measure the bioactivity of a compound in 

multiple replicates in the same assay. For a given ADMET endpoint (e.g., metabolic 

stability) with tens of thousands of measured data points available in-house, Big Pharma 

companies often test hundreds of chemicals in duplicates or triplicates. Datasets containing 

such information are particularly helpful to study the global experimental variability of an 

assay (Figure 4) across multiple series of compounds (e.g., experimental variability for most 

active compounds versus most inactive ones) as well as to analyze the local variability 

within a given range of bioactivity or within a chemical series. Moreover, the bioactivity of 

reference compounds can even be measured hundreds of times over many months and even 

years, offering the ultimate assessment of the experimental variability using appropriate 

metrics35. As such type of data is typically not accessible to academic researchers, 

alternative approaches could be used to assess the experimental variability and its influence 

on models’ prediction performances.

Modelers could rely on data precision as reported in a publication (e.g., “± 0.2 log units”), 

which is often associated with one (or a few) data point(s) 35. In practice, it means that the 

experimental variability should be assessed as constant (Figure 4A). As a result, the highest 

expected accuracy a QSAR model may not be higher than the experimental variability. For 

instance, if the mean absolute error for a model is reported to be 0.1 log unit despite an 

experimental variability close to 0.3 log units, it may be indicative of overfitting.
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However, the experimental variability is not necessarily the same for all compounds in a 

dataset. As illustrated in Figure 4, the assay’s variability can be considerably lower for 

compounds with extreme activities (Figure 4B), or for the more active compounds (Figure 

4C), or the less active compounds (Figure 4D). Obviously, the variability can also be random 

(Figure 4E). We highlight these different profiles of experimental variability as they may 

have different effect on the prediction performances of QSAR models. For instance, the 

higher experimental variability for less active compounds may have negligent effect on the 

model accuracy if such compounds are chemically distinct from more active and more 

chemically similar molecules.

For modelers who may have access to large screening data collections, we recommend 

analyzing the baseline history of the target/endpoint of interest as well as all measurements 

obtained for the reference controls. The baseline history (e.g., per plate, per batch, per week, 

per month, etc.) facilitates the identification of false-positives and false-negatives in HTS 

screening (cf. software tools such as HTS Navigator36).

It is extremely difficult to assess the inter-laboratory variability since it involves the 

identification of duplicate compounds having two (or more) different bioactivity values 

measured in two (or more) independent laboratories. Such replicate measurements are rarely 

done and/or rarely published, except for some very well-known active (and/or toxic) 

molecules and reference controls. Drawing any conclusions requires the analysis of many 

duplicates in addition to globally-accepted estimation of experimental reproducibility 

associated with a particular assay (e.g., the overall reproducibility is ~85% for the Ames 

mutagenicity test37).

To summarize this step, we shall emphasize that although the duplicated records should be 

excluded prior to modeling, the analysis of duplicates present in the original dataset is 

extremely useful to estimate the experimental uncertainty of the data. Grouping of duplicates 

by data source allows to estimate the inter- and intra-lab variability. In case of high (>30%) 

discordance between duplicates no reliable models could be obtained. Thus, based on such 

estimates we could decide (i) whether the development of reliable models is possible for a 

dataset compiled from the different sources; (ii) whether we should use the data generated in 

different labs separately; or (iii) whether no model development is possible at all.

(4)

Exclusion of unreliable data sources: The identification and exclusion of data sources with 

inconsistencies, biases, systematic errors, and/or outdated records is not trivial. One can 

consider any data source unreliable if there are statistically significant differences in 

measured bioactivities for a consistent fraction of chemicals. An example could be given by 

a paper or a series of papers published by the same lab that is not conducting the assay of 

interest the same way as the majority of research groups do. In such case, the associated data 

points should probably not be part of the integrated modeling set for developing predictive 

QSAR models. Other examples of experimental discrepancies relate to chemogenomics 

measurements published prior to a radical change in the protocol for a given assay, or 

experimental data from a company site different from the other sites of the same company 

(e.g., one site is running an assay at pH=7.0 whereas the other site is running the same assay 
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at pH=8.0). These data points are not incorrect per se but they will likely be problematic and 

even incompatible if they are integrated in the same dataset.

It is critical to establish “golden lists” of carefully curated chemical databases. Our recent 

experience in developing “The Children’s Pharmacy Collaborative™” database38 shows that 

establishing such “golden list” of sources is rather tedious due to the missing and unclear 

information requiring expert analysis. For instance, marimastat is a drug approved for the 

treatment of various cancers according to DrugBank but this compound was annotated 

elsewhere39 as performing poorly in clinical trials for the same indication so its development 

was terminated. Besides the elimination of unreliable sources as a whole, the use of strict 

filters35 to identify unwanted data points is an important approach to better ensure the 

consistency and validity of a set of compounds prior to model development. For instance, 

Kalliokoski et al.35 tested a series of filters for automatic preprocessing of IC50 values 

extracted from ChEMBL14, e.g., automatic deletion of data points taken from reviews or 

articles with undefined authors, deletion of records with unclear units, or records with 

extreme values.

(5)

Detection and verification of activity cliffs: It is important to identify pairs of molecules 

sharing very high structural similarity but having drastically different bioactivities. Such 

“activity cliffs”40 have been viewed as one of the major challenges for accurate bioactivity 

prediction using cheminformatics approaches, especially QSAR models (e.g., by affecting 

dataset “modelability”41) or any other approach based on chemical similarity. There are 

different categories of activity cliffs40 depending on how the similarity of compounds is 

measured (e.g., 2D, 3D, matching molecular pairs). Prior to initiating the computational 

study of a dataset, all activity cliffs must be detected, verified, and treated. For each pair of 

compounds forming an activity cliff, there are two main questions to address: Is it a true 

cliff? If yes, (how) should these compounds be incorporated in the modeling dataset? The 

aforementioned software for duplicate searches is useful for retrieving activity cliffs. 

However, once identified, the activity cliff-forming pair of compounds needs to be analyzed 

according to the following principles (Figure 5):

a. Bioactivities associated with each compound must be carefully checked against 

the original data source for accuracy. Mislabeling is one of the main sources of 

false activity cliffs: for instance, compound A is a 10 nM inhibitor (very active) 

and its most similar molecule in the dataset is compound B annotated as 12 mM 

inhibitor (inactive). An example is given by the case discussed in Figure 3 where 

using a high activity value for (deemed inaccurate by the chemical similarity 

clustering as discussed above) Tocris-0740 would make it appear as an activity 

cliff as compared to any chemically similar molecule in the same table. It is also 

possible that merely the wrong unit (mM instead of nM) may have been reported 

and inserted in the database;

b. 2D structural differences between the two compounds must be analyzed and 

interpreted in the context of the underlying assay or target. To do so, we 

recommend analyzing chemical features differing between the two compounds: 
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what is this chemical feature (e.g., a carboxylic moiety, a slightly longer carbon 

chain, an additional hydroxyl group, a different substituent attached to an 

aromatic ring)? Is it likely to be responsible for that dramatic change in activity? 

If no, there is likely something wrong with the record. If yes, what descriptors 

can reflect such an extreme structure-activity relationship?

c. 3D structural differences should also be considered. For such activity cliffs, very 

significant differences in experimental bioactivities can be due to minor changes 

in the receptor-ligand interactions. Thus, it makes sense to study 2D activity 

cliffs identified in a dataset by analyzing them in 3D, preferably in the context of 

receptor-ligand interactions. If the 3D structure of the target is known as well as 

the binding mode of at least one compound from the pair under consideration, it 

is feasible to compare the difference in receptor-ligand interactions. Tools like 

the structure builder in Schrodinger’s Maestro are very useful in that regard. 

These differences in receptor-ligand interactions (e.g., steric constrains, H-bond 

or π-π stacking disruption) might be at the origin of the cliff formation. If no 3D 

structure is available for the receptor, one can still superimpose the two 

compounds in 3D and study how these two conformations differ from each other. 

We should still underline that determining the 3D conformation of a flexible 

chemical is very much context-dependent and even the “active conformation” of 

a molecule in the binding pocket of an enzyme corresponds to an ensemble of 

local metastable conformations. Therefore, the calculation of 3D descriptors for 

chemicals requires detailed justification of the choice of molecular 

conformations.

d. Finally, the modeler should decide whether to keep or discard any activity cliff-

forming compounds in the modeling set.

Interestingly, one can enrich the set of chemical descriptors used for QSAR modeling for 

better discriminating activity cliffs: for example, 2D descriptors cannot differentiate 3D 

activity cliffs; therefore, adding chirality-encoding descriptors may help converting a 2D 

activity cliff into structurally more different compounds. Moreover, the researcher can 

choose a different modeling technique (e.g., docking) to better model the cliffs. In a recent 

study, Hu and Bajorath42 have compared 2D versus 3D activity cliffs identified for different 

targets such as β-secretase1 and factor Xa. They found that more than 60% of 2D activity 

cliffs could be distinguished at the 3D level. At the same time, these authors noticed that 

some 3D activity cliffs with no notable differences regarding their receptor-ligand 

interaction could easily be distinguished at the 2D level. Thus, 2D and 3D similarity 

assessment should complement each other.43

(6)

Calculation and tuning of the dataset modelability index (MODI): Recently, we introduced 

the concept of “dataset modelability”41, i.e., an a priori estimate of the feasibility to obtain 

predictive QSAR models for a given set of chemicals. This concept has emerged from 

analyzing the impact of activity and similarity cliffs on the overall performance of QSAR 

models40. The calculation of MODI helps modelers to (i) quickly evaluate the feasibility of 

obtaining QSAR models with significant predictive power; (ii) identify a subset of 
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compounds with higher modelability (especially when the activity distribution is biased 

towards one activity class or an activity range); and (iii) choose which set of chemical 

descriptors will likely produce QSAR models of the higher prediction power. If the MODI 

index is low, then the development of QSAR model for the respective dataset is not 

recommended. One should note that different sets of 2D chemical descriptors will return 

different but similar MODI values for a given dataset. Switching from 2D to 3D 

descriptors44 or from chemical to biological descriptors45 can help to increase the 

modelability of a given dataset. This work was recently extended by Marcou et al.46

(7)

Consensus QSAR prediction to curate mislabeled compounds. The underlying idea of 

consensus predictions is that an implicit SAR for a given dataset can be formally manifested 

by a variety of QSAR models built with different types of molecular descriptors and diverse 

machine learning approaches. Rigorously built individual models form an ensemble that 

allows for consensus bioactivity prediction using all models at once. The development of 

consensus models is generally recommended as they reach higher prediction performances 

as well as better dataset coverage due to their larger applicability domains47. As a result, 

consensus models can be used to flag and sometimes correct the experimental measurements 

of mislabeled compounds in a dataset. Consensus models can also be utilized to forecast the 

properties of pairs of stereoisomers and potentially identify the mis-annotated ones. Briefly, 

a compound can be considered “suspicious” and selected for deeper examination if: (i) all 

models involved in the consensus ensemble failed to predict its activity accurately; and (ii) it 
belongs to a tight cluster of two or more structurally similar compounds where all the other 

compounds have different (but mutually similar) bioactivities. We have demonstrated the 

success of this approach using Ames mutagenicity21 data. Employing both manual and 

automatic literature mining tools, our analysis revealed that 31 out of 140 “suspicious” 

compounds (~22.1%) were annotated erroneously in the original dataset. Recently, the same 

approach was used for the identification of mislabeled compounds in the largest set of 

chemical-induced skin sensitization records48 available in the public domain. Thus, 

predictive QSAR models obtained for carefully curated datasets can be successfully 

employed as a key component in biological data curation workflows.

Concluding this section, we shall note that although each step of the developed workflow 

can be done using existing cheminformatics techniques and software tools, project-specific 

decision-making is an inherent part of almost every part of the process. In addition to the 

detection and elimination of erroneous, non-standardized, and duplicated chemical structures 

(steps 1 and 2); records associated with unreliable data sources or high experimental 

variability (steps 3 and 4); structural outliers and unverified activity cliffs (steps 5 and 6), 

some mislabeled compounds can also be identified and corrected (step 7). Moreover, global 

decision regarding the very feasibility of model development could become a necessity when 

analyzing the outcome of the steps 2, 3, and 6. For instance, if duplicate analysis (step 2) 

will show high (>30%) discordance of associated activity values that could not be explained 

by inter-lab variability (step 3) or MODI value (step 6) of the resulting dataset would be 

lower than cut-off value of 0.65, we would not recommend the development of QSAR 

models.
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Sometimes, the dataset curated using the proposed workflow could become too small or 

unbalanced with one activity class underrepresented to ensure the development of reliable 

models. Thus, if after curation the dataset includes less than 40 compounds;47 activity range 

is less than 3 logarithmic units or contains large gaps that exceed 10%–15% of the entire 

range (for continuous datasets);47 one activity class contain less than 20 compounds (for 

binary models),47 we recommend the use of similarity searching or docking (if possible) 

instead of QSAR modeling. At the same time, the curated dataset could be stored and later 

enriched with new experimental data that would make it suitable for modeling.

3. Perspectives

The data-processing steps summarized in the previous section incorporate the key 

procedures our research groups at NCSU and UNC currently employ to prepare, curate, and 

standardize any chemogenomics dataset prior to its modeling. It is important to note that the 

order of execution of these procedures can be modified according to the size and exact 

nature of the underlying dataset. In the absence of such well-defined curation workflow, 

researchers that in any way rely on historical data for planning their future experiments are 

running the risk of conducting their analysis and modeling with incomplete, incorrect, 

inaccurate, inconsistent, or irreproducible data points (the “five i’s” danger)22. In our 

previous study21, we showed that chemical curation was critical to maximize the prediction 

abilities of QSAR models. We cannot stress enough how important data curation is to 

achieve reliable and useful QSAR models.

With the rapid accumulation of experimental data in publicly-available repositories, the 

problem of knowledge extraction from data, i.e., data science, becomes increasingly critical 

to enable further progress of research. The knowledge is summarized in the form of models 

that enable rational, data driven decision support. In a recent famous statement, the President 

of the Royal Society of Chemistry Professor Dominic Tildesley predicted that “the advances 
in modeling and informatics are so dramatic that in 15 years’ time, no chemist will be doing 
any experiments at the bench without trying to model them first”.49 This expectation can be 

extended towards many biological and biomedical disciplines implying that experimental 

scientists will increasingly rely on the power of computational models to rationally direct 

their studies. The aforementioned ability of models to provide as accurate estimates of the 

experimental data as the experiment itself does not appear to be restricted to chemical 

biology. For instance, pharmacokinetic models often yield time-dependent drug 

concentration curves that are more accurate than the experimental ones.50 Specifically, it has 

been acknowledged that individual time-point measurements could be off significantly 

whereas predicted values give accurate results that can be confirmed when the experiment is 

reproduced. However, computational model accuracy depends directly on the accuracy of 

the data used to build a model. This consideration places the issue of data irreproducibility 

and accuracy at the forefront of computational modeling research, emphasizing the need for 

data curation as the first critical step of model development.

The vast majority of synthesized compounds is reported in the literature only once.14 

Moreover, it is uncommon to find their biological assay measurements reported in replicates 

by multiple groups. Therefore, a full analysis of the reliability of all chemical and biological 

Fourches et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



records in a dataset is extremely difficult to accomplish14,35; thus, the most logical way to 

ensure the accuracy of the reported data is to place this responsibility for ensuring data 

accuracy on the experimental researchers who generate data at first. Clearly, experimental 

scientists should know and understand their data the best. Therefore, ideally, the best 

approach to minimizing the risk of errors is to have experimental scientists upload their data 

electronically to the respective databases simultaneously with the manuscript submission. 

This is the standard practice in macromolecular crystallography where coordinates of protein 

or nucleic acid structures must be uploaded to the Protein Data Bank (PDB) prior to the 

manuscript submission. This should also become mandatory for newly synthesized 

compounds tested in bioassays prior to their publication in medicinal chemistry and 

chemical biology journals.

Journal editors should also consider supporting and encouraging the implementation of 

electronic protocols and associated file formats for chemical data storing and sharing. 

Indeed, the pdf format used to store and distribute journal papers is inefficient for extracting 

chemical data, re-plotting the graphs, or mining molecular structures, i.e., the pdf format is 

far from being cheminformatics-ready. Fortunately, new file formats are slowly emerging to 

enable the aforementioned tasks: for instance, MIABE51 and BAO52 were specifically 

designed to ensure a consistent storage, ontology and information architecture to 

characterize bioassays and their results. Extending the use of these formats is the only 

rational way to enable machine-readable descriptions of bioassays, molecular structures, 

experimental protocols, and NMR spectra reported in scientific publications. These formats 

will also facilitate the integration and comparison of experimental data from different 

research groups. Another plausible approach to increase data completeness and accuracy is 

to employ crowd-solving and crowd-checking approaches that will help in discovering and 

correcting erroneous entries in publicly available databases (e.g., Chemspider or Wikipedia). 

For instance, our group had a very encouraging experience with ChEMBL, when a reported 

inaccuracy in β2-adrenergic agonists binding affinity was fixed in less than 24 hours by the 

ChEMBL team at EBI. However, one should note that the traceability of these corrections is 

almost nonexistent, i.e., correcting a pKi value in an online database such as ChEMBL will 

not autocorrect all the instances of that particular record in other online databases, e.g., 

PubChem that includes data from ChEMBL, nor will it correct the same instance in a 

locally-stored SD file. In the absence of such connectivity between databases containing 

similar data, data curation workflows described in this paper should be applied to every 

database and dataset independently.

4. Conclusions

The exploitation of today’s online repositories containing large sets of heterogeneous 

chemogenomics data requires the use of powerful, transparent, and robust data curation 

workflows. Although such procedures are required and implemented for submitting novel 

protein crystal structures to the PDB (e.g., AutoDep Input Tool), curation is still far from 

being condicio sine qua non in chemical and biological data analysis leading to reporting 

erroneous or irreproducible data in published manuscripts. Since the presence of erroneous 

data points is known to cause computational models to fail or have low predictive power, 

chemical biological curation workflows can be utilized to flag (and where possible fix) those 
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records and ultimately improve the quality of data analysis and prediction performances of 

modeling techniques (e.g., pharmacophore, QSAR, and docking). Although this Perspective 

focuses predominantly on chemical biology, similar problems are common for the entire 

biomedical research53 and they plague other fields as well, e.g., nanotechnology54.

Reducing the amount of erroneous or irreproducible results requires coordinated efforts 

between research community, funding agencies, and journal publishers. As funding agencies 

such as NIH or NSF are starting to establish data sharing policies, we believe the chemical 

biology community (and for that matter, research community of any data-rich discipline) 

should adopt the culture and mechanisms for data sharing established within the structural 

biology community. To do so, experimental researchers should be provided with 

computational tools to curate, organize, and submit their data to specialized repositories or 

databases. Importantly, these databases should be certified by the respective funding 

agencies and supported by peer-reviewed, competitive grants, which is how Protein 

Databank has been supported for many years. An agreement should be reached between 

funding agencies and scientific journals that no paper reporting new data could be accepted 

without providing a statement from the respective database or repository that they have 

received that data. This would be similar to rules established in structural biology where 

most journals will not even consider a manuscript describing a new X-ray or NMR-

characterized protein structure without a confirmation from the Protein Databank that 

coordinates have been deposited. Such agreements are possible and can be illustrated by the 

practice established by the NIH several years ago that all published papers should be 

uploaded to PubMed Central within a year following the original publication.

The basic gold standard for reporting scientific results and ensuring their correctness will 

always rely on whether or not the experiments described in a study can be reproduced using 

the information provided by the authors. Nevertheless, curation workflows for chemical 

genomics data may contribute to establishing the best practices and culture of data curation 

as an essential component of further progress in our discipline.
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Figure 1. 
General workflow for comprehensive curation of chemogenomics datasets.
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Figure 2. 
Example of duplicate retrieval using PubChem ID, smiles, chemical names, InChI, and 2D 

similarity. Note the 2D similarity was computed as Tanimoto coefficient using CDK 

descriptors and had Tc = 1 (implicating structural duplicates) for the two curated compounds 

(no salts, standardized functional groups and aromatization).
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Figure 3. 
Chemical similarity analysis for a pair of substances with duplicate structures found in the 

NCGC Cytochrome P450 screen32 in which 17,000 compounds were tested against five 

major isozymes. LogAC50 = -8 for CID_6603937 at CYP 3A4 (highlighted by the red circle) 

is automatically flagged as incorrect because highly similar molecules in the same dataset 

have CYP 3A4 activities consistent with an alternative measurement for the same 

compound.
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Figure 4. 
Illustration of different types of experimental variability (see text for details).
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Figure 5. 
Initial workflow to analyze activity cliffs.
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