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Abstract

Median lethal death, LD50, is a general indicator of compound acute oral toxicity

(AOT). Various in silico methods were developed for AOT prediction to reduce costs

and time. In this study, we developed an improved molecular graph encoding convolu-

tional neural networks (MGE-CNN) framework to construct three types of high-quality

AOT models: regression model (deepAOT-R), multi-classification model (deepAOT-

C) and multi-task (deepAOT-CR). These predictive models highly outperformed pre-

viously reported models. For the two external datasets containing 1673 (test set I) and

375 (test set II) compounds, the R2 and mean absolute error (MAE) of deepAOT-R

on the test set I were 0.864 and 0.195, and the prediction accuracy of deepAOT-C
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was 95.5% and 96.3% on the test set I and II, respectively. The two external pre-

diction accuracy of deepAOT-CR is 95.0% and 94.1%, while the R2 and MAE are

0.861 and 0.204 for test set I, respectively. We then performed forward and backward

exploration of deepAOT models for deep fingerprints, which could support shallow

machine learning methods more efficiently than traditional fingerprints or descriptors.

We further performed automatic feature learning, a key essence of deep learning, to

map the corresponding activation values into fragment space and derive AOT-related

chemical substructures by reverse mining of the features. Our deep learning framework

for AOT is generally applicable in predicting and exploring other toxicity or property

endpoints of chemical compounds. The two deepAOT models are freely available at

http://www.pkumdl.cn/DLAOT/DLAOThome.php.

Introduction

Evaluating chemical acute toxicity is important in avoiding potential harmful effects of com-

pounds on human health. LD50, the dose of a chemical that causes a 50% death rate in test

animals after administration of a single dose,1 is a general indicator used to measure the

acute toxicity of a compound. In vivo experiments of animal tests are required to accurately

determine acute chemical toxicity, although these procedures are complicated, costly, and

time-consuming. In addition, due to animal rights, LD50 testing of animals is highly con-

troversial.2 Therefore, new reliable in silico methods need to be developed in comparison to

standard in vivo experiments in predicting chemical acute toxicity.

Currently, many quantitative structure-property relationship (QSPR) models have been

developed to predict acute rodent toxicity of organic chemicals. In these studies, there are

various mathematical methods applied to construct regression models (RMs) and classifica-

tion models (CMs), such as multiple linear regression (MLR),3–6 linear regression,7,8 neural

network (NN),9–12 k nearest neighbors,13,14 random forest (RF),13,14 hierarchical cluster-

ing,13 support vector machine (SVM),14,15 relevance vector machine (RVM),14 and local lazy
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learning (LLL).16 In terms of RMs, Lu et al.16 constructed prediction models using the

LLL method, which yielded a maximized linear correlation coefficient (R2) for large test

sets. The R2 of consensus RM based on LLL was 0.608 for “Set_3874”. Lei et al.14 ar-

gued that this method relies on prior knowledge of the query neighbour experimental data,

such that the actual prediction capability was associated with the chemical diversity and

structural coverage of the training set. However, machine learning methods have demon-

strated potential in establishing complex QSPRs for data sets that contain diverse ranges

of molecular structures and mechanisms. Thus, Lei et al. employed RVM combined with

other methods (k nearest neighbor, RF, SVM etc.) to construct a consensus RM for pre-

dicting AOT in rat. The predictive R2 for the external test set (of 2736 compounds) was

0.69. Li et al.15 suggested that a multi-classification model (MCM) might be more intu-

itive in toxicity estimation than a regression model (RM), as a toxic classification is easier

to interpret. According to the classification criterion of the U.S. Environmental Protection

Agency (EPA) (category I: (0, 50]; category II: (50, 500]; category III: (500, 5000]; category

IV: (5000, +∞); mg/kg), MCM with one-vs-one (SVMOAO) and binary tree SVM methods

were developed based on different molecular fingerprints or descriptors, yielding an accuracy

of 83.2% for validation set (2049 compounds), 83.0% for test set I (1678 compounds), and

89.9% for test set II (375 compounds). In chemoinformatics research, high-quality QSPR

models with interpretable relationship between chemical properties and chemical features

are especially welcome. However, predictive power and interpretability of QSPR models are

two different objectives that are difficult to achieve simultaneously.17 We can identify some

important features from weights within linear-based models (MLR, linear-SVM etc.) with

low predictive power. These features may be mapped into the corresponding fragments in

chemical structural space. With statistics and sensitivity analysis18 of input features (rather

than intuitive analysis of the constructed models), “black box” models (NN, kernal-SVM,

RF) with high predictive power can extract human understandable knowledge. These above

methods depend on complicated molecular representation (MR) using chemical knowledge
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and intuition.

Appropriate MRs that are related to biological activities or other experimental end-

points19,20 are crucial in developing accurate prediction models. Automatic representation

would greatly simplify and accelerate the development of QSPR models. The emergence

of deep learning techniques21–23 may provide possible solutions to this problem. Instead

of using application-specific molecular descriptors or fingerprints (e.g. ECFP,24 MACCS,25

etc.), the AOT issue can be resolved using raw and pertinent features without manual inter-

vention or selection. The two-dimensional (2D) structure of a small molecule is equivalent

to an undirected graph, with atoms as nodes and bonds as edges. Encoding an undirected

graph can be converted into a problem of fitting a graph into a fix-sized vector. Currently,

two types of methods, sink-based and source-based, have been used for encoding undirected

graphs with NNs. In the sink-based method, by defining a root node, all the other nodes in

the graph proceed towards the root. The internal process is embedded with multiple NNs in

representing the information transmission between nodes, after which the final information

is extracted from the root node. The sink-based method was demonstrated to be feasible

and practical.26,27 However, there are no reasonable explanation for hidden-layer features in

deep learning model such that the model seems “black”. In the source-based method, similar

to the Morgan algorithm28 and extended-connectivity fingerprints (ECFP),24 when starting

from an initial node and diffusing outward layer-by-layer with multiple NNs, the informa-

tion can be extracted step-wise from each layer. Recently, Duvenaud et al.29 and Kearnes

et al.30 first used CNNs to successfully implement similar source-based methods. The state-

of-the-art performance on some public datasets31–36 suggests that molecular graph encoding

(MGE) methods based on multiple NNs have potential in the field of chemoinformatics. In

principal, MGE is an ideal representation of chemical structures without information loss.

Actually, intermediate features within deep learning models are far from random, unin-

terpretable patterns. By visualizing the activity of hidden layers based on well-performed

models from ImageNet 2012, Zeiler et al. presented a nested hierarchy of concepts, with each

4



concept defined in relation to simpler concepts (pixels → edges → corners and contours →

object parts → object identity),37 which is an efficient illustration of a deep learning-based

CNN model. Different compounds may play different functions in the living organisms.

Simple concepts of atoms and bonds are combined into more complex concepts of structural

fragments, then integrated into high concepts of different functions (atoms and bonds→

fragments → functions). By designing ECFP-based CNN architecture, the internal features

were visualized by Duvenaud et al. as the corresponding fragments,29 providing a better

understanding of a deep learning-based QSPR model. Despite of a number of successful

application examples in chemoinformatics studies using MGE, the following points need to

be improved for better prediction and easy interpretation: 1) hyperparameters, 2) training

and prediction strategy, 3) multi-output problem, 4) model interpretation. The approach

based on CNN with these above improvements was referenced hereafter as “MGE-CNN”.

Here we used MGE-CNN framework (shown in Figure 1A) to construct AOT models. In

order to develop high-quality deep learning models, namely deepAOT, RMs were constructed

using the reported largest AOT dataset from Li et al.,15 including experimental oral LD50

values for chemicals in rat. Based on the U.S. EPA criterion for the AOT category, MCMs

were also developed to predict chemical toxicity categories. Two external test datasets were

used to estimate the predictive power of RMs and MCMs. The consensus RM and the best

MCM were called “deepAOT-R” and “deepAOT-C”, respectively. We demonstrated that the

deepAOT-R and deepAOT-C models outperformed the previous reported models whether

it was a regression or classification problem. Given the relevance of both tasks, multi-

task deepAOT-CR model was developed for improving the consistency of regression and

classification models. Further analysis was performed by forward and backward exploration

(Figure 1A) of internal features (referred to as deep fingerprints) directly extracted from our

models to interpret the RMs and MCMs. The forward exploration was used to determine

the predictability of fingerprints, while the backward exploration was used to understand

and explore structural alerts concerning AOT. In view of end-to-end learning, the MGE-
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CNN framework in this study can also be applied to predicting and exploring other toxicity

endpoints induced by small molecules in complex systems.

Figure 1: (A) Schematic diagram of MGE-CNN architecture. “Conv” represents the convo-
lution kernel and the 6 kernels rely on the degree of each atom. (B) Overview of pseudocode
in Algorithm 1. (C) The assessment method of Sens and PPV for each of classes and ACC
of all the classes. Sens I is equal to the number of the higher black region divided by the
sum of the bottom black region, which was identical with PPV I. The roman letters “I, II,
III, IV” represent toxicity categories.

Materials and Methods

MGE-CNN

The MGE-CNN architecture takes the canonical SMILES string of a small molecule as

input, and produces a score capable of describing a value or label about toxicity. Figure 1A

and 1B show this architecture and its high-level pseudocode with the steps of MGE-CNN
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feedforward process. Firstly, given an input SMILES string (x), a molecular structural graph

is converted by the RDKit toolbox.38 The sub-graph from each layer (or iteration) is encoded

into a fixed-sized vector zLl
∈ R|FPL| l ∈ {1, 2, ..., |FPD|}, then these vectors are summed

as zx ∈ R|FPL| representing this molecule. Then zx is used as input of the subsequent neural

network in the output layer for executing the following operation:

score = f(zxW
output
H + boutputH )W output

O + boutputO (1)

where W output
H ∈ R|FPL|×|HLS| is the weight matrix of hidden layer in the output layer,

W output
O ∈ R|HLS|×doutall is the weight matrix of output layer in the output layer, and boutputH ∈

R1×|HLS| and boutputO ∈ R1×doutall are bias terms. doutall = 1 for RMs, doutall = 4 for MCMs. The

4-dimensional vector is transformed with softmax function representing the probability of

four classes. p(i|x) = escore(x)i∑4
j=1 e

score(x)j
is the probability of category i, where score(x)i is the

score for category i.

The MGE-CNN has three main advantages: 1) The input information of initial atoms

and bonds is very similar to that of ECFP. The atom information contains atomic type, its

degree, its implicit valence, the number of attached H atoms and aromatic atoms. The bond

information is relied on bond type (single, double, triple, aromatic, conjugated or in-a-ring).

These atom and bond-level information is used to characterize the surrounding chemical

environment of each atom as completely as possible. All of these information can be calcu-

lated using RDKit. 2) Molecular graphs are encoded with CNN, which makes information

transmission become continuous and constructs an end-to-end differential system. In such

case, we can perform gradient descent with a large number of labelled data to optimize this

system. During the training process, automatic feature learning is implemented, avoiding

manual feature selection. 3) The feature learning and model construction processes are inte-

grated together. Once the model is well-trained with supervised learning, these fingerprints

are also learned.

The following improvements for better prediction and easy interpretation in our system
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were adopted: 1) For hyperparameter optimization in the AOT system, we empirically found

that the default settings (β1 = 0.9, β2 = 0.999) for adaptive moment estimation (Adam)

would be more helpful than those provided by the Duvenaud et al. 2) To avoid providing the

training examples in a meaningful order (which may bias the optimization algorithm and lead

to over-fitting), the trick of “shuffling”39 was added into the whole training process. 3) The

popular methods of softmax function and cross-entropy loss function were introduced to meet

the requirements of multi-classification task. 4) Regression and classification tasks were taken

into consideration simultaneously for developing the multi-task model. 5) To further explain

the rationality of our models, deep fingerprints directly extracted from well-built models were

used to construct shallow machine learning models. The structural fragments with the largest

contribution (arg min (linear regression coefficient × activation values) ) to chemical toxicity

were drawn out for comparison with the reported toxicity alerts, while the original MGE only

considered those coefficients. 6) The mean and standard deviation of the training set for each

layer are calculated for normalizing validation or external test set, reducing the bias caused by

different distributions. Based on these, the MGE-CNN was employed to construct RMs and

CMs for estimating AOT in rat, as shown in Figure 1A. During “Model construction”, these

models were trained, validated and externally challenged. During “Fingerprint analysis”,

the well-trained deep fingerprints of small molecules were used to develop shallow models,

MLR and SVM, to predict AOT values or labels. Simultaneously, the most relevant feature

among deep fingerprint for each compound was calculated based on linear regression with

least squares fitting, then traced back to the atomic level, and mapped onto AOT activation

fragments. These activated fragments were then used to compare with reported toxicity

alerts (TAs) to validate the inference capability for TAs.

Training deepAOT models

The approach for training deepAOT models includes hyperparameter optimization methods

and gradient descent optimization algorithms.
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Hyperparameter optimization

Deep learning is a dramatic improvement in many fields,21 in particular for CNNs,40–42 which

are often able to automatically learn useful features with little manual intervention of data

through multiple layers of abstraction. However, these successes do not detract from the

advantages of hyperparameter optimization. An appropriate set of hyperparameters must

be selected before applying deep learning framework for a new data set, which is a time-

consuming and tedious task.43 The hyperparameters of MGE-CNN include the length of

fingerprint (FPL), the depth of fingerprint (FPD), the width of convolution kernel (CKW),

the size of hidden units in the output layer (HLS), the L2 penalty of cost function (L2P), the

scale of initial weights (IWS) and the step size of learning rate (LRS). The ranges of these

parameters are shown in Table S1, as recommended by Duvenaud et al.(github.com/HIPS/

neural-fingerprint/issues/2) In order to reduce computational costs, a simplified pa-

rameter range was used as follows: FPL ∈ {16, 32, 48, 64, 80, 96, 112, 128}; FPD ∈ {1, 2, 3, 4};

CKW ∈ {5, 10, 15, 20}; HLS ∈ {50, 60, 70, 80, 90, 100}; log(L2P) ∈ {−6,−5,−4,−3,−2,−1, 0, 1, 2};

log(IWS) ∈ {−6,−5,−4,−3,−2}; log(LRS) ∈ {−8,−7,−6,−5,−4}.

Usually, the three most popularly used methods for hyperparameter optimization are

manual search, grid search, and random search. Of these methods, random search was

demonstrated to outperform a combination of manual and grid search when applied to a set

of problems.44 Therefore, random search was used to generate 500 sets of hyper-parameters

for RMs and CMs and all hyperparameter sets were evaluated with the validation set (2045

compounds). The top 10 models were then applied to the next step in selecting the model

with lowest root mean square error (RMSE) for RMs, eventually selecting models with the

highest accuracy (ACC) for MCMs.

Gradient descent optimization

Gradient descent is one of the most popular algorithms to optimize deep learning-based

networks. Every state-of-the-art deep learning library contains implementations of various
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algorithms to optimize gradient descent.45 Adaptive Moment Estimation (Adam)46 is a pop-

ular method that computes adaptive learning rates for each weight. It takes an exponentially

decaying average of past gradients and past squared gradients into consideration and demon-

strates empirically that Adam works well for adaptive learning-method algorithms. The

shuffle of training set after each epoch was also applied to the training process for avoiding

bias of the optimization algorithm. Therefore, the training strategy was implemented by a

pseudocode of Algorithm 2 in Supporting Information.

J(θ) =
1

n

n∑

i=1

(ŷi − yi)
2 + α∥θ∥2 (2)

J(θ) = − 1

n

[
n∑

i=1

k∑

j=1

1
{
y(i) = j

}
log eθ

T
j x(i)

∑k
l=1 e

θTl x(i)

]
+ α∥θ∥2 (3)

where J(θ) is the loss function added L2 penalty described in Equations 2 & 3, which were

used to evaluate RMs and MCMs, respectively. A flexible automatic differentiation package

called Autograd (https://github.com/HIPS/autograd) was easily adopted for computing

gradients of weights.

Experimental Setup

Data Collection and Preparation

The AOT database provided by Li et al.,15 the largest data set for oral LD50 in rat, was

used in this study. All data was from three sources: 1) the admetSAR database;47 2) the

MDL Toxicity Database (version 2004.1),48 and 3) the Toxicity Estimation Software Tool

(TEST version 4.1)49 program from the U.S. EPA. The preparation of the data set had

been executed by Li et al.15 The “Structure Checker” and “Standardizer” modules from the

ChemAxon Inc. (evaluation version)50 were used to fix some error valence and standardize

all the SMILEs strings in the dataset. The workflow is shown in Figure S1. Finally, the

training and validation sets included 8080 and 2045 compounds, respectively, with measured
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LD50 values adopted from the admetSAR database. Two external data sets contained 1673

(from MDL Toxicity Database) and 375 (from TEST) compounds. Based on the U.S. EPA

definition of toxicity,51 all compounds were divided into four categories based on their levels

of toxicity. The statistical description of the entire data set is shown in Table 1. The entire

data set was consistent with observations made by Li et al.’s (training set: 8102; validation

set: 2049; test set I: 1678; test set II: 375). Test set II only had category labels without

exact experimental values of acute oral LD50.

Table 1: Statistical description of the training, validation, and external test sets.

Category I II III IV Total
Training set 794 1933 4303 1050 8080
Validation set 224 463 1155 203 2045
Test set I 92 341 1099 141 1673
Test set II 57 93 183 42 375
Total 1167 2830 6740 1436 12173

Construction Strategy of RMs and MCMs

RMs and MCMs were constructed by MGE-CNN. For RMs, the training target was a

log(LD50) (unit: log(mg/kg)) value for each compound. The loss function of Equation 2

was adopted in the MGE-CNN. In order to select appropriate sets of hyperparameters, each

set of 500 random combinations was run for 750 epochs with a mini-batch gradient descent

and Adam optimization algorithm. We selected the top 10 sets of hyperparameters with

lowest RMSE values of the validation set. Generally, the purpose of 10 well-trained models

is to quantitatively predict log(LD50) of unknown compounds. Therefore, the 10 models

needed to be challenged by an external data set (Test set I) (note: test set II lacks the LD50

values). The consensus RM (deepAOT-R) was constructed with averaging the previous 10

models and the classification capacity of the deepAOT-R model was estimated and analyzed.

For MCMs, the training target was a defined label of compound toxicity. According to the

category criterion, four categories also meant four outputs in the MGE-CNN architecture.

The softmax loss function (Equation 3) was used as the object function for MCMs. Initially,
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each of the 500 random sets of hyperparameters was run for 1000 epochs to select the top

10 sets with highest ACC of the validation set. Next, the top 10 models were run for

an additional 1000 epochs. Finally, the best-trained weights were selected out with the

highest ACC of the validation set. Consequently, the best 10 MCMs were challenged by the

two external test sets. Meanwhile, the consistency between MCMs and RMs was analyzed

according to their prediction outcomes.

Forward and backward exploration of Fingerprints

In order to determine what these models actually predict, the forward and backward explo-

ration approach was applied for “Fingerprint” layer. The forward exploration was imple-

mented by extracting the values of “Fingerprint” layer (deep fingerprints) to construct MLR

and SVM models. This could demonstrate the support degree that these features provided

in the shallow machine learning decision-making system. While assessing the performance

of shallow models with deep fingerprints, increased performance would suggest optimized

predictive features from this MGE-CNN architecture.

The backward exploration is that after linear regression, the most linear-negative-correlation

feature was selected from the |FPL|-dimensional “Fingerprint” layer. Further analysis exam-

ined that related atoms and their neighboring atoms, with the most prominent contribution

to this feature were reversely calculated out, which was called activation fragment. The acti-

vation fragment is highlighted in a drawing of each compound presented in category I. These

highlighted fragments were considered by prediction models to be substructures most related

to AOT, which an inference to toxicity fragments. Meanwhile, these fragments were used to

make comparisons with the reported structural features from the Online Chemical Database

(ToxAlerts)52 for validating the inference capability of MGE-CNN-based deepAOT models.
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Evaluation Metrics

All of the models were evaluated using the validation set, then challenged by two external

test sets. The three indexes of RMSE (Equation 4), mean absolute error (MAE, Equation

5) and square of Pearson correlation coefficient (PCC2, Equation 6) were used as evaluation

indexes for the RMs. The MCMs were assessed in accordance with the multi-class confusion

matrix, in which the sensitivity (Sens), positive predictive value (PPV), and ACC were

calculated as shown in Figure 1C. In addition, the consensus deepAOT-R model was used

to assess classification performance. The PCC is a description of linear correlation and a

regression line estimates the average value of target y for each value of input X, but actual

y values differ from the predicted values ŷ unless the correlation is perfect. These differences

are called prediction errors or residuals, which means that it is reasonable and valuable for a

predicted value accomplished by a wiggle room to judge this prediction. Thus, 1-fold RMSE

for the validation set was added into the outcomes of RMs. For the two external test sets,

deepAOT-R predicted the output values, which were then mapped into the category space

and transformed into the output labels. The ranges of output labels were calculated with

the output values within 1 RMSE. Assuming that the range of a predicted label contains

the actual target label, this prediction was considered to be correct.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(4)

MAE =
1

n

n∑

i=1

|ŷi − yi| (5)

PCC2 =

[ ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

]2

(6)
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Results and Discussion

Performance Evaluation of RMs

The RMs help to quantitatively predict the log(LD50) values in rat for compounds, reflecting

their toxicity: the smaller the value, the more toxic the compound. The 500 random sets

of hyperparameters were fed into the MGE-CNN architecutre and those 500 models were

trained with different hyperparameters for 750 iterations to construct the RMs.

The RMSE and PCC indexes of the training and validation sets from 500 models after

gradient-based optimization training were shown in Figure S2. For the training and val-

idation sets, decreased RMSE was accompanied by a progressive increase of PCC, which

completely conformed to the logical law of gradient descent. The three indexes of RMSE,

MAE and PCC2 over 500 models with different hyperparameters had a wide range of changes

and the whole performance of the top 10 RMs is shown in Table S2 and Figure 2A, in which

MAE, RMSE and PCC2 on the three sets are described. Among the 10 RMs, RM4 had the

best MAE (0.287), RMSE (0.382), PCC2 (0.804) for the training set, but a sub-optimal per-

formance for the validation set (MAE of 0.258, RMSE of 0.337, PCC2 of 0.867). For test set

I, RM4 also has the optimal performance of 0.245 for MAE, 0.319 for RMSE, 0.804 for PCC2.

The consensus outcomes display a further improvement of the three indexes for the three

data sets. For example, PCC2 was 0.853 for the training set (with a 0.049 increase), 0.917

for the validation set (with a 0.037 increase) and 0.864 for test set I (with a 0.060 increase).

These deepAOT-R outcomes outperformed the consensus model from Lei et al.14 (0.487 for

MAE, 0.646 for RMSE, 0.690 for PCC2). The distribution of prediction errors (predictions

- targets) for the three sets is shown in Figure S3, which was a reasonable distribution for

training and prediction results. Therefore, it was necessary for the MGE-CNN architecture

to optimize hyperparameters, which would help to boost the performance. Moreover, the

ensemble strategy demonstrated that the deepAOT-R had the optimal performance.

In order to investigate classification abilities of the RMs, the consensus model, deepAOT-
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Figure 2: Performance overview of the top 10 RMs and the consensus deepAOT-R model. (A)
The overview of MAE, RMSE and PCC2 index for all the RMs. (B) The confusion matrix for
assessing deepAOT-R’s classification capacity. (C) The distribution comparison of regression
prediction errors from category IV. Blue color: deepAOT-R; Green color: deepAOT-CR.
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R, was used to predict the toxicity labels for all of the data sets (test set II had toxicity

labels, but lacked LD50 values). The predicted values log(LD50) were transformed into LD50

values and mapped into category space, then the multiclass confusion matrix is summarized

in Figure 2B, where the Sens, PPV, and ACC index for each class are shown at the bottom

of the box, the right of the box, and as a number in the bottom right corner, respectively.

The overall performance was at an acceptable level, although there were poor levels among

the four sets when examining the Sens IV index, dividing the compounds with category

IV into category III, which suggested that deepAOT-R could not distinguish well between

category III and IV. The prediction error distribution of category IV is presented in Figure

2C (in blue), suggesting that most prediction errors of category IV were lower than zero and

might cause such phenomena. However, when the 1-fold ValRMSE (0.270) wiggle room was

taken into consideration, the classification performance significantly improved (Figure S4),

which revealed that the deepAOT-R outcomes were still relatively close to the actual target

values. Hence, deepAOT-R had a certain distinguishing power of classification, indicating

that a wiggle room of 1-fold ValRMSE could be useful for prediction results.

Table 2: Hyper-parameters and performance of the top 10 multi-classification models.

Model CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9 CM10

H
yp

er
-p

ar
am

FPL 80 128 128 48 112 48 16 128 16 112
FPD 4 2 3 2 3 3 3 4 3 2
CKW 20 20 20 20 20 20 15 15 20 15
HLS 90 60 90 70 50 60 50 50 70 90
log(L2P) -4 -5 -3 -3 -4 -2 -4 -6 -3 -5
log(IWS) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
log(LRS) -4 -4 -4 -4 -4 -5 -4 -5 -5 -4

Ev
al

ua
tio

n
in

de
x*

preTrainACC 0.902 0.866 0.902 0.802 0.891 0.788 0.764 0.810 0.768 0.810
preValACC 0.940 0.914 0.942 0.869 0.941 0.881 0.845 0.883 0.839 0.880
TrainACC 0.921 0.920 0.908 0.841 0.934 0.802 0.790 0.855 0.812 0.881
ValACC 0.958 0.959 0.942 0.905 0.963 0.891 0.866 0.922 0.887 0.931
TestIACC 0.955 0.958 0.953 0.914 0.965 0.886 0.881 0.911 0.897 0.950
TestIIACC 0.963 0.928 0.965 0.851 0.947 0.811 0.816 0.901 0.835 0.883

*Note. The abbreviation of preTrainACC and preValACC represents the pre-training ACC of the
training and validation sets; TrainACC, ValACC, TestIACC, and TestIIACC stand for the ACC
predicted by the models on the training, validation, test I and test II sets.
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Figure 3: (A) The confusion matrix of deepAOT-C. (B) Consistency comparison between
deepAOT-R & deepAOT-C and deepAOT-CR. (C) The confusion matrix for SVM_CM1,
which is a SVM model with deep fingerprints from CM1. (D) Performance comparison of
deepAOT-CR, deepAOT-R and deepAOT-C.TrainACC, ValACC, TestIACC and Test||ACC
mean the ACC index of the training, validation, test I and test II set, respectively. Different
suffix represents different indicators.
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Performance Evaluation of MCMs

The MCM, as a semi-quantitative description for AOT, is more intuitive in toxicity es-

timation than the more simplistic numbers predicted by RMs, which creates difficulty in

understanding chemical toxicity.

In order to develop high-level MCMs, the 500 random sets of hyper-parameters were set

in the MGE-CNN, as were the 500 models with different topological networks that were

pre-trained with 1000 iterations. After pre-training, the top 10 models were selected with

the highest ACC of the validation set (Table 2). Of these, different sets of hyper-parameters

resulted in large differences on ACC of the validation set (83.9-94.2%). After the next 1000

iterations were finished, all of the 10 sets of well-trained weights were selected and stored

for external predictions. The satisfactory results are displayed in the rows of “TrainACC”,

“ValACC”, “TestIACC” and “TestIIACC” of Table 2. Of these values, ACC in the validation

set was between 86.6-96.3%, while the ACC range for the two test sets were from 81.1-

96.5%. The CM1 (deepAOT-C) had the best external prediction ability (with fewer feature

dimension) for test set I (ACC of 95.5%) and test set II (ACC of 96.3%) among the 10

models. The confusion matrix of deepAOT-C is portrayed in Figure 3A. The high Sens and

PPV index for each class and the high ACC demonstrated that deepAOT-C performed better

than the previously reported MCM of Li et al.15 for the validation set (ACC of 83.2%) and

the two external test sets (ACC of 83.0%, ACC 0f 89.9%, respectively). These data indicate

that deepAOT-C has an excellent generalization ability. In addition, it is suggestive that

the MGE-CNN architecture could be successfully extended to multi-classification problems.

Performance Evaluation of Multi-task Models

The multi-task deepAOT-CR model was constructed with the hyperparameters of deepAOT-

C. The modified cost function is as follows.

J(θ) = JC(θ) + βJR(θ) + α∥θ∥2

18



Here, JC(θ), JR(θ) is the loss of classification task and regression task, respectively. β ∈ (0, 1]

is a weight parameter to be trained with a smaller learning rate. The comparable performance

of deepAOT-CR with that of deepAOT-C and deepAOT-R is shown in Figure 3D and

Figure S5. Although it is slightly lower than the single-task deepAOT-C and deepAOT-R,

deepAOT-CR was demonstrated to outperform each of all the single models (shown in Table

S2) for regression task. More importantly, it could be used for simultaneous predictions

of the classification and regression tasks, which suggested that it was appropriate for the

MGE-CNN architecture to achieve multi-task problems.

Consistency Analysis of RMs and MCMs

In order to examine the consistency between RMs and MCMs, the deepAOT-R and deepAOT-

C were analyzed together. The outcomes of deepAOT-R were assigned to the category space.

The consistent prediction outcomes of both models was counted for each data set (Figure

3B). For the consistent prediction, the percentages on the four data sets were 76.8%, 85.2%,

86.1%, 71.7%, respectively. The accurate classification prediction of deepAOT-R was 76.1%,

85.2%, 85.6% and 72.3%, respectively. Meanwhile, the consistent and accurate predictions

respectively occupied 72.8%, 83.2%, 83.7%, 70.1% for each data set. Such comparisons sug-

gested that most of the consistent predictions were corresponded to correct labels, which

meant there was a high consistency between the deepAOT-R and deepAOT-C. For the

deepAOT-CR, the consistent outcomes of regression and classification were 82.6%, 83.1%,

84.1%, 84.5%, respectively, which improve the overall consistency for the four data sets.

The consistent and accurate predictions respectively occupied 77.9%, 79.9%, 80.6%, 80.8%

for each data set, shown in Figure 3B. From the view of Figure 2C (green) and Figure S6,

deepAOT-CR could significantly (p-value of paired t-test < 0.001) improve the distinguishing

capability for category IV.
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Forward Exploration of Fingerprints

The forward exploration evaluated the extent by which the fingerprints from the MGE-CNN-

based models favored of shallow decision making systems, such as MLR and SVM. For this

purpose, fingerprints were extracted from the “Fingerprint” layer in the well-trained deep

models, then the whole data set was transferred into a matrix of N (number of compounds)

× FPL, which was a featurization and vectorization process for compounds. This operation

was executed for both RMs and MCMs. For the RM4, the matrix for the training set, 8080

(compounds) × 48 (features), was regarded as an input for MLR, fitting the target values

of log(LD50) by minimizing the sum of the squares of the vertical deviations from each data

point to the best-fitting line. The best-fitting line for the training set was calculated, and

was used to predict the validation and test I sets (total of 3718 compounds). Performance

of the MLR models with deep fingerprints are summarized in Table 3. In which, the MAE,

RMSE and PCC2 were calculated for the training set and the validation and test I sets. The

MAE and RMSE range for the validation and test I sets was from 0.378-0.427 and from

0.499-0.561, respectively, while the PCC2 was in the range of 0.554-0.650. The consensus

model also demonstrated significant improvement for the training and external test sets,

and the performance of MAE, RMSE and PCC2 was 0.348, 0.465 and 0.696, respectively.

These prediction levels are completely acceptable for a MLR method. When the LLR (which

was an improved MLR method) reported by Lu et al.16 was challenged by “Set_3874”, the

PCC2 and MAE of the consensus model (with different molecular fingerprints: ECFP4,

FCFP4,24 MACCS, and physicochemical descriptors from commercial software53,54) were

0.608 and 0.420, respectively (Figure S7). A pure MLR method based on deep fingerprints

was used to ensure that PCC2 and MAE would stay in a range of 0.554-0.650 and 0.378-

0.427, respectively. Comparing the two, whether for a single model or the consensus model,

the MLR models outperformed LLR models at a similar level test set size, which revealed

that deep fingerprints were more useful than application-specific molecule descriptors or

fingerprints for AOT prediction without an idea of “Clustering first, and then modelling”.55
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Table 3: Performance of MLR models with deep fingerprints from MGE-CNN architecture
on the training, validation, and test I sets.

Model * Evaluation index*
TrainMAE TrainRMSE TrainPCC2 Val&TestIMAE Val&TestIRMSE Val&TestIPCC2

MLR_RM1 0.428 0.558 0.580 0.404 0.542 0.584
MLR_RM2 0.425 0.556 0.583 0.402 0.538 0.592
MLR_RM3 0.418 0.544 0.600 0.403 0.528 0.606
MLR_RM4 0.432 0.563 0.572 0.405 0.535 0.596
MLR_RM5 0.410 0.538 0.610 0.397 0.524 0.614
MLR_RM6 0.442 0.578 0.549 0.427 0.561 0.554
MLR_RM7 0.437 0.569 0.563 0.415 0.553 0.566
MLR_RM8 0.402 0.523 0.631 0.378 0.499 0.650
MLR_RM9 0.422 0.548 0.595 0.398 0.521 0.614
MLR_RM10 0.432 0.561 0.575 0.414 0.542 0.583
Consensus 0.379 0.497 0.679 0.348 0.465 0.696

*Note. MLR_RMi means the MLR model constructed by deep fingerprints from RMi,
i ∈ {{1, 2, ..., 10}}. “Consensus” means the average outcomes of the above 10 models.
Val&TestIMAE, Val&TestIRMSE and Val&TestIPCC2 are MAE, RMSE and PCC2 of the merged
validation and Test I set.

For the MCMs, fingerprints were also extracted, and the training part was used to con-

struct multi-class SVMOAO) models with the “scikitlearn” package56 in Python 2.7. The

Gaussian radial basis function kernel was used and the parameters C and γ were tuned with

the validation set. The performance of SVMOAO models with deep fingerprints was assessed

with ACC index (Table 4). The range for the training set was from 84.2-96.5% and the

validation range was between 78.7-84.8%. For the two external sets, an acceptable ACC

range is from 77.9-94.9%. Among the SVM models, SVM_CM1 had the best ACC of 94.9%

for the training set, 84.8% for the validation set, 86.6% for test set I and 93.6% for test

set II. Meanwhile, the confusion matrix for SVM_CM1 indicated that the three indexes of

SVM_CM1 were better than those of SVM models developed by Li et al.,15 shown in Figure

3C and S8. Therefore, deep fingerprints from MGE-CNN-based RMs and MCMs were better

than standard fingerprints, which further demonstrated that the MGE-CNN implemented

better MRs for AOT prediction with automatic feature extraction through supervised learn-

ing. With analysis of tanimoto distance, Table 5 suggested that deep fingerprints had a

high correlation to molecular topological structure-based ECFP4, FCFP4 and MACCS fin-
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gerprints and were different from randomly generated fingerprints. To a certain extent, it

revealed the interpretability and rationality of these deep fingerprints.

Table 4: Performance of SVMOAO models with deep fingerprints from MGE-CNN architec-
ture.

Model* Evaluation index
TrainACC ValACC TestIACC TestIIACC

SVM_CM1 0.949 0.848 0.866 0.936
SVM_CM2 0.934 0.816 0.799 0.880
SVM_CM3 0.950 0.840 0.849 0.912
SVM_CM4 0.959 0.800 0.793 0.885
SVM_CM5 0.958 0.839 0.830 0.928
SVM_CM6 0.942 0.812 0.806 0.891
SVM_CM7 0.857 0.787 0.779 0.840
SVM_CM8 0.988 0.809 0.805 0.949
SVM_CM9 0.847 0.801 0.780 0.837
SVM_CM10 0.965 0.791 0.780 0.909

* Note. SVM_CMi means the SVMOAO model based on deep fingerprints from CMi,
i ∈ {{1, 2, ..., 10}}.

Table 5: Correlation analysis of tanimoto distance between different fingerprints.

Fingerprint Random ECFP4 FCFP4 MACCS DeepAOT PCC

C
or

re
la

tio
n

of
Ta

ni
m

ot
o

di
st

an
ce

+ + 0.193±0.014
+ + 0.264±0.030
+ + 0.237±0.021
+ + 0.212±0.030

+ + 0.984
+ + 0.952
+ + 0.845

+ + 0.946
+ + 0.834

+ + 0.867

Backward Exploration of Fingerprints

The backward exploration of the “Fingerprint” layer was expected to provide an understand-

ing of fingerprint activation.

Herein, only the above RM4 and CM1 was further examined. After linear regression, the

most negative correlation feature of the fingerprints was calculated, which represented the
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most toxic feature. Comparing activation values of this feature, nine values were determined

to contribute most to feature activation. The nine values could be mapped into different

substructures, thereby suggesting that these substructures were the most correlative to the

explored toxicity feature (Figure 4A and 4B). There were mainly two classes of highlighted

fragments, α,β-Unsaturated nitriles (TA626) and alyl (thio)phosphates (TA776) for RM4,

while TA776 and thicarbonyl (TA374) for CM1. The three fragments have been reported to

be toxicity structural alerts.57–59

Further analysis of RM4 and CM1 explored the highlighted fragments for each compound

in category I, followed by the approach demonstrated in Figure S9. Table 6 and Table S3

describe the highlighted fragments which RM4 automatically generate. Moreover, we found

most of the highlighted fragments could correspond to the reported TAs. For example,

some of the corresponding reported TAs were TA392, TA1285, TA777, TA2958, TA890,

TA879, TA462, TA583, TA2795, TA1792, TA623, TA1801, TA279, TA260, TA623, TA751,

TA584, TA312, TA1938, TA374, TA626, TA362. Only a few of highlighted fragments did

not correspond to the reasonable TAs, such as TA660, TA580, TA249. Due to the high

consistency with the reported TAs, this approach had potential for inferring TAs for unknown

compounds. For CM1, the highlighted fragments of each compound was almost similar to

that from RM4, part of which shown in Figure 4C (in which some inconsistent highlighted

fragments are also presented). Therefore, besides of AOT prediction, MGE-CNN-based

models was also able to infer TAs with analysis of internal activations.

Conclusion

In this study, RMs and MCMs constructed by the MGE-CNN were used to estimate AOT

in rat for chemical safety assessment. The consensus deepAOT-R model had an outstanding

performance with higher PCC2 (0.864), lower RMSE (0.268) and lower MAE (0.195) than

the previous best models. When using the deepAOT-R to predict toxicity category, the per-
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A

B

C

Figure 4: Overview of highlighted fragments. (A) and (B) are Corresponding highlighted
fragments that match the most toxic features (blue) of the RM4 and CM1 fingerprint. TA626,
TA776, TA374 are the registered numbers from the Online Chemical Database. (C) Consis-
tency comparison of part of the highlighted (blue) fragments for RM4 and CM1.
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Table 6: Comparison of TAs and activity fragments inferred by RM4.

No. Activation Fragment Structural Alert Alert ID Reference

1
X = Br, Cl, F, I;
Endpoint:
Non-genotoxic carcinogenicity

TA392 ref.59

2
R1, R2 = H, alkyl, aryl;
Y, Z = any O, N, Hal residue;
Endpoint:
Extended Functional Groups

TA1285 Checkmol

3
R = any carbon atom;
R1 = H or any carbon atom;
Endpoint:
Potential electrophilic agents

TA777 ref.58

4

R = -C=O,-C=S,-S=O,
-CN,Hal,-C(Hal)(Hal)(Hal);
R ̸= -COOH;
Endpoint:
Reactive, unstable, toxic

TA890 ref.60

5
R = C, N, O, S , Ar;
Ar = any aromatic atom;
Endpoint:
Skin sensitization

TA583 ref.61

6
Ar = any aromatic atom;
Endpoint:
Nonbiodegradable compounds

TA2795 ref.62

7
Linkage = ’HIGH’
(PRI = 1.46, PSI = 4.38);
Endpoint:
Promiscuity

TA1792 ref.63

R = any atom;
Endpoint:
Acute Aquatic Toxicity

TA623 ref.57

8 Endpoint:
Acute Aquatic Toxicity TA626 ref.57
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formance was within an acceptable level and the recommended range (within 1-fold RMSE)

may be important for prediction outcomes. In addition, the deepAOT-C also demonstrated

an excellent performance (ACC of validation set: 92.1%; ACC of test set I: 95.8%; ACC

of test set II: 96.3%) when compared to the best reported MCMs . In addition, the multi-

task deepAOT-CR also presented a high predictive power for simultaneous assessment of

regression and classification problems.

In view of high-level prediction models, more attention was focused on exploring and

interpreting our models. In fact, deep fingerprints extracted from the RMs and the MCMs

were able to better support the shallow decision making systems than application-specific

molecular descriptors or fingerprints. The consensus MLR model based on these deep fin-

gerprints had a high PCC2 (0.696) and a low MAE (0.348) for the large external set (3718

compounds). Meanwhile, the best SVM model with deep fingerprints also performed very

well, with ValACC of 84.8%, TestIACC of 86.6% and TestIIACC of 93.6%. With correla-

tion analysis of tanimoto distance, we recognized that these deep fingerprints were highly

correlated with topological structure-based fingerprints. The successes of deep fingerprints

could potentially be applied to other tasks related to AOT. One toxicity-related feature of

these fingerprints was tracked back to the atomic level and the highlighted toxicity frag-

ments inferred by RM4 and CM1 were compared with the reported TAs. This surprising

consistency suggests that the well-trained deep models are no longer “black” models and

that these deep models advanced in AOT-related knowledge such that they can be used to

infer TAs. Without prior knowledge about fragments, only the information of atoms and

bonds can be used to form the knowledge of fragments, all of which are due to the ability of

automatic feature learning from deep learning.

The MGE-CNN is not limited to AOT and it could be applied for studying other end-

points induced by compounds in complex systems. Without understanding any mechanism,

end-to-end (SMILES-to-endpoint) learning based on a known large data set with high quality

can be useful in predicting this endpoint, extracting the endpoint-related fingerprints and
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inferring the endpoint-related fragments. This methodology is a promising tool in developing

and better understanding chemical information of compounds.
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Supporting Information Available

The following files are available free of charge.

Table S1: The set range of some important hyper-parameters.

Table S2: Hyper-parameters and performance of the top 10 RMs with the lowest RMSE of
validation set.

Table S3: Additional comparison of TAs and activity fragments inferred by RM4.
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Figure S1: Workflow of chemical data curation. RVA is the explicit valence analysis based
on the RDKit package; TEV (FEV) set: true (false) explicit valence set; “[N] → [N+]” in
the SMILES string indicates that the nitrogen with brackets should be charged; “Structure
Checker” module is used to correct the molecular structure; “Standardizer” module was
utilized to transform, standardize and unify the canonical SMILES strings.

Figure S2: Plot of the RMSE (left) and PCC (right) from 500 models based on the training
(blue) and validation sets (red).

Figure S3: The distribution of prediction errors from the training, validation and test I sets
based on deepAOT-R.

Figure S4: The confusion matrix of all the four data sets predicted by deepAOT-R (supple-
mented with wiggle room of 1-fold RMSE).

Figure S5: The confusion matrix of all the four data sets predicted by classification task of
deepAOT-CR.

Figure S6: The confusion matrix of all the four data sets predicted by regreesion task of
deepAOT-CR.

Figure S7: Comparison between MLR models with deep fingerprints and LLR models with
different standard features (ECFP4, FCFP4, MACCS, etc).

Figure S8: Comparison of ACC for the MGE-CNN-based model, the SVMOAO model with
deep fingerprints and the SVMOAO model with MACCS fingerprints.

Figure S9: Schematic diagram for exploring toxicity fragments of flocoumafen. The blue
arrows represent well-trained weights. The toxicity (in blue) feature from fingerprints of
flocoumafen was traced back into different fragments in different layers, displayed in pink
arrows. Comparing all the activation of central atoms for these fragments, the maximum
activation fragment is represented in blue (left). This fragment is referred as a toxicity
fragment inferred by RM4.
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