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Abstract

Linear models offer a robust, flexible, and computationally efficient set of tools for modeling 

quantitative structure activity relationships (QSAR), but have been eclipsed in performance by 

non-linear methods. Support vector machines (SVMs) and neural networks are currently among 

the most popular and accurate QSAR methods because they learn new representations of the data 

that greatly improve modelability. In this work we use shallow representation learning to improve 

the accuracy of L1 regularized logistic regression (LASSO) and meet the performance of 

Tanimoto SVM. We embedded chemical fingerprints in Euclidean space using Tanimoto (aka 

Jaccard) similarity kernel principal components analysis (KPCA), and compared the effects on 

LASSO and SVM model performance for predicting the binding activities of chemical compounds 

against 102 virtual screening targets. We observed similar performance and patterns of 

improvement for LASSO and SVM. We also empirically measured model training and cross 

validation times to show that KPCA used in concert with LASSO classification is significantly 

faster than linear SVM over a wide range of training set sizes. Our work shows that powerful 

linear QSAR methods can match nonlinear methods, and demonstrates a modular approach to 

non-linear classification that greatly enhances QSAR model prototyping facility, flexibility, and 

transferability.
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INTRODUCTION

Since its introduction over 50 years ago, quantitative structure activity relationship (QSAR) 

modeling has become an indispensible tool for drug development.1, 2 A powerful application 

of QSAR is ligand based virtual screening, where predictive models are built from 

experimental data and used to mine chemical libraries for promising lead compounds.3, 4 

Common screening objectives include molecular properties that influence ADME profiles,5 

activity against desired therapeutic targets, and liability against targets that contribute to 

adverse drug reactions (ADRs).6, 7 The diversity of targets, objectives, and constraints make 

virtual screening challenging and complex.

The most straightforward approach is similarity-based virtual screening.8 Library 

compounds are compared to a reference set of known active molecules, and those similar 

above some threshold are selected as putative leads. 2D chemical fingerprints and Tanimoto 

similarity are the most popular representations for assessing similarity.9 These methods are 

(1) versatile-- because they admit any representation that supports comparison, and (2) 

efficient--because they are non-parametric and do not require fitting models or hyper 

parameters. However, they are limited because they summarize similarity as a scalar 

quantity, and do not have sufficient granularity to capture the precise features that drive 

critical similarities and differences.10

Linear models give granular insight into structure activity relationships by learning 

quantitative rules that relate specific substructural features to biological activities.11 Since 

their early application in QSAR, linear modeling techniques have been refined and 

optimized extensively.12–14 Today many robust implementations are available for popular 

models such as logistic regression, principal components analysis (PCA),15 and partial least 

squares (PLS).16 A limitation of linear methods for QSAR is their use of the dot product, 

which is less discriminative than non-linear Tanimoto similarity for sparse bit vectors like 

chemical fingerprints.17 Consequently, non-linear methods such as support vector machine 

(SVM),18, 19 neural networks,18, 20, 21 random forests,22 and influence relevance voting 

(IRV),23 often eclipse the performance of linear QSAR methods and make them appear 

uncompetitive, despite the availability of efficient, accessible, mature techniques and 

associated software implementations.
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In particular, Support Vector Machines (SVMs) are frequently used for non-linear QSAR.19 

They combine the strengths of similarity search and linear models by using non-linear 

similarity functions to map data into high dimensional vector spaces.24 A key advantage of 

SVM is that task-specific prior information can be used to choose a kernel and 

representation that gives a favorable non-linear abstraction (e.g. Tanimoto similarity for 2D 

fingerprints).25 However, SVMs also have a number of limitations: models may take a long 

time to train or have convergence issues, hyperparameter adjustments can be difficult and 

time consuming, and limited custom kernel support complicates workflows and limits the 

transferability of the methods.26, 27

Kernel principal components analysis (KPCA) is a nonlinear embedding technique closely 

related to SVM.24, 28 KPCA takes a set of data examples and a positive definite measure of 

similarity, and returns a set of continuous vector representations whose dot products give 

minimum error regularized estimates of the similarity measure. Of course, it shares the 

qualities of classical PCA: features of the transformed data are uncorrelated and ordered by 

their explanatory power, and new data can be projected into the subspace spanned by the 

training examples.

Our work is motivated by the hypothesis that KPCA allows us to access the non-linear 

abstraction of our data in the hidden layer and extend it to other machine learning models.25 

We train sparse logistic regression models on KPCA embedded chemical fingerprints and 

show significant improvements in accuracy. We use KPCA embedded vectors to train 

Tanimoto SVM models with an implementation of that does not ordinarily permit use of 

non-standard kernels. We show that KPCA embedding is surprisingly efficient over a broad 

range of virtual screening dataset inputs. Our work shows that KPCA embedding makes 

non-linear QSAR more flexible and transferable, and provides a role for linear models 

within the broader context of representation learning.29

CONCLUSIONS

We have demonstrated the potential for modularity in non-linear classification enabled by 

shallow, unsupervised representation learning: we provide nonlinear modeling capabilities in 

the context of a linear modeling formalism. Any learning architecture must provide two 

functions: (1) the creation of a useful abstraction of the data, and (2) a method for fitting a 

model using the data abstraction. Often the embedding step is done implicitly, but this can 

limit transferability and applicability.2, 51 We show that separating these functions into 

isolated modules (for QSAR modeling, and in the context of linear models) can greatly 

enhance speed, facility, and flexibility.29, 52
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METHODS

Kernel PCA Embedding

Step 1: Compute Tanimoto similarity matrix

T xi, x j =
〈xi, x j〉

〈xi, xi〉 + 〈x j, x j〉 − 〈xi, x j〉

Given a set of data molecules, X= {x1,x2,…,xn} represented as sets of sparse binary 

indicator features, we can compute the Tanimoto similarity T(xi,xj) using the formula above 

where 〈xi,xj〉 denotes the dot product of fingerprints xi and xj.

T xi, x j = ϕ(xi) · ϕ x j
T

The heart of the “kernel trick” is Mercer’s theorem, which relates the output of certain types 

of non-linear similarity functions to dot products of vectors ϕ(xi) and ϕ(xj) in a high 

dimensional space.

Step 2: Compute its eigenvalue decomposition (or SVD)

Φ(X) · Φ(X)T = QΛ2QT = T(X, X)
Φ(X) = QΛ

We factor the Tanimoto similarity matrix with the eigenvalue decomposition (or SVD), and 

then multiply the eigenvectors (Q) by the singular values (Λ) to return the embedded data 

Φ(X).

argmin
Φ(X) ∈ ℝk

‖T(X, X) − Φ(X) · Φ(X)T‖2 = QΛ(k)

The new features are orthogonal and ordered by variance, and dot products of molecule 

vectors approximate Tanimoto similarities. We can also smooth the data by discarding low 

variance features. In general, the first k eigenvalues and eigenvectors give a minimum error 

rank k approximation of the data. Here ||·||2 is the spectral norm, and Λ(k) denotes the first k 
singular values of T(X,X).

Step 3: Use the eigenvectors to project data into Tanimoto space

ϕ(x) = T(x, X) · QΛ−1
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To embed new data points we compute similarity to the points in our training data, and than 

right multiply by the inverse of our embedded training data.

Software

We built our software in R 3.3.0. We used the glmnet package for LASSO classification,30 

and the e1017 (LibSVM) and kernlab packages for SVM.26, 31, 32 We used the caret package 

to do stratified sampling for cross validation,33 and the ROCR package to compute 

performance measures.34

Classification Datasets

We tested classification performance using representation-benchmarking dataset assembled 

by Heikamp et al.35, 36 The active set consists of 75,251 compounds that affect 102 

therapeutic targets (ChEMBL IC50 ≤ 10 μM). A number of therapeutic target families (5HT 

transporters/receptors, carbonic anhydrases, kinases), and exclusionary targets (HERG, CYP 

family) are represented. The data are grouped into Easy, Intermediate, and Difficult classes 

based on maxSIM recovery rates. Summary statistics describing the size and diversity of 

activity class datasets are shown in Table 1. An additional 10,000 compounds from ZINC 

were also provided as decoys. The data are encoded as ECFP4 and MACCS fingerprints to 

give contrasting examples of high and low fidelity representations.37, 38

Model Training and Classification Accuracy Assessment

We evaluated the classification performance of LASSO and SVM models using AUC, F1-

score, and Matthew’s correlation coefficient (MCC). Because the thresholding process used 

to compute AUC yielded a range of values for F-score and MCC, we report their maxima. 

We evaluated changes in classification performance (Δp/p0) and error (Δε/ε0) for models 

trained on KPCA vectors relative to the baseline of linear models trained on 2D fingerprints. 

We computed the performance measures using a 10-fold cross validation in scheme in which 

90% of the data was used to train each fold-specific model, and the remaining 10% was used 

to evaluate prediction accuracy. For models trained with embedded molecule vectors, KPCA 

embedding was included in the 10-fold cross validation. We used nested 10-fold cross 

validation on the training data to tune model hyperparameters. We fit lasso models using the 

glmnet package with a lambda min ratio of 0.001 and selected the lasso penalty parameter 

using the one standard error criterion with AUC as the performance metric. For SVM, we 

used Platt scaling and evaluated the C parameter over six orders of magnitude [10−3,103]. 

We measured the total training and cross validation times and fit polynomial models for 

extrapolation.

RESULTS

LASSO Classification

Figure 1 (Top) shows the effect of KPCA embedding on LASSO classification model 

performance for each of the 108 ChEMBL activity classes. In aggregate, changes in 

performance were biased toward improvement, but within the expected variation for both 

MACCS (z-score=0.76) and ECFP4 (z-score=0.26) fingerprints. However, the change in 

performance was unevenly distributed across virtual screening targets, favoring intermediate 
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and difficult target activity models trained on MACCS fingerprints (Table 2a). Of the ten 

most significantly affected activity class models (Table 2b), all except Glucocorticoid 

receptor (GCR) were difficult targets. In general, the relatively small changes in 

performance (Δp) we observed represented large portions of the maximum possible 

improvement (Δε). No significant decrease in accuracy (z-score < −1) was observed for any 

activity class. Performance tables for all individual activity classes and are listed in the 

Supporting Material.

SVM Classification

Figure 1 (bottom) shows the effect of KPCA embedding on SVM classification performance 

for each of the 108 ChEMBL activity classes. Overall, they were similar to those observed 

for LASSO classification. The aggregate change in performance was larger for MACCS (z-

score= 0.81) than ECFP4 (z-score=0.11) fingerprints, but within the expected variation for 

both fingerprint types. Improvements again favored intermediate and difficult activity classes 

(Table 2c). Small changes in performance represented large portions of the maximum 

possible improvement. 8 of the top 10 most significantly affected model also showed the 

biggest improvement for LASSO classification (Table 2d). We did not observe significant 

differences in performance (z-score < −1) for any activity class. Performance tables for all 

individual activity classes and are listed in the Supporting Material.

Comparison between LASSO and SVM

Figure 2 shows a direct comparison of LASSO and SVM classification performance for 

native and embedded fingerprints. SVM generally performed better than the LASSO, 

however differences in performance were dependent on the representation used to train the 

models. Native ECFP4 fingerprints gave the largest difference in accuracy (z-score=0.76). 

The effect was most pronounced for difficult targets (Table 3a), and a number of individual 

models showed differences in performance above the expected variation (Table 3b). The 

difference in performance was much smaller for native MACCS fingerprints (z-score=0.21). 

Here the effect was more evenly distributed across easy, intermediate, and difficult targets 

(Table 3a), and no individual target had a z-score > 1. Tanimoto KPCA embedding had the 

effect of reducing the gap in performance between SVM ad LASSO models for ECFP4 (z-

score=0.57), while doing the opposite for MACCS (z-score=0.31). In both cases, the effect 

was concentrated in the intermediate and difficult classes (Table 3c,d). We also compared 

F1-scores for SVM and LASSO classification models trained on KPCA embedded 

fingerprints with the results for Tanimoto SVM reported by Balfer et al on Dopamine-D2 

receptor (72), Cannabinoid CB2 receptor (259), and MAP Kinase P38 receptor (10188) 

activity classes.17 An F-test showed no significant difference (p=0.96).

Computation Time

Figure 3 shows the activity class size and total cross validation times for non-linear LASSO 

and linear SVM. KPCA embedding combined with lasso training was faster than linear 

SVM trained on 2D fingerprints for all input sizes and fingerprint types. The speed up 

ranged from negligible for smaller inputs to an order of magnitude for the largest inputs 

tested. We observed that the computation time of linear SVM scaled much better with 

ECFP4 than MACCS fingerprints. Fingerprint type did not significantly impact the compute 
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times for KPCA embedded models. Extrapolation from polynomial models (Table 4) 

predicted that linear SVM would overtake non-linear LASSO at and input size of 19,077 

compounds for ECFP4, and 484,673 compounds for MACCS.

DISCUSSION

Tanimoto KPCA embedding improves LASSO and Linear SVM performance

Our results (Figure 1) show that non-linear embedding of chemical fingerprints using KPCA 

improves LASSO (Table 2) and SVM (Table 2c) classification performance for a number of 

important virtual screening targets. The magnitude of the performance gains we observed 

were relatively small, but meaningful when considered in the context of the large chemical 

libraries, which order on the number of tens of millions of molecules,39 where small 

reductions in error can equate to hundreds or thousands of fewer misclassified compounds. 

The targets in our dataset fall into a number of families that commonly participate in ADRs, 

such as ion and neurotransmitter transporters (HERG, 5HTT, NET); G-protein coupled 

receptors (CB1, CB2, H3); nuclear receptors (GCR); and enzymes (HSD1, VEGFR2).7 

Among these, the difficult targets are critical because they are highly promiscuous, and thus 

the most likely causes of safety related attrition from off target effects; and it was here that 

non-linear embedding delivered the greatest improvements in performance (Tables 2b, 2d). 

Furthermore, while Tanimoto KPCA embedding did not improve classification performance 

on all targets, it never significantly hurt performance.

Effects of KPCA embedding depend on the properties of the underlying representation

The smaller effect size for ECFP4 fingerprints can be explained by the underlying hashing 

scheme employed in the fingerprint generation process. Often referred to as “feature 

hashing” or the “hashing trick”, the practice of using hash table values to efficiently 

represent extremely sparse, high-dimensional data is a common optimization for natural 

language models, SVMs in particular.40, 41 Thus, ECFP4 fingerprints can be considered to 

be highly optimized for linear models, and almost uniquely tailored for linear SVMs. KPCA 

embedding brought the performance of models trained on MACCS closer to those trained on 

ECFPs. This implies that the high dimensional feature space of ECFPs may not capture 

significantly more classification relevant information than the 166 structural keys of 

MACCS, so much as represent it in a way such that relationships between data are linear. 

The improvement from KPCA embedding observed for MACCS can similarly be attributed 

to representing the data in a way such that similarity relationships between molecules are 

linear. Thus, for ECFP4 fingerprints, which are already highly optimized for linear 

properties, the effects were limited. Our results suggest that KPCA embedding is most 

useful in combination with compact, “lo-fi”, SMILES based representations that are not 

highly optimized for linear classification, such as MACCS and LINGOS.42, 43

LASSO models trained with embedded fingerprints are comparable to Tanimoto SVM

Our results show that embedding fingerprints with Tanimoto KPCA improves LASSO 

performance such that it is virtually equivalent to Tanimoto SVM (Figure 2). While 

performance was biased in favor of SVM models, the differences were within the standard 

error for all but a few cases (Table 3). For those, SVM models already significantly 
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outperformed LASSO models when trained on native fingerprints, and Euclidean embedding 

of chemical structures narrowed the gap in performance. The marginally better performance 

of SVM relative to comparable LASSO models can be explained by the difference in how 

each fits a separating hyperplane. LASSO classification selects a subset of features, and 

considers all of the data examples, even those far from the decision boundary, when 

computing an optimally separating hyperplane. SVM maps the data to a high dimensional 

feature space, and considers only a subset of examples near the class boundary. Thus, SVM 

models tend to perform better near class boundaries, but the overall contribution to accuracy 

is small because points are unlikely to fall in the affected regions.

KPCA/LASSO classification is significantly faster than linear SVM for ADR target datasets

Our observation that LASSO classification with KPCA embedded fingerprints was much 

faster than linear SVM (Figure 3) is counterintuitive given the theoretical complexity of 

KPCA O(n3) is greater than SVM O(n2). This can be explained by two factors: the absence 

of KPCA hyperparameters, and the size of the datasets. KPCA has no hyperparameters to 

optimize, thus it is a one-time cost. Grid search for tuning SVM hyperparameters can require 

on the order of hundreds of model fits, which inflates the total computational cost up to an 

equivalent factor. The result is a range of inputs where KPCA is faster than training an 

accurate SVM model, even when it is much slower than fitting a single unoptimized SVM 

model. We expect SVM to overtake KPCA/LASSO at large enough scale, however it is 

unclear when that will happen. Our polynomial models (Table 4) provide rough estimates, 

but like most extrapolations they are subject to wide confidence intervals. In the limit of 

largest most diverse activity class in our dataset (HERG), KPCA was still two orders of 

magnitude faster than linear SVM. Our results highlight an important caveat to keep in mind 

when considering theoretical guarantees: they may omit non-trivial application details that 

significantly affect empirical performance measurements, thus asymptotic limits may not 

apply to a range of relevant problem sizes.

Implications for deep and shallow learning

Much of the recent interest in data embedding (particularly in the deep neural network 

learning community) stems from the idea that deep and shallow learning architectures 

generate their effects by learning new distributed representations of the data in their hidden 

layers.25 Neural network embedded chemical fingerprints have shown promise, but share 

limitations common to deep learning: Models are computationally expensive and difficult to 

train, and hyperparameters like the learning rate, smoothing parameters, and model 

architecture must be tuned for each application.20, 44, 45 Shallow learning offers a simpler 

and more robust alternative, but with limitations. Restricting network depth makes training 

easier and more efficient, but limits the expressiveness of the range of nonlinear 

representations that can be learned. While the added expressiveness of the representations 

learned by deep neural networks generally accounts for their superiority in complex learning 

tasks, selection of an appropriate kernel using prior knowledge can allow us to obtain 

favorable tradeoffs in efficiency and expressivity. Thus, “shallow” learning as embodied by 

our methods and SVM may be preferred tasks for which the user has specific a priori 
understanding of the feature space; and deep learning may be preferable for tasks involving 
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extremely large datasets, for which the user lacks confidence about the most appropriate 

representation or similarity function.

Considerations for KPCA embedding

The choice of the kernel and underlying data representation are the two most important 

metaparameters for KPCA, and most effectively selected on the basis of prior knowledge 

and intuition. For this work, we used Tanimoto similarity because of its recognized utility as 

similarity measure for 2D chemical fingerprints. Alternatively if the data were continuous 

and real valued, as in the case of whole molecule descriptors, a radial basis function or 

polynomial kernel would be more appropriate. For distance based modeling approaches such 

as k-means clustering, we might use classical multidimensional scaling (MDS), a particular 

type of KPCA that preserves distances.28, 46 It should be noted that while classical MDS and 

PCA are equivalent up to an orthogonal rotation around the origin, this is not the case for 

other distance/similarity metric pairs. The biggest limitations of KPCA are the memory and 

time requirements, which are O(n2) and O(n3) respectively. We have shown that for the 

range of problems we have addressed, these are not prohibitive; however for much larger 

problems a number of optimizations such as matrix sketching,47 non-random sampling,48 

and ensemble approaches49 are available as well as distributed and streaming versions of 

KPCA.50

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Effect of KPCA embedding on LASSO (Top) and SVM (Bottom) classification performance 

for the 102 activity classes in the benchmarking dataset. Each bar represents a virtual 

screening target. The heights of dark shaded regions indicate minimum performance. The 

heights of the light shaded regions indicate maximum performance. The colors of the light 

shaded regions indicate whether native fingerprints (red) or KPCA embedded fingerprints 

(blue) yielded better performance. Activity classes are ordered by mean performance.
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Figure 2. 
Comparison of LASSO and SVM models trained on (Top) native and (Bottom) embedded 

fingerprints for the 102 activity classes in the benchmarking dataset. Dark shaded regions 

indicate min performance. Light shaded regions indicate max performance. Colors indicate 

whether (Red) LASSO or (Blue) SVM performed better. Activity classes are ordered by 

mean performance.
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Figure 3. 
Comparison of 10-fold training and cross validation times for Linear SVM and KPCA 

LASSO classification for the 102 activity classes in the benchmarking dataset. The x-axis 

shows training set size, and y-axis shows total processor time. Trend lines were fit with 

smoothing splines.
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Table 2b

Target classes for which Tanimoto kernel embedding yielded the most significant changes in LASSO 

classification performance (ΔpAUC) and error (ΔεAUC) relative to standard MACCS fingerprints. Asterisks 

indicate intermediate targets.

Target (ID) ΔpAUC ΔεAUC z-score

CB2 (259) 4.0% −77.5% 4.84

5HTT (121) 2.1% −69.4% 4.54

CB1 (87) 4.1% −64.3% 3.78

HSD1 (11489) 2.7% −70.6% 3.75

H3 (10280) 1.4% −60.9% 3.45

5HT-2a (107) 3.5% −67.2% 3.08

HERG (165) 3.3% −48.2% 2.52

NET (100) 1.5% −59.6% 2.05

GCR (25)* 2.2% −50.1% 2.00

VEGF2 (10980) 1.1.% −53.9% 1.74
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Table 2d

Target classes for which Tanimoto kernel embedding yielded the most significant changes in SVM 

classification performance (ΔpAUC) and error (ΔεAUC) relative to standard MACCS fingerprints.

Target (ID) ΔpAUC ΔεAUC z-score

CB2 (259) 3.7% −76.1% 3.77

HSD1 (11489) 2.7% −72.4% 3.51

CB1 (87) 4.5% −69.9% 3.27

5HT-2a (107) 3.8% −68.2% 2.98

H3 (10280) 1.5% −62.6% 2.23

5HTT (121) 2.0% −65.9% 2.21

5HT-1a (51) 1.5% −62.5% 2.16

5HT-2c (108) 2.6% −54.7% 2.11

HERG (165) 2.5% −40.6% 2.07

NET (100) 1.8% −67.2% 1.94

J Chem Inf Model. Author manuscript; available in PMC 2018 May 09.
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Table 3b

Target classes for which SVM shows the most significant changes in classification performance (ΔpAUC) and 

error (ΔεAUC) relative to LASSO classification for standard ECFP4 fingerprints.

Target (ID) ΔpAUC ΔεAUC z-score

GCPR44 (20174) 0.39% −97.1% 1.32

c-SRC (10434) 0.86% −92.0% 1.31

HERG (165) 0.58% −41.5% 1.26

MAPK14 (10188) 0.40% −72.1% 1.24

D4 (90) 0.63% −67.1% 1.21

D2 (72) 0.30% −68.7% 1.19

NET (100) 0.46% −58.5% 1.19

COX2 (126) 0.42% −71.8% 1.12

NPY5R (11336) 0.15% −98.1% 1.10

ACHE (93) 0.47% −69.1% 1.09
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Table 3d

Target classes for which SVM shows the most significant changes in classification performance (ΔpAUC) and 

error (ΔεAUC) relative to LASSO classification for KPCA embedded ECFP4 fingerprints.

Target (ID) ΔpAUC ΔεAUC z-score

NPY5R (11336) 2.92% −60.5% 1.36

PTK2 (11242) 1.92% −97.7% 1.16

ACHE (93) 0.43% −69.3% 1.14

CYP2C9 (12911) 4.61% −59.2% 1.14

CA1 (10193) 0.30% −74.9% 1.13

5HT-2a (107) 0.34% −68.5% 1.11

CYP3A4 (17045) 1.76% −52.1% 0.94

A2A (52) 1.09% −57.3% 0.93

VEGF2 (10980) 0.10% −75.8% 0.91

CYP19A1 (65) 0.25% −80.0% 0.91
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Table 4

Fitted coefficients and p-values for polynomial models relating training set size to observed 10 fold cross 

validation times for KPCA/LASSO and Linear SVM classification with ECFP4 fingerprints.

SVM/ECFP4 (R2 = 0.98)

Input Coefficient P-value

n 6.62 × 10−1 < 0.01

n2 5.15 × 10−4 < 0.01

LASSO/KPCA (R2 = 0.99)

n 6.52 × 10−2 < 0.01

n2 −1.69 × 10−5 0.09

n3 2 × 10−8 < 0.01
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