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Abstract

Drug-induced liver injury (DILI) is complex in mechanism. Different drugs could undergo 

different mechanisms but result in the same DILI type while the same drug could lead to different 

DILI types via different mechanisms. Therefore, predicting a drug’s potential for DILI should take 

its underlying mechanisms into consideration. To achieve that, we constructed a novel approach by 

incorporating drug’s Mode of Action (MOA) into Quantitative Structure-Activity Relationship 

(QSAR) modeling. This MOA-DILI approach was examined using a dataset of 333 drugs. The 

drugs were first grouped according to their MOA profiles (positive or negative in each MOA) 

based on the Tox21 qHTS assays. QSAR models for individual MOA assays were developed and 

subsequently combined to obtain the MOA-DILI model. A hold-out testing strategy (222 drugs for 

training and 111 drugs as a test set) was employed, which yielded the predictive accuracy of 0.711. 

For comparison, the MOA-DILI model was directly compared with the standard QSAR approach 

using the same hold-out strategy, and the QSAR model yielded an accuracy of 0.662. To minimize 

the random chance in splitting training/test sets, the hold-out testing process was repeated 1000 

times, and the observed difference in prediction accuracy between MOA-DILI and QSARs was 

statistically significant (P-value<0.0001). Out of 17 MOAs used, 4 assays (i.e., antioxidant 

response elements, PPAR-gamma, estrogen receptor, and thyroid receptor assays) contributed most 

to the improved prediction of the MOA-DILI model over QSARs. In conclusion, the MOA-DILI 

approach has the potential to significantly improve predictive outcomes and to reveal complex 
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relationships between MOAs and DILI, all of which would be helpful in developing DILI 

predictive models in drug screening and for risk assessment of industrial chemicals.

Graphical Abstract

Introduction

Drug-induced liver injury (DILI) is one of the major causes for drugs that failed in clinical 

trials and were withdrawn from the market1, 2. In order to identify drugs that are “bad 

actors” before they reach clinical trials, predictive models using in vitro data3, 4, in silico 
approaches5, 6 and toxicogenomics7 have been actively pursued. For example, Dawson et al. 

developed an in vitro DILI predictive model based on the inhibition of the bile salt export 

pump (BSEP) and demonstrated that BSEP inhibition was highly correlated with cholesteric 

DILI potentials1. A study by Usui et al. indicated that the combination of covalent binding 

levels of a drug to DNA and daily dose can be used to estimate the risk for DILI8. Howell et 

al. developed a mathematical predictive model called DILIsym based on the in vitro analysis 

of Methapyrilene9.

We are conducting the Liver Toxicity Knowledge Base (LTKB) project at the Food and Drug 

Administration (FDA) to utilize the data from preclinical studies for the prediction of DILI 

in humans10. The project has developed several predictive models11-14. For example, we 

developed a “rule-of-two” model based on the observations that oral medications of high 

daily dose and lipophilicity were associated with significant risk of DILI12; the model 

identified drugs that caused severe DILI but produced a number of false negatives. We also 

constructed a computational model that predicts human hepatotoxicity based on patterns of 

gene expression observed in rats following short-term in vivo exposures11. More recently, 

we developed a DILIScore model that is able to quantitatively assess a drug’s severity for 

DILI based on three sets of information (i.e., daily dose, lipophilicity, and the presence of 

reactive metabolites14.)

Quantitative Structure-Activity Relationship (QSAR) is another approach investigated in 

LTKB. For example, we developed the DILI Prediction System (DILIps)5, which took the 

consensus of 13 independent QSAR models corresponding to 13 hepatotoxicity-specific 

adverse events observed in clinical trials and/or post-marketing surveillances. We also 

developed a QSAR model using the in-house Decision Forest (DF) machine learning 

method15 in conjunction with the Mold2 descriptors16 with a large training set, which 

resulted in around 65% prediction accuracy on several large external validation sets7, 17. One 

of the key observations from these exercises was that a model for DILI prediction does not 

perform equally well across all drug classes13. We concluded that a “one-size-fits-all” 
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approach for DILI prediction by treating all the drugs as a single group could fall short in 

predictivity due to the diverse mechanisms involved in DILI and incorporating the different 

mechanisms of DILI into a predictive model could improve prediction accuracy.

Grouping drugs by their mode of action (MOA) profiles for safety assessment as a general 

approach has been reported18 including the study of hepatotoxicity9, 19. For example, there 

are several methods that incorporated drug mechanisms into QSARs in predicting 

DILI5, 20-22, with two dominating approaches: (1) directly combining chemical descriptors 

and MOA features in modeling, or (2) using MOA as an endpoint for prediction, i.e., QSAR 

models are constructed to predict MOAs instead of DILI itself. In addition, some studies 

developed models for drugs with shared MOAs but different DILI outcomes. However, an 

approach involving sub-grouping of drugs by their MOAs in combination with QSAR 

modeling has not been investigated for DILI prediction.

The MOAs profile of a drug can be obtained using mechanism-specific in vitro assays, such 

as those implemented in Tox2123 and ToxCast24 programs. We hypothesized that an 

enhanced DILI predictive model could be achieved by considering a drug’s DILI 

mechanisms in the modeling process. For example, DILI can be initiated by reactive 

metabolites, which interact with large molecules (e.g. proteins, lipids, mitochondrion, and 

Nuclei Acids) and result in protein dysfunction, lipid peroxidation, mitochondria 

dysfunction, DNA damage, and oxidative stress25. Some Tox21 assays exhibit relevance to 

hepatotoxicity such as the antioxidant response element beta-lactamase reporter gene 

assay26.

Drugs with different mechanisms may exhibit different DILI properties and thus should be 

predicted by mechanism-specific models. By incorporating MOA profiles, drugs could be 

more accurately categorized into subgroups specific for each DILI predictive model. Since a 

single drug might have several MOAs, the final prediction would be a consensus of several 

MOA-specific models. In this study, we applied MOAs profiled by the quantitative high-

throughput (qHTS) assays in the Tox21 program27 followed by QSAR modeling. In order to 

construct a model that would effectively utilize both the bioassay results and the QSAR 

information, we integrated MOAs and QSARs into DILI prediction (called MOA-DILI). The 

approach is different from the conventional integrated approaches which often combined 

different types of features at the same level, for example, using a pooled feature-set 

consisting of features from different sources (See Discussion).

Specifically, the drugs were first grouped according to their MOA profiles (positive or 

negative in each MOA) based on the Tox21 qHTS assays. QSAR models for individual 

MOA groups were developed separately and all the QSAR models were then combined for a 

consensus prediction by voting. We found out that the MOA-DILI method has the potential 

to significantly improve predictive outcome with insight gained into the complex 

relationships between MOAs and DILI. Out of 17 MOAs used, four assays (i.e., antioxidant 

response elements, PPAR-gamma, estrogen receptor and thyroid receptor assays) contributed 

most to the improved prediction of the MOA-DILI model over QSARs. Thus, MOA-DILI 

could be helpful in drug screening for DILI detection in the early stage of drug development 

and for risk assessment of industrial chemicals
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Material and methods

Dataset

The chemical structural information and DILI severity annotations for the drugs used to 

construct and test the MOA-DILI predictive model were obtained from the LTKB 

database10, 28. The dataset consists of 333 drugs with 155 drugs being “most-DILI-concern” 

and 178 drugs annotated as “no-DILI-concern”. “less-DILI-concern” drugs were not used in 

this study due to their ambiguous attributes. Of note, the objective of this study is to 

determine whether the proposed approach is going to improve the prediction by comparing 

to the standard QSARs. We reported a QSAR model for DILI prediction17, which used only 

“most-DILI concern” and “no-DILI concern” drugs for model evaluation. This QSAR 

approach was used side-by-side to compare the proposed methodology in this study. 

Therefore, only most- and no-DILI concern drugs were applied.

Bioassay activity data from toxicity relevant assays, such as ER (estrogen receptor), AR 

(androgen receptor), mitochondrial toxicity, p53, PPAR gamma, etc., was curated from the 

Tox21 program (https://tripod.nih.gov/tox21/) (Table 1). In particular, assays with less than 

20 (arbitrary cut-off) active drugs were excluded in this study due to the fact that a small 

number of samples would result in less reliable QSAR models. As a result, 17 assays 

remained in this study. For each of the 17 assays used, a drug can be “active”, “inactive” or 

“unknown”. In general, an “active” drug means the drug showed as either active antagonist 

or active agonist of selected assay, and inactive drug means this drug didn’t show any active 

response of this assay (different assays might have different sensitivity and measurement, 

and we directly used this measurement from the Tox21 results (https://tripod.nih.gov/tox21/

index)). “Unknown” is the ambiguous read-out from the assay that either contradicted each 

other from multiple experiments or not tested. If a drug is labeled as “unknown”, it would 

not be used in this study. A detailed list of drug information used in this study and their 

Tox21 bioassay activities is provided in Table S1.

Quantitative Structure-Activity Relationships (QSARs)

One of the key strategies in this study was to conduct a direct comparison to the QSAR 

approach that was reported previously17. Thus, the same QSAR approach was applied that 

was constructed using Mold2 molecular descriptors16 and the Decision Forest algorithm15. 

Mold2 is an in-house chemical structure tool that rapidly calculates a large and diverse set of 

2D molecular descriptors. A total of 777 descriptors were used in this study. Detailed 

descriptions of these 2D descriptors can be found in the Mold2 documentation, which is 

available at http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/.

The Decision Forest algorithm was used in this study to build all QSAR models, which is a 

classification algorithm that combines multiple decision tree models. In order to reduce 

over-fitting, each decision tree consists of a unique set of molecular descriptors15. A 

significant advantage of using the Decision Forest is the integration of feature selection in 

the modeling processes. In this study, the parameters used in the decision forest were set as 

follows: min # of tree=5, max # of tree=20, min reduction=0.01 and min drugs in one 

node=5. All constant features were filtered before entering the decision forest process. Since 
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the number of samples in both positive (Most-DILI concern) and negative (No-DILI-

concern) categories are quite balanced, the performance of QSAR model was mostly 

assessed by accuracy (Eq. 1), where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. Additionally, Matthew’s Correlation Coefficient (MCC) 

and F1 score were also provided based on the measurement of Eq. 2 and 3, respectively.

Acc = TP+TN
TP+TN + FP + FN Eq. 1

Mcc = TP ∗ TN − FP ∗ FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN) Eq. 2

F1 = 2 ∗ TP
2 ∗ TP + FP + FN Eq. 3

Model Validation

Two validation procedures were used in this study, hold-out and cross-validation. 

Specifically, the 5-fold cross-validation (CV) procedure was used in QSARs, where drugs in 

the training set were randomly divided into 5 sets; 4 sets of drugs were used to develop the 

QSAR model which was then assessed by predicting the 5th set of drugs. This process was 

repeated 5 times where each set of drugs was left out once and only once. For the hold-out 

approach, the 333 drugs were randomly split to 2/3 (222 drugs) and 1/3 (111 drugs). The 

former was used to develop a model while the latter was used to validate the model. We 

repeated the hold-out process 1000 times to generate 1000 pairs of training/test sets. The 

average results from 1000 repetitions minimize the degree of chance correlation.

For comparison, label permutation test was applied in this study. In the label permutation 

test, the DILI severity annotations of all drugs were shuffled (keeping the same ratio of 

most-DILI-concern and no-DILI-concern) and then we applied the same modeling approach 

to the shuffled dataset.

Results

We have developed a modeling approach to predict potential DILI for a drug used 17 drug 

MOAs from the Tox21 qHTS assays. The models were based a set of 333 drugs with 155 

drugs being “most-DILI-concern” and 178 drugs annotated as “no-DILI-concern”. The 

MOA-DILI modeling process is depicted in Figure 1. The 333 drugs were randomly divided 

into a training set (222 drugs) for model development and a test set (111 drugs) for hold-out 

testing. For model training, Tox21 assays were used to group training set compounds based 

on assay activity, and QSAR models were constructed for each assay respectively. For 

example, for the ARE-bla assay there were 53 number of active compounds with DILI calls 
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(27 most-DILI-concern and 26 no-DILI-concern). A model was built that differentiated 

ARE-active compounds with and without DILI properties. In other words our models 

identify a subcomponent of ARE activation SAR features that are associated with DILI. For 

model testing, test compounds were first labeled by their activities in Tox21 assay and then 

predicted by relevant QSAR models. We also compared MOA-DILI with the standard 

QSAR procedure. All the results presented are the average of 1000 repetitions (i.e., 1000 

pairs of training/test sets) to minimize the potential bias in splitting training/test sets.

For each of the 17 MOAs from the Tox21 assays, we first separated drugs into two groups, 

one is active in the assay and the other is inactive in the assay. Next, the 5-fold cross 

validation (5-fold CV) procedure for each group was independently conducted using the 

standard QSAR procedure with Decision Forest and Mold2 descriptors (Materials and 

Methods). The CV results from both groups were then combined to obtain the prediction 

performance of the QSAR model for the assay, called QSARMOA model. The averaged 

prediction performance of QSARMOA models is summarized in Table 1. The averaged 

prediction accuracy of QSARMOA models ranges from 0.633 to 0.677, where pparg-bla-

agonist (MOA-16) showed the best performance over all MOAs. All QSARMOA models 

showed significantly better performance than the sample prevalence (0.535, p<0.0001).

Next, we investigated whether the combination of QSARMOA models from 17 MOAs would 

be able to achieve a better performance. In this investigation, a sequential forward selection 

procedure was applied to generate various combinations of the QSARMOA models, where 

QSARMOA were sequentially added one at a time by their performance, and the final 

prediction of the combined models was obtained based on voting. We found that the best 

combination, called MOA-DILI model, outperformed all the QSARMOA models (Table 2). 

The MOA-DILI model also outperformed the standard QSAR model; the averaged accuracy 

of MOA-DILI models by 5-fold CV (0.757) was significantly (P-value <0.0001) higher than 

the averaged accuracy of QSAR models which was 0.658. For the hold-out assessment using 

the test set, the averaged predicting accuracy of MOA-DILI models was 0.695. Although 

with a considerable drop, this predictive performance was still significantly better than the 

corresponding QSAR models, which was only 0.662 in average (P-value <0.0001). 

Similarly, the label permutation test yielded the prediction accuracy of 0.582 which was 

significantly lower than MOA-DILI models (P-value<0.0001), indicating that DILI 

prediction were enhanced by using the MOA-DILI model. Similar performance was 

obtained by using MCC and F1 score, where MOA-DILI model showed significantly better 

performance than these from QSAR models.

The 1000 repetitions resulted in 1000 different MOA-DILI models, which allow assessment 

of the frequency of each MOA selected by MOA-DILI models. As shown in Figure 2, most 

MOA-DILI models only used 2 or 4 MOAs; the average number of MOAs was around 3.56. 

Four MOAs (MOA-4, 10, 11, and 16), labeled as ARE-bla (antioxidant response element), 

ER-luc-bg1-4e2-antagonist (ER-alpha, BG1 cell line), gh3-tre-antagonist (thyroid receptor) 

and PPARG-bla-agonist (peroxisome proliferator-activated receptor gamma), were used by 

more than 30% of MOA-DILI models, much more often than other MOAs (Supplementary 

Table S2). Consequently, we constructed the MOA-DILI model using only these 4 MOAs 

with the same process outlined in Figure 1. As summarized in Table 2, this final model 
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yielded prediction accuracies of 0.697 in 5-fold CV and 0.711 in hold-out testing, which was 

comparable with other MOA-DILI models and much better than the QSAR model (P-value 

<0.0001). The detailed prediction results of the top 4 assay specific models are provided in 

Supplementary Table S3.

Discussion

In this study, we introduced the MOA-DILI modeling algorithm to improve DILI prediction, 

by integrating the MOA information into QSARs. Using a drug’s chemical structure to 

predict DILI has been reported with limited success due to the complex mechanisms 

involved in DILI. Therefore, considering MOA profiles of a drug in addition to its chemical 

structural information could improve DILI prediction. There are several similar approaches 

reported along this line of thinking. We conducted a PubMed search, using “QSAR” and 

“Liver toxicity”, which returns 173 hits (by January, 2017). The general approaches of 

integrating drug mechanisms and MOAs into toxicity prediction with QSARs falls into two 

categories. One is feature combination, which feeds different types of features (e.g., 

chemical descriptors and in vitro assay data) into the modeling process as independent 

variables in an equal setting21, 29. Another approach is consensus modeling, which takes the 

majority votes of several models constructed with different features respectively5, 20, 22. 

Different from these approaches, the MOA-DILI algorithm uses the MOA features to divide 

drugs into different groups and, for each group, QSAR models were constructed and 

subsequently combined.

A model’s performance is largely dependent on three factors, the dataset size, the active/

inactive distribution, and how the actives/inactives are determined which relates to the noise 

levels in the assays that measure the drug activities. Thus, the absolute accuracy for a 

predictive model has to be evaluated in the context of these three factors. Currently, QSARs 

have been well adopted in drug screening with no wet-lab experiments involved. Our 

approach does involve wet-lab data (i.e., Tox21 data). Thus, to demonstrate the value of our 

proposed methodology, we conducted a direct comparison between our approach and 

standard QSARs. The MOA-DILI model exhibited the prediction accuracy of 0.757 in 5-

fold cross validation and 0.695 in hold-out testing. Compared to our previously established 

QSAR models using the same approach, the MOA-DILI modeling showed improved 

performance in DILI prediction.

It is worthwhile to mention that the criteria applied to label drugs that induce liver injury are 

a significant consideration when developing the prediction model. In fact, to determine 

whether a drug truly causes liver injury or not is difficult since the occurrence of DILI is 

usually rare or idiosyncratic. There are three factors that need to be considered for DILI 

classification28, 30: 1) Causality – is the observed liver injury from this drug? 2) incidence – 

how many DILI cases resulted from this drug are sufficient to incriminate it as DILI? and 3) 

severity – how severe is severe enough to call a drug as DILI (e.g., the clinical impact for the 

patient ranging from transient liver enzyme elevations to liver failure requiring 

transplantation or even death)? These three factors have to be considered together in order to 

identify the potential DILI risk for a drug. The drug labeling documents provide a balanced 
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assessment by considering all these three factors in assessing the likelihood of a drug 

causing DILI. This DILI classification label was used in this study.

In this study, we applied the Tox21 assays as drug MOAs. Tox21 assays are not specifically 

designed for DILI prediction. Other assays such as Oxidative Stress, Glutathione Depletion, 

Formation of Reactive Metabolites, and Mitochondrial Dysfunction are more important and 

relevant to DILI. We decided to use the Tox21 data in this proof-of-concept study because it 

does provide the large dataset which is required to demonstrate the utility of the proposed 

method. At the time when this study was conducted, Tox21 provides 17 assays mainly 

related to nuclear receptors and stress response pathway assays, which were tested in this 

investigation. We found that four assays, labeled as ARE-bla (antioxidant response element, 

MOA-4 assay in Table 1), ER-luc-bg1-4e2-antagonist (ER-alpha, BG1 cell line, MOA-9 

assay in Table 1), gh3-tre-antagonist (thyroid receptor, MOA-11 assay in Table 1), and 

PPARG-bla-agonist (peroxisome proliferator-activated receptor gamma, MOA-16 assay in 

Table 1), contributed the most to the DILI prediction. There are a number of reports 

indicating the relevance of these assays to liver disease and DILI22, 31-34.

For example, the PPAR family is linked with liver disease32, 35, 36. Troglitazone, a typical 

PPAR-gamma ligand drug for type II diabetes, is withdrawn due to its severe 

hepatotoxicity37, 38. We noticed that, out of 21 PPAR-gamma antagonists, 18 of them are 

most DILI-concern drugs, indicating PPAR-gamma ligands would have a high correlation 

with DILI. The ER-alpha antagonist assay (MOA-9) measures estrogenic activity of a 

compound. Tamoxifen, a well-known ER-alpha antagonist for the treatment of breast cancer 

has been associated with liver injury including fatty liver39, steatohepatitis40-43, etc. In our 

dataset, 24 of 38 ER-alpha antagonists are labeled as most-DILI-concern drugs. MOA-4 

assay (antioxidant response element) indicates activation of the antioxidant response element 

(ARE) by measuring indirect glutathione depletion that is an important mechanism for DILI. 

ARE signaling pathway plays an important role in the amelioration of oxidative stress, of 

which Nrf2 (NF-E2-related factor 2, a major transcription factor) plays critical roles in 

protecting the cell from oxidative damage occurring because of injury and inflammation44 

and acts as a primary regulator of the glutathione detoxification system. Targeting Nrf2 is a 

promising strategy for the prevention of toxin-induced liver damage45, and Nrf2-deficient 

mice are reported to be highly susceptible to APAP-induced liver injury46. It is considered 

that if a drug activates Nrf2 that does not cause glutathione depletion, it is mostly protective 

against liver damage47. Many DILI compounds such as diclofenac and carbamazepine have 

strong Nrf2 activation48. In our dataset, over half of (27 of 53) ARE agonists used are 

“most-DILI-concern” drugs, including many withdrawn drugs due to risk of hepatotoxicity. 

For example, Celecoxib and Cilostazol are both active in the antioxidant response assay. 

Celecoxib may cause cholestatic liver failure and may also be associated with severe 

hepatotoxicity49-51, whereas Cilostazol may attenuate cholestatic liver injury52.

In conclusion, MOA-DILI modeling could significantly improve model performance for 

DILI prediction by combining MOA and chemical structure information. Importantly, the 

MOA-DILI identifies the targets that might be involved in the mechanisms of DILI. It is an 

excitement to point out that the Tox21 project has generated data from many assays for a 

large number of compounds, the majority of which are industrial chemicals. This list will 
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continue to grow in the future, which will inevitably become a tremendous resource for 

toxicity study including DILI. Specifically, Tox21 covered more than 10,000 compounds 

tested against 47 different types of assays. Most drugs in its inventory are annotated with 

DILI by LTKB26, 29. Thus, the model developed with Tox21 data has the utility for not only 

drug screening but also for predicting the DILI potential of industrial chemicals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MOA Mode of Action
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Figure 1. 
Overview of MOA-DILI modeling process. 333 drugs were randomly divided into a training 

set (222 drugs) for model development and a test set (111 drugs) for hold-out testing, and 

this process was repeated 1000 times to generate 1000 pairs of training/test sets. For each of 

17 MOAs from Tox21 assays, the training set of drugs was split into two groups, one active 

in the assay and the other inactive in the assay. The 5-fold cross-validation was performed on 

each group and the results were combined to assess the prediction accuracy of each 

QSARMOA model. Sequential forward selection procedure was applied to assess the 

performance of the combinations of QSARMOA models and the best combination was 

namely the MOA-DILI model. The MOA-DILI was then evaluated using the hold-out test 

set and its performance was compared with the standard QSAR model using the same 

training set.
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Figure 2. 
Distribution of the number of QSARMOA models used in 1000 MOA-DILI models. Most 

MOA-DILI models used an even number of MOAs.
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Table 1.

Performance of QSARMOA model and assay alone predictions

MOA ID Assay Endpoint Tox21 Assay Name QSARMOA Model

MOA-1 aryl hydrocarbon receptor AHR 0.663 (0.033)

MOA-2 androgen receptor AR-bla-agonist 0.646 (0.032)

MOA-3 androgen receptor AR-bla-antagonist 0.657 (0.034)

MOA-4 antioxidant response element ARE-bla 0.649 (0.039)

MOA-5 AR (MDA cell line) AR-mda-kb2-luc-agonist 0.653 (0.032)

MOA-6 AR (MDA cell line) AR-mda-kb2-luc-antagonist 0.671 (0.032)

MOA-7 aromatase inhibitors aromatase 0.651 (0.035)

MOA-8 estrogen receptor alpha ER-bla-antagonist 0.656 (0.035)

MOA-9 ER-alpha (BG1 cell line) ER-luc-bg1-4e2-agonist 0.633 (0.036)

MOA-10 ER-alpha (BG1 cell line) ER-luc-bg1-4e2-antagonist 0.672 (0.032)

MOA-11 Thyroid receptor gh3-tre-antagonist 0.671 (0.037)

MOA-12 glucocorticoid receptor GR-hela-bla-antagonist 0.652 (0.034)

MOA-13 heat shock response HSE-bla 0.647 (0.035)

MOA-14 mitochondrial toxicity Mitotox 0.634 (0.036)

MOA-15 p53 p53 0.658 (0.033)

MOA-16 peroxisome proliferator-activated receptor gamma PPARG-bla-agonist 0.677 (0.033)

MOA-17 peroxisome proliferator-activated receptor gamma PPARG-bla-antagonist 0.636 (0.038)
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Table 2.

Overall Performance of MOA-DILI model in training and test set.

ACC MCC F1score

MOA-DILI model
Training Set 0.757 (0.020) 0.505 (0.045) 0.717 (0.032)

Test Set 0.695 (0.043) 0.385 (0.087) 0.640 (0.058)

MOA-DILI model with Top 4 MOAs Training Set 0.703 (0.027) 0.397 (0.056) 0.649 (0.042)

Test Set 0.711 (0.040) 0.416 (0.080) 0.659 (0.052)

Standard QSAR model
Training Set 0.658 (0.031) 0.310 (0.062) 0.626 (0.040)

Test Set 0.662 (0.041) 0.322 (0.082) 0.627 (0.049)

Label Permutated model
Training Set 0.591 (0.039) 0.200 (0.080) 0.609 (0.046)

Test Set 0.582 (0.042) 0.182 (0.084) 0.604 (0.046)
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