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Abstract

In structure-based virtual screening, compound ranking through a consensus of scores from a 

variety of docking programs or scoring functions, rather than ranking by scores from a single 

program, provides better predictive performance and reduces target performance variability. Here 

we compare traditional consensus scoring methods with a novel, unsupervised gradient boosting 

approach. We also observed increased score variation among active ligands and developed a 

statistical mixture model consensus score based on combining score means and variances. To 

evaluate performance, we used the common performance metrics ROCAUC and EF1 on 21 

benchmark targets from DUD-E. Traditional consensus methods, such as taking the mean of 

quantile normalized docking scores, outperformed individual docking methods and are more 

robust to target variation. The mixture model and gradient boosting provided further improvements 

over the traditional consensus methods. These methods are readily applicable to new targets in 
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academic research and overcome the potentially poor performance of using a single docking 

method on a new target.

Graphical Abstract

INTRODUCTION

Protein–ligand docking is a common computational method for structure-based drug 

discovery, used for ligand binding pose determination, molecular design and prediction of 

binding affinity. Of interest, is structure-based virtual screening (VS), also referred to as in 
silico screening, or virtual high-throughput screening (vHTS), commonly done through 

protein–ligand docking.1,2 A primary goal of VS is to score a large database of compounds 

based on the likelihood of interactions with a specific target structure. The rank order of 

these scored compounds is then used to identify a subset of the full database of compounds 

enriched for “hit” ligands that interact with the target. A sufficiently precise VS would 

predict hits from a library of available compounds, and experimental testing could then, with 

confgidence, be limited to those predicted hits, rather than “wet-lab” screening the entire 

library. In theory, this can save significant HTS costs as VS can routinely process millions of 

compounds, including yet to be synthesized virtual compounds.

In practice, however, VS approaches often do not provide sufficient enrichment to obviate 

the need for large-scale HTS.2–4 Reasons for the limited efficacy of docking-based VS have 

been reviewed elsewhere5–9 and commonly arise from oversimplified models of protein–

ligand interactions that trade accuracy for computational speed. Docking and scoring 

programs intended for VS often inadequately represent ligand and target conformation 

space, dynamics, solvation, polarization, and other effects. On the other hand, algorithms 

that do consider these features lack the computational speed necessary to dock millions of 

compounds. Also problematic is the common use of the same scoring function for the 

distinct tasks of docking search, pose selection, and compound ranking, the result being that 

none of these tasks is performed ideally.10

A second major limitation of VS is the performance variability of a given docking method 

across targets or in new target space.2–9 No single docking and scoring algorithm performs 

the best for every target. Therefore, confgidence is limited for any a priori selection of a 

docking and scoring program, especially a scoring function for accurate compound ranking, 

from among the large number available. A robust approach to VS includes an evaluation of 

algorithms for the specific target in question, though this would require a significant amount 

of experimental data on that specific target, in which case a docking-based VS may no 

longer be the most appropriate approach.
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One approach that can partially compensate for these limitations of search algorithms and 

scoring functions is the use of data fusion methods such as consensus scoring,11–15 which 

can be implemented easily given access to a methodologically diverse set of docking 

programs and scoring functions. This idea accepts that each scoring function or docking 

program may not be highly accurate for compound ranking on a specific target. Instead, it 

supposes that each scoring function uses different forms, terms, and parameters and that 

each has at least some predictive value. Thus, integrating the scores (compound rankings) 

from many different programs may produce a consensus score that outperforms individual 

programs in terms of VS enrichment while also being more robust across more targets.

A variety of consensus scoring approaches have been developed since the defining work by 

Charifson et al.11 for compound scoring and soon after for pose prediction.12 The theoretical 

basis for the advantage of consensus scoring strategies was elucidated by Wang et al.,13 

firmly rooted in the law of large numbers where the mean of repeated independent measures 

tends toward a true value. In traditional consensus scoring, values from different scoring 

functions were combined by either statistical methods, such as the mean, median, minimum, 

or maximum of ranks of scores, or by voting schemes, which classified hits based on how 

many of the scoring functions gave a good ranking to a particular ligand.13 The details of 

each method varied in different implementations, but the performance of consensus scoring 

methods was often superior to individual scoring functions against a wider range of targets. 

In the years since consensus methods were first developed, an emphasis has been placed on 

pose-matching consensus.16–20 In these approaches, ligands are docked by multiple 

programs and considered to be in agreement if the RMSD of ligand poses is below a 

particular threshold. This type of consensus can perform better than single programs, though 

they can still be subject to missing VS hits if individual programs dock compounds 

incorrectly. In contrast, Pereira et al.21 implemented a deep-learning neural net to develop 

scoring models with improved VS performance on the original DUD targets. Their approach 

builds machine learning models based on ligand features in the binding sites and is therefore 

not a consensus model in the sense that it does not combine results from distinct docking/

scoring programs. Nonetheless, they achieve significant improvements in overall 

performance, ROCAUC = 0.48 improves to 0.74 based on DOCK6 poses and ROCAUC = 

0.62 improves to 0.81 based on AutoDock Vina poses.

One drawback of many traditional consensus scoring approaches is that compounds are 

often docked only once using a single program, and then several scoring functions evaluate a 

single pose or set of poses. This can create abnormalities in some scores due to sensitivity to 

the exact placement of the ligand in the binding site since docking algorithms commonly use 

the scoring function internally for pose selection. A compound docked by FRED, for 

example, may not result in a favorable AutoDock score even if the pose is “correct” (within 

the error bars of the docking). This limitation was understood even in the early days of 

consensus scoring,11–15 and some efforts to compensate by minimizing the ligand to each 

new scoring function were attempted. The preferred solution would be separate pose 

prediction with each algorithm prior to scoring in order to avoid over-reliance on a single 

docking engine. Though far more computationally expensive, this approach is now 

achievable with high-throughput computing (HTC) and cloud computing resources.
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With access to campus and Open Science Grid22 HTC resources and a variety of different 

academic and proprietary docking programs, we have re-examined docking-based consensus 

scoring methods for performance in structure-based VS. We compare individual and 

consensus scoring methods in terms of VS performance metrics against a set of 21 

benchmark targets from DUD-E23 using eight different docking programs. We confirm that 

traditional consensus methods outperform individual scoring methods and are more robust to 

target variation. Further, a novel mixture model consensus and a gradient boosting consensus 

provide additional improvements in VS performance.

Discrete mixture models are used widely in statistical applications to characterize 

heterogeneity of a population.24,25 An unsupervised approach to building a consensus score 

is to leverage features of the multivariate distribution of multiple docking scores from each 

ligand/target pair. The mixture model treats this distribution as a mixture of two components, 

one for the actives and one for the decoys, recognizing that we do not know the active/decoy 

status for any arbitrary molecule. Learning is nevertheless possible via maximum likelihood 

and expectation-maximization.26 A novel consensus score is constructed as the posterior 

probability that the ligand is active given the multiple docking scores.

Gradient boosting27 is a common technique in machine learning and data science fields. 

This approach, and the related GBM, gradient boosting machines, multiple additive 

regression trees, and stochastic gradient boosting, involve building ensembles of decision 

trees, similar to the popular random forest models.28 However, in this case, additional trees 

are added to the model in order to overcome errors of existing models until no further 

improvement is made. This approach is shown to be less sensitive to noisy input than many 

machine learning methods due specifically to this adaptive learning step,29,30 where the 

relative contributions of individual scores are adjusted while learning the trees. The final 

predictive model returns a weighted average of predictions from the ensemble of trees.

In this study, mixture modeling and gradient boosting are used to develop two consensus 

scores from eight distinct docking scores. As these scores are based on a variety of scoring 

approaches, the inputs to the model are not all predictions of binding energy. The resulting 

consensus scores are likewise not predictions of binding energy, but rather compound 

ranking scores suitable to enrich a small selection with active compounds from a large 

library. The resultant scores provide an improvement over individual docking methods and 

traditional consensus scoring approaches in a VS setting.

MATERIALS AND METHODS

Target Structure Preparation

Benchmark targets with labeled compounds (actives and decoys) were obtained from the 

DUD-E set.23 This set is built from experimentally verified actives and property-matched, 

but topologically dissimilar, decoys. A subset of DUD-E comprising 21 targets was selected 

to cover the major druggable target classes (GPCRs, ion channels, kinases, nuclear 

receptors, and proteases) shown in Table 1.
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Target structure coordinates (PDB format) were obtained from the DUD-E database and 

processed via PDB2PQR (v2.1.0)31 to fill missing atoms and standardize atom and residue 

names. The resulting PQR files were then processed using Chimera’s “Dock Prep” utility32 

and saved in Mol2 format. We used this utility to choose atom coordinates based on highest 

occupancy where alternative locations for atoms are provided, add missing side chain atoms, 

protonate (at pH 7.4), and assign partial charges using AMBER FF14 SB for standard 

residues and Antechamber33 (AM1-BCC) for nonstandard residues.

Compound Library Preparation

Each target’s compound set was downloaded directly from DUD-E in Mol2 and SMILES 

formats. Compounds with undesignated stereocenters were enumerated in all possible 

stereochemical combinations with OpenEye OMEGA34 to a maximum of 12 stereocenters 

per molecule. In later scoring, only the stereoisomer with the best score was retained for 

analysis and consensus methods. Table 1 therefore shows the number of actives and decoys 

scored by the methods herein, rather than the total number docked, as the number scored is 

most relevant for the analysis of performance metrics below. DUD-E Mol2 files provide 

AM1 partial charges for active and decoy ligands, and these were used directly unless 

further processing was required as noted below.

Ligand Docking

Default parameters were used for each docking and scoring program with exceptions 

explicitly indicated below. All docking involved static target structure representations. Run 

times for each program were tracked to examine relative performance and establish an 

appropriate number of compounds to submit for each HTC job (library chunk size). The 

crystal structure ligands specified by DUD-E were used to identify the binding region for 

each target and therefore are used to define the docking search space. No ligand binding 

information was used to assist compound ranking, with the exception of OpenEye HYBRID, 

which uses bound ligand shape and features as components of the scoring function.

AutoDock v4.2.635

Target structure files were converted to PDBQT format using the prepare_receptor4.py script 

provided with AutoDockTools. Zn2+/Ca2+ ions were replaced if removed during preparation, 

and full net charges were reassigned. Grid files were generated for every unique atom type 

observed within the entire ligand set. Grid dimensions were specified by default (15 Å edges 

with 0.375 Å lattice spacing) from the center of mass of the crystal structure ligand from 

DUD-E. The docking search space was defined as a box from coordinates of the crystal 

structure ligand with 4 Å padding in all Cartesian directions. Initial translational coordinate 

(tran0) was set to random, and 10 Lamarkian Genetic Algorithm dockings were performed 

for each compound. Compounds were converted to PDBQT format using the 

prepare_ligand4.py script in AutoDockTools.

Smina v1.1.236

The Smina fork of AutoDock Vina37 was used. One processing thread was specified on the 

Smina command line using the –cpu flag, and the box center was defined using the –autobox 
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flag with the crystal structure ligand. The box dimensions were defined as the minimal box 

to enclose the crystal structure ligand coordinates, extended by 4 Å. Compounds were 

converted to PDBQT format using the prepare_ligand4.py script in AutoDockTools.

Dock v6.738

A hydrogen-free target structure file was produced using Chimera, and the molecular surface 

was then generated using the DMS program in the DOCK6 suite with a probe radius of 1.4 

Å. Using the molecular surface file as input, the negative binding site space was defined 

using the SPHGEN program, with arguments for distance, minimum radius, and maximum 

radius arguments set to 0.0 Å, 0.0 Å, 1.4 Å, respectively. A subset of spheres was isolated 

using sphere_selector program with distance cutoff of 6 Å. This sphere subset was visually 

inspected and edited for proper representation of the target binding site. Contact, energy, and 

bump grid files were generated with grid_spacing argument set to 0.3 Å, and box 

dimensions were set to encompass the sphere set with a 5 Å padding. Anchor and grow 

docking was performed with default parameters with the following exceptions: 

max_orientations was increased from 1000 to 5000, min_anchor_size was set to 40 to use a 

single anchor, pruning_clustering_cutoff was expanded from 100 to 1000, and van der Waals 

atom definitions were taken from vdw_AM-BER_parm99.defn file included with DOCK6 

installation tree.

FRED v3.0.1 and HYBRID v3.0.139

Since OEDocking algorithms operate on precomputed ligand conformers, compound 

libraries were converted directly from the DUD-E canonical SMILES format to 

stereochemically and conformationally enumerated 3D structures in a multiconformer 

OEBinary file format using OpenEye OMEGA with the following nondefault settings: 

maxconfs = 1000, flipper = true, strictstereo = false. Compounds were assigned MMFF94 

charges using OpenEye molcharge. HYBRID scoring method requires bound ligand 

coordinates for each target for the shape and chemical feature matching aspects of its scoring 

function. The crystal structure ligands from DUD-E were used as the “bound_ligand” in the 

receptor_setup module of the OEDocking package. FRED and HYBRID were run with 

dock_resolution = High as the only nondefault setting.

PLANTS v1.240

Protein targets and their corresponding crystal structure ligands were processed with 

SPORES v1.3, mode = complete, to ensure compatibility with PLANTS. The binding site 

space was a sphere defined by PLANTS, mode = bind, defined from the center of mass of 

the crystal structure ligand with 5 Å padding. PLANTS virtual screening was conducted 

with mode = screen. Compounds were processed using the SPORES program to ensure 

format compatibility with PLANTS.

rDock v2013.141

Search space was defined automatically using the crystal structure ligand coordinates as a 

reference with the following settings: radius = 6.0 Å, small_sphere = 1.0 Å, max_cavities = 

1. rDock was run with receptor_flex = 3.0 to permit some motion for target H-bond donors 
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and acceptors. rDock developers recommend a multistaged triage protocol for VS rather 

than exhaustive docking of each compound, and therefore only compounds that pass a score 

threshold within a set number of runs move on to subsequent stages of additional runs. Since 

appropriate score cutoffs are highly site- and parameter-dependent, these were determined 

separately for each target. Cutoffs and maximum number of runs were obtained using the 

rbhtfinder script provided with the rDock suite based on the runtimes and triage rates from 

exhaustively docking a random subset of ~400 compounds. rDock developers also 

recommend trying both SCORE.TOTAL and SCORE.INTER for compound ranking. These 

scores are highly correlated, but in this work SCORE.INTER was found to perform slightly 

better on average and thus was used for all evaluations here.

Surflex-Dock v3.04042

Surflex requires a protomol to represent the negative binding site space, which was based on 

the crystal structure ligand, and was produced using Surflex in the “proto” mode with 

proto_bloat = 1.0. Protomols were visually inspected to make sure they appropriately 

represented the potential binding space. Docking was conducted with Surflex in “dock” 

mode with pgeom = on and ndock_final = 1.

Computing Resources and Job Management

Consensus docking, as a computational task, is ideally suited to the HTC resources available 

through the University of Wisconsin-Madison Center for High Throughput Computing 

(CHTC), including a campus grid of HTCondor43 pools and the Open Science Grid (OSG).
22 HTC involves large numbers of compute nodes without the requirement for high-end, 

homogeneous architectures or fast node interconnections. Each compound-target docking 

was run as an independent process on a single core, and thus compound throughput scaled 

directly with the number of accessible cores. The HTCondor job management system43 was 

used to run and track all docking jobs, as it easily scaled to many thousands of 

simultaneously running jobs, and allowed for the use of local resources and the OSG via a 

single, local submission computer. To run efficiently on these resources, the compound sets 

for each target were split into “chunks” that could run in under 2 h on a single core. We 

found this 2 h run time to be an efficient balance between reducing number of independent 

jobs and queue time with a low probability of job eviction by higher priority users. Chunks 

ranged from 10 to 500 compounds depending on compound throughput of each individual 

docking program. In this way, jobs could scavenge any open cores without high risk of job 

eviction when running on remote (OSG) resources.

Score Normalization

Due to the difference in raw docking score scales between different docking programs, the 

raw docking scores were normalized prior to use in consensus scoring schemes. For each 

target, the docking score distributions from each of the eight programs were transformed by 

quantile normalization using R.44 Quantile normalization was favored over the more 

common z-score and min–max normalizations because transformed score distributions 

achieve a common shape, ensuring equal weights among program scores. Quantile 

normalization is also not sensitive to outliers (extremely bad or good docking scores), and 

Ericksen et al. Page 7

J Chem Inf Model. Author manuscript; available in PMC 2018 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



therefore no additional treatment of outliers was performed. Missing compound scores from 

individual docking programs were ignored.

Traditional Consensus Scoring Methods

Using normalized scores, four common consensus scoring methods were applied, each using 

a different score selection method. Mean and median consensus methods set the score of 

each compound to the mean or median of the quantile normalized scores across the docking 

programs. Min and max consensus methods set the score of each compound to the minimum 

or maximum normalized score of the compound across the docking programs. In rare cases 

where less than three programs succeeded in docking or scoring a particular compound, no 

consensus score was computed. Note that in these rank-by-score consensus schemes, the 

input scores were uniformly weighted.

Mean–Variance Consensus

A set of unsupervised mixture models24 were developed to combine the features of score 

mean and score variance across the eight individual docking programs, with a separate 

model for each target. Each target has a Gaussian distribution of mean scores and gamma 

distribution of score variance, taken to be independent. The compound is scored by mean–

variance consensus (MVC), the posterior probability that it is active, conditional upon the 

mean and variance statistics, after the mixture model is estimated from the unlabeled data on 

the target.

The derived MVC score is calculated as

(1)

where π0 is mixing proportion, f1(x,s) is the probability of the compound being active, and 

f(x,s) is the probability density associated with score mean (x) and variance (s), conditional 

on the true activity of the compound–target pair. This means that MVC is the posterior 

probability of the compound being active in the mixture model. Free parameters are fit using 

expectation-maximization26 methods on unlabeled scores from each target independently. 

Further details are provided in Supporting Information.

Gradient Boosting Consensus

Boosted tree models were developed using python interface of XGBoost,45 a C++ 

implementation of a gradient boosting decision tree framework. Separate binary objective 

gbtree booster models were constructed for each target using the following specifications: η 
= 0.05, max_depth = 7, subsample = 0.83, colsample_bytree = 0.8, num_parallel_tree = 1, 

min_child_weight = 5, γ = 5, max_delta_step = 1, and scale_pos_weight = 1/(fraction of 

actives). The models were trained using 5-fold k-stratified cross-fold validation and 

optimized with respect to EF1 or ROCAUC.

For the boosting consensus scoring method, 21 individual decision tree ensemble binary 

classification models, one for each target, were trained by gradient boosting on labeled 
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compound data (actives and decoys) from DUD-E using docking scores from each program 

as input features for each compound. Then, for each target (“on-target”), the individual 

docking scores were given to each of the 20 other “off-target” boosting models, and their 

output scores were averaged to produce the boosting consensus score (BCS). Only “off-

target” models have been trained; no labeled data are required for the “on-target”, and only 

docking scores (from the same set of programs) for compounds at the “on-target” are 

required as inputs to obtain a BCS value.

Evaluation of VS Performance

Several standard VS performance metrics were used in our evaluation.46 Areas under the 

receiver-operator characteristic curve (ROCAUC) and precision-recall curve (PRAUC) 

metrics were computed using built-in functions from the scikit-learn Python module.47 

Enrichment factor at 1% was computed using the following equation:

(2)

where n = number of compounds in 1% of database, a = number of actives in the top scoring 

1% of database, A = number of actives in database, N = total number of compounds in 

database. EF1 has an upper bound based on the number of actives in the compound list for 

each target. This maximum EF1 is presented in Table 1 as a useful comparison for the EF1 

values achieved by the VS approaches. Active and decoy distributions were generated using 

Python’s matplotlib package.48 Nonparametric t tests were performed using Wilcoxon sign 

rank (2-sided) to test for levels of significance (p ≤ 0.05) for observed improvements when 

comparing compound ranking methods.

RESULTS AND DISCUSSION

The main goal of docking-based VS is to identify a subset of compounds enriched with 

actives from a large, chemically diverse library, based on predicted interactions with a target 

binding site.1,2 The docking and scoring programs35–42 included here are routinely used for 

VS, and while several additional docking packages may be available to some users, this 

study is focused on those most widely available to academic research groups. Our intention 

was to represent a single, general VS process across targets rather than to optimize 

performance for any single target.

A key concept in consensus approaches is the use of distinct docking and scoring tools 

utilizing both different algorithms for the docking pose search and different scoring function 

types. Table 2 summarizes the docking programs implemented in our study and their 

respective search and scoring strategies. Only one of these programs, HYBRID, requires and 

utilizes prior knowledge of the structure of a ligand bound to the target site. The tools used 

in this work are all commonly available, even to academic groups, and are based on both 

different docking techniques and scoring function types.

To evaluate consensus scoring strategies, 21 targets were selected from the DUD-E 

benchmark data set,23 each accompanied by sets of active and decoy compounds (Table 1). 
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The 21 targets span a variety of target classes including kinases, nuclear receptors, proteases, 

and other enzymes and were selected to represent targets often of interest in VS efforts. We 

did not eliminate targets that may have been used in the development of the individual 

scoring functions in Table 2, as any positive effect for a single docking program is likely to 

have only negligible effect in the consensus methods.

To compare methods, ROCAUC and EF1 were used as performance metrics,46,49,50 and any 

difference to values published in previous analyses of DUD-E targets by the same programs 

is likely to result from minor differences in target and ligand preparation. ROCAUC, the 

most widely accepted measure of VS performance, is the probability that an active 

compound will be scored better than a decoy, and EF1 is taken here as the enrichment of 

actives in the top 1% of the ranked database. Precision-recall AUC (PRAUC) was also 

calculated, and these values were consistent with the EF1 and ROCAUC results and are 

therefore not shown. Many other VS metrics have been used in other work, but those 

presented here are expected to provide the most direct comparison to other publications.

Individual Docking Programs

We observed that individual programs exhibit significant performance variability across 

targets and with respect to individual targets. The ROCAUC (Table 3) and EF1 metrics 

(Table 4) for each of the eight individual programs confirmed previous studies showing that 

no single algorithm can reliably distinguish actives from decoys for all targets.2–9 For 

example, as shown in Table 4, DOCK6 was the most effective program on ADRB1 (EF1 = 

25), while rDock, using a distinct algorithm, was the best for PLK1, PTN1, and FA10 (EF1 

values of 10, 26, and 27, respectively). PLANTS performed best on three other targets: ACE, 

HIVINT, and HIVPR (EF1 values of 24, 15, and 15, respectively), Smina was the best for 

HDAC8 (EF1 = 32), and Surflex far outperformed the other algorithms for TRY1 (EF1 = 

39). Compared to the other algorithms that do not require a bound ligand structure, FRED 

performed the best on average across the 21 targets, with a mean EF1 of 18 (mean ROCAUC 

= 0.78), and was ranked first on several targets, though it was not the best algorithm for most 

targets.

The ranking of individual programs by ROCAUC is different from those of EF1. The most 

distinct example of this is Surflex, which is the best approach not only for TRY1 but also 

PTN1, ADA17, and HIVPR when ranked by ROCAUC (ROCAUC values of 0.93, 0.88, 

0.70, and 0.81, respectively). This difference is due to the nature of the two metrics, where 

ROCAUC measures performance over the full compound database, and EF1 is a more direct 

indication of early enrichment. Ranking programs by either metric alone is not a sufficient 

indication of performance,46,49,50 and small differences in docking algorithm performance 

may be overcome by computational expense and ease of use. Still, these data confirm that 

blind selection of a single program for VS on an arbitrary target can be risky.

Tables 3 and 4 include an additional column for the “best performance.” This is a 

retrospective analysis of the top-performing individual program for each target, taking the 

maximum performance metric across each row in Tables 3 and 4. The ROCAUC and EF1 

metrics for the best performance are significantly better than any single program (p-values 

≤1.8 × 10−04). The best performing values are useful for comparison purposes, but in reality 

Ericksen et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2018 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are not possible to determine without prior knowledge of the active compounds for each 

target and docking with each of the different programs. This does not represent a new 

approach and is only provided here for comparison purposes.

HYBRID is the only program of the eight that explicitly utilizes prior knowledge of a 

ligand-target structure, which is used for a shape-matching algorithm embedded within its 

scoring function. The nature of the DUD-E benchmark decoys may provide some advantage 

for the HYBRID shape-matching due to the inclusion of only the most structurally dissimilar 

decoys.23 In most cases, HYBRID provided better active versus decoy discrimination as 

measured by either ROCAUC or EF1 for a broad range of the targets tested. It yielded the 

highest EF1 for 12 of the 21 targets (DRD3, GRIA2, BRAF, CDK2, PLK1, SRC, FABP4, 

ESR2, GLCM, PDE5A, ADA17, and MMP13). The mean of the EF1 values for the 21 

targets was 24 ± 11, significantly better than the mean EF1 of any other single program 

across the 21 targets (p-values ≤2.5 × 10−03). Nonetheless, HYBRID did not provide the 

highest EF1 for every target, indicating again that it is not possible to predict a priori which 

docking algorithm will perform best for a specific target, even when a bound reference 

ligand is utilized. The retrospective selection of the best performance for each target 

indicates this point (Tables 3 and 4).

Traditional Consensus Scoring

To take advantage of the merits of all of the docking programs, a consensus of the scores 

may be used to predict actives rather than relying on any single algorithm. We applied four 

traditional consensus methods, using the minimum, maximum, median, and mean scores of 

either 7 or 8 docking scores for each compound (Tables 5 and 6), with p-values provided in 

Table 7. The traditional consensus methods largely outperformed the individual methods, 

which is as expected based on years of consensus scoring literature.11–15 The best individual 

methods, FRED and HYBRID, had mean EF1 values of 18 and 24, respectively (Table 4), 

while the median, maximum, and minimum consensus methods achieved average EF1 

values of 23, 18, and 14, respectively, across the 21 targets (Table 6).

The mean consensus performed the best of the traditional methods with mean ROCAUC = 

0.83 and EF1 = 26. The improvement for mean consensus over HYBRID is not significant 

by EF1 (26 vs 24, p-value = 0.19), but is significant with respect to ROCAUC (0.83 vs 0.78, 

p-value = 0.019). The mean consensus performs as well as the best performance result, but is 

now accomplished a priori, without needing previous experimental results to identify the 

best individual program. These results based on EF1 are corroborated by ROCAUC values 

(Table 5).

Since HYBRID does consider a known bound ligand for scoring, we also built our 

consensus methods based on only seven docking programs, omitting HYBRID, in order to 

evaluate performance when no bound ligand structure is available, as is commonly the case. 

As seen in Tables 5 and 6, there is slight decrease in consensus ROCAUC and EF1 values, 

which can be expected since HYBRID often was the top-performing individual program. 

However, the consensus methods still outperform the individual programs.
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Most traditional consensus methods combine a number of different docking scores by value 

and thereby suffer from the inclusion of poorly performing docking programs.11–15 As these 

programs cannot be identified for each target a priori, they are included for every target. The 

effect of including noisy inputs, as inaccurate docking scores, reduced overall performance 

of the traditional consensus methods. In order to further improve our ability to distinguish 

actives from decoys, we implemented two additional consensus methods: a statistical 

mixture model of score mean and variance and a gradient boosting consensus approach. 

These machine-learning approaches are less subject to input noise29,30 and as a result show 

more robust performance across targets.

Mean–Variance Consensus (MVC)

In our initial review of the individual docking scores, we identified the expected behavior 

that actives had somewhat better scores than decoys, even when this was not sufficient to 

produce a useful enrichment of the actives (Table 4). Importantly, we also noticed that for a 

given target, the active compounds had larger score variance than the decoys. Since actives 

and decoys are property matched in DUD-E, this discrepancy probably does not arise from 

the physicochemical differences, but is likely an inherent result of the docking. An active 

compound should have a highly negative (good) score when docked correctly, but a low 

negative (poor) score when docked incorrectly by a different docking program. A decoy, on 

the other hand, does not have the opportunity for a correctly docked good score and 

therefore should have predominantly poor scores. Since no docking algorithm will dock and 

score all actives correctly for all targets, the result is a wider range of scores for active 

compounds (good–poor) and a narrower range of scores (poor) for decoys.

We exploited this observation by building a statistical mixture model based on the score 

mean and score variance for each compound across the eight docking programs. The mixture 

model24 is a common statistical technique used to identify the subpopulations within larger 

set. In our case, this translates to separating the active subset from the decoy subset for each 

target. This is done by mixing the bivariate distributions of mean and variance of the 

quantile normalized scores for each target. The model learns each target separately, but does 

not use the active or decoy labels. It determines the appropriate mixing parameters based 

only on the distributions of score mean and score variance using expectation-maximization. 

The resulting MVC score is taken as the probability of the compound being active.

The MVC achieves a mean EF1 of 26 and mean ROCAUC of 0.84 over the 21 targets 

(Tables 5 and 6). This easily outperforms the individual docking programs, with the 

exception of HYBRID, with p-values given in Table 7. We find that ranking by MVC gains 

enrichment accuracy compared to ranking by the traditional consensus methods for some 

protein targets. The gain is not statistically significant across targets for all of the traditional 

methods, and therefore more work is required to leverage the mean-variance phenomenon. 

We observed somewhat better enrichment of the MVC score when we eliminate all ligands 

for which there is at least one missing docking score (not shown). Nonetheless, MVC still 

performs equal to, or better than, the traditional consensus methods for 13 of 21 targets as 

measured by ROCAUC and 15 of 21 targets by EF1. The decrease in performance is similar 

to that of the traditional consensus methods when HYBRID scores are omitted. Overall, this 
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represents similar performance to the mean consensus, with the possibility of slight 

improvement on some targets.

Boosting Consensus Scoring (BCS)

Of the methods considered here, a boosting consensus provides the greatest ability to 

distinguish between actives and decoys. The approach is based originally on random forest-

style decision trees,28 adapted into a boosting method27 as implemented in XGBoost.45 It 

has become a common approach used in many classification problems. As a machine 

learning approach, it does require some training data and, in the ideal docking use, would be 

trained on labeled compounds with activity data for the specific target.

However, given the desire to create a workflow that does not require prior activity data for 

the target of interest, we developed a transfer-learning approach called boosting consensus 

scoring (BCS). For BCS, individual tree ensemble classifiers (one for each target) were 

trained by gradient boosting using active and decoy compound labels from DUD-E and the 

docking scores from the eight programs as feature inputs. Then, for each “on-target” in the 

study, the BCS for each compound is determined in a leave-one-out manner, as the average 

score from the 20 “off-target” models. In this way, we were able to build a reliable boosting 

consensus model for each target without using any experimental data or compound labels 

from that specific target.

BCS (Tables 5 and 6) significantly outperforms both the individual programs and the 

traditional consensus methods, with ROCAUC = 0.85 and EF1 = 29 (p-values provided in 

Table 7). Compared to the mean consensus (ROCAUC = 0.83 and EF1 = 26), BCS performs 

better, with p-values of 2.5 × 10−03 (ROCAUC) and 3.9 × 10−03 (EF1). BCS gave the 

highest EF1 for 16 of 21 targets. This includes targets where several individual methods did 

well (ESR1 and PTN1), and also those targets that proved to be more difficult, such as 

DRD3 and HIVPR. Some individual programs did perform better than BCS on some 

specific targets (4/21 by ROCAUC, 4/21 by EF1). With respect to ROCAUC, these were 

FRED (PLK1 and FABP4), HYBRID (GLCM), and Surflex (PTN1), and by EF1, these were 

FRED (ESR2), HYBRID (PLK1, ESR2 and FA10), rDock (PLK1), and Surflex (TRY1). In 

these few cases, BCS still performed near the top, usually ranking second or third. This 

remains a more reliable performance, across a variety of targets, compared to any individual 

program, given that each program encountered targets for which it performed poorly (Tables 

3 and 4).

In order to assess model stability, the number of “off-targets” used to build each BCS by 

scanning through all combinations of n-choose-k models from k = 1 to k = 20 (Supporting 

Information). Over all targets, we find k > 5 is often sufficient to build a reliable BCS, with 

only negligible improvements at k > 15 “off-targets”. Generating BCS from all available 

“off-targets” is shown to be reliable, and therefore we expect to be the common practice.

We expected that BCS would perform well when the target of interest (on-target) had a 

closely related target in the off-target list. Surprisingly, after grouping models by target class 

(according to DUD-E labels), we noted only one situation where a highly structurally related 

off-target model, used in isolation, performs exceptionally well for the on-target model. The 
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ESR1 off-target model produces ROCAUC = 0.90 and EF1 = 42 for ESR2 ligands, and the 

ESR2 off-target model produces ROCAUC = 0.89 and EF = 43 for ESR1 ligands. Similar 

occurrences were not observed for other structurally related targets: GPCR class members 

(ADRB1 and DRD3) or kinases (BRAF, CDK2, PLK1, SRC). Therefore, BCS performance 

remains high, even without the inclusion of a closely related off-target model, when the 

model is built using a broad set of off-targets.

Several studies present VS through docking with rescoring by MM/GBSA and mm/PBSA, 

which typically show improved performance compared to the individual docking methods. 

Virtanen and co-workers51 studied five targets taken from the original DUD benchmark set 

and found average MM/GBSA EF1 = 20.1 and MM/PBSA EF1 = 20.2. These were an 

improvement over the initial docking, but do not meet the performance, reported here, of 

either MVC or BCS. A larger effort by Zhang and co-workers52 including 38 DUD-E targets 

also shows MM/GBSA improvement over the initial docking methods to ROCAUC = 0.71 

and EF1 = 8.99, though again not as good as the performance of MVC or BCS reported 

here. It is also noted that docking and MM/GBSA rescoring took on average ~6800 CPU 

seconds per ligand, compared to our eight docking programs which total ~1600 CPU second 

per ligand. While consensus docking is sufficiently expensive to warrant the use of HTC 

resources, it remains more accessible than MM/GB(PB)SA methods.

Variance of Scores within a Consensus

A close inspection of the scores provides additional insight into the function of the 

consensus methods. Compared to the individual docking methods, the score distributions of 

all ligands become noticeably narrower for the consensus methods. This is not the effect of 

normalization, but of the consensus methods themselves. An example of this effect is shown 

in Figure 1. For HDAC8 docked by Smina (ROCAUC = 0.86, EF1 = 32), the score 

distribution for decoys (blue) is shifted to the left (poorer normalized scores) compared to 

that of the actives (orange) in panel A. However, for the mean consensus (panel B, 

ROCAUC = 0.93, EF1 = 45), both distributions become narrower. This is reffected in a 

decrease in standard deviation of scores (σ). For all individual docking programs, the 

average standard deviation of scores is 2.38 for actives and 2.08 for the decoys. By applying 

mean consensus, these distributions are both narrowed to σ = 1.74 for actives and 1.33 for 

decoys. A table of changes to σ for all targets is provided in Supporting Information.

Figure 1, panels C and D show the impact on the critical top 1% of scores, where the 

reduction in standard deviation for the two distributions results in improved separation 

between the actives and decoys, now shown on the same scale. This separation is the cause 

of the improvement in compound ranking by consensus methods reffected in Tables 5 and 6 

and is therefore somewhat larger for BCS than MVC or for mean consensus.

Timing

It is important to realize that not all of the docking and scoring programs process compounds 

with the same efficiency. FRED and HYBRID demonstrated highest molecule docking 

throughput, including the precomputation of ligand conformers by OpenEye OMEGA, and 

also provide the most consistent time per molecule (Table 8). Some of the eight programs 
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have considerable variation in docking throughput, given by compute time per compound, 

where some molecules take much longer than the average. This situation is reffected in the 

standard deviation (Table 8) and often results from molecules with many rotatable bonds. 

Time for file transfers as well as for packing and unpacking of both programs and data was 

not considered, but in all cases, this was trivial compared to docking times. These 

calculation times reffect docking on our HTC resources using our installations of these 

programs, and different computing environments or changes to the search or scoring options 

used may greatly affect the compute time as well as docking accuracy.

Given access to our HTC resources, none of the programs or settings were too slow to 

implement on our benchmark set. However, higher docking throughput would free resources 

for other complementary VS strategies, such as ensemble docking or molecular dynamics-

based postprocessing for rescoring or for pose stability assessments. Attention should be 

paid to both the computational costs and human effort with the increasing number of 

disparate docking methods in consensus approaches.

CONCLUSIONS

In traditional consensus scoring techniques, some subsets of docking programs or scoring 

functions can be more effective than using the broader set of available scores. Consensus 

performance is degraded by inputs of noisy predictors from poorly performing docking 

programs. Just as with individual programs, the most effective combination of docking 

programs cannot be determined a priori without sufficient training data for the target.

The machine learning consensus approaches are, however, more robust to noisy input scores, 

and in the methods described here, scores from all programs are included. In MVC, the 

poorly predicting programs become useful for generating wider variance in the scores of 

actives. For BCS, the boosting models learn to down-weight or selectively apply scores 

under specific conditions from weak predictors to compute a consensus.

The BCS outperforms all other VS methods presented here. While it does require some 

training data for “off targets”, it remains unsupervised for the target of interest, and 

additional training should not be necessary for new targets, provided the initial models were 

built on a sufficiently broad set of targets. An advantage of MVC is that it can be applied to 

a new target without use of labeled training data from any target.

It may be possible to improve overall performance by including more or different docking 

programs. In this study, only those commonly available to academic groups were considered, 

as many lack the resources to invest in a broad range of commercial packages. Even so, not 

every docking program was included, and integrating others should be balanced by ease of 

use and additional computational expense. Additional targets from DUD-E may be useful to 

examine the full range of molecular structures and interactions. Other sources of benchmark 

data may also be used, although each of these will also come with its own disadvantages, 

some of which may not be initially obvious.

This is the first use of a mean-variance mixture model or gradient boosting for consensus 

scoring in a virtual screening setting. Both of these methods outperform individual docking 
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and scoring across a wide variety of targets. This initial study represents only a benchmark 

of these new approaches. The true test will come as they are applied to novel targets in the 

context of actual VS efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example score distributions. Full distributions of quantile normalized compound scores for 

HDAC8 from Smina (A) and from mean consensus (B). Distributions of decoys are shown 

in blue, using the left-hand scale, and actives are shown in orange, using the right-hand 

scale. The 99th percentile is marked by a vertical dotted line with the top scoring 1% of 

compounds found to the right. (C and D) The top 1% tail of the distributions, adjusted to the 

same scale. (Higher values are more favorable following quantile normalization.)
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Table 2

Search and Scoring Strategies used by Docking Programs

docking program search algorithm scoring function

AutoDock v4.2 Lamarkian genetic algorithm with simulated annealing force field

DOCK v6.7 incremental construction (anchor-and- grow) force field

FRED v3.0.1 exhaustive rigid docking search, discretized configuration space empirical

HYBRID v3.0.1 exhaustive rigid docking search, discretized configuration space knowledge-based + empirical

PLANTS v1.2 ant colony optimization empirical

rDock v2013.1 genetic algorithm, Monte Carlo, minimization empirical

Smina 1.1.2 iterated local search global optimzer knowledge-based

Surflex-Dock v3.040 incremental construction with matching algorithm empirical

J Chem Inf Model. Author manuscript; available in PMC 2018 March 28.
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