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Abstract 
We have investigated whether alchemical free-energy perturbation calculations of relative 

binding energies can be sped up by simulating a truncated protein. Previous studies with spherical 
non-periodic systems showed that the number of simulated atoms could be reduced by a factor of 
26 without affecting the calculated binding free energies by more than 0.5 kJ/mol on average 
(Genheden, S. & Ryde, U., J. Chem. Theory Comput., 2012, 8, 1449), leading to 63-fold decrease 
in the time consumption. However, such simulations are rather slow, owing to the need of a large 
cut-off radius for the non-bonded interactions. Periodic simulations with the electrostatics treated by 
Ewald summation are much faster. Therefore, we have investigated if a similar speed-up can be 
obtained also for periodic simulations. Unfortunately, our results show that it is harder to truncate 
periodic systems and that the truncation errors are larger for these systems. In particular, residues 
need to be removed from the calculations, which means that atoms have to be restrained to avoid 
that they move in an unrealistic manner. The results strongly depend on the strength on this 
restraint. For the binding of seven ligands to dihydrofolate reductase and ten inhibitors of blood-
clotting factor Xa, the best results are obtained with a small restraining force constant. However, the 
truncation errors were still significant (e.g. 1.5–2.9 kJ/mol at a truncation radius of 10 Å). 
Moreover, the gain in computer time was only modest. On the other hand, if the snapshots are 
truncated after the MD simulations, the truncation errors are small (below 0.9 kJ/mol even for a 
truncation radius of 10 Å). This indicates that post-processing with a more accurate energy function 
(e.g. with quantum chemistry) on truncated snapshots may be a viable approach. 

 

Key Words: Free-energy perturbation, ligand binding, system truncation, factor Xa, dihydrofolate 
reductase. 
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Introduction 
One of the largest challenges for computational biochemistry is to estimate the free energy for 

the binding of a ligand to a macromolecule, e.g. the binding of a drug candidate to its receptor. 
Consequently, many methods have been suggested with this aim, ranging from simple scoring 
functions to strict alchemical free-energy perturbation (FEP) methods, such as exponential 
averaging, thermodynamic integration, Bennett acceptance ratio (BAR), and related methods.1–3 In 
the latter methods, the difference in binding free-energy between two ligands is obtained by 
sampling the difference in potential energy during a molecular dynamics (MD) or Monte Carlo 
simulation. Unfortunately, the result converges only for small differences between the ligands, so 
the calculations need to be divided into many small steps, in which one ligand is slowly transformed 
into the other through a number of intermediate non-physical (alchemical) states. Therefore, these 
methods become very time-consuming. Still, they have successfully been used to help the design of 
new drugs in several cases4,5 and they have been shown to give a mean absolute error of 4–6 kJ/mol 
compared to experimental data in several recent large-scale test studies.6–9  

To make the FEP methods more attractive for general applications in real drug-development 
project, it is of great interest to speed up the calculations. For example, we have studied whether the 
simulation time and number of intermediate states can be reduced without affecting the accuracy of 
the method.10 Moreover, we have shown for the binding of ten inhibitors to the blood-clotting factor 
Xa (fXa) that the simulated system can be reduced from around 39 000 to 1500 atoms without 
affecting the calculated affinities by more than 0.5 kJ/mol on average (maximum change 1.4 
kJ/mol), reducing the computational time by a factor of 63.11 These calculations were performed on 
spherical systems with the Q software.12 Unfortunately, such calculations require a large cut-off 
radii for the electrostatic interactions. More effective simulations can be performed with periodic 
systems and the electrostatics treated with Ewald summation.13 In fact, simulations with the 
truncated system were only ~4 times faster than simulations with the full system and Ewald 
summation, despite that only 1/26 of the atoms were considered11 (although this is partly an effect 
of the fact that the Amber software is more optimised for speed than the Q software). 

Therefore, it is interesting to see whether similar reductions of the simulated systems are 
possible also in periodic simulations. This is not evident, because artefacts caused by the enforced 
periodicity becomes more pronounced the smaller the simulated system is. We try such an approach 
in this article, employing the same test system as in our previous articles,10,11 viz. the relative 
affinities of eight pairs of ligands for fXa.14 We also study the binding of seven 2,4-
diaminopyrimidine ligands to dihydrofolate reductase (DHFR),15,16 which has been considered in 
several previous computational studies.7,17 

Methods 

Structures 
The seven 2,4-diaminopyrimidine ligands of DHFR are shown in Figure 1, together with the six 

considered transformations. The calculations were based on the crystal structure with PDB code 
1J3I (2.33 Å resolution) with a similar ligand.18 The simulations were set up in the same way as in 
our previous calculations of this system.7  

The ten 3-amidinobenzyl-1H-indole-2-carboxamide inhibitors of fXa considered in this study 
are shown in Figure 2. They are named according to their numbers in the original experimental 
study.14 The preparation of these ligands has been described before.7,10,11 All calculations were 
started from the crystal structure of fXa in complex with ligand 125 (PDB code 1LPK, 2.3 Å 
resolution).14 The crystal structure involves two conformations for one of the amidino groups of the 
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ligand, but only a single conformation of the ligand was studied here (the A conformation) because 
our previous study did not show any difference between the affinities of the two alternative 
conformations.10 Our aim is to compare simulations with truncated systems with those of the full 
protein and for such comparison it is enough to study one conformation (comparison with 
experimental data is of secondary interest). 

The preparation of the proteins has also been described before:7,10,11,19 All Arg and Lys residues 
were supposed to have a positive charge and the Glu and Asp residues were assumed to have a 
negative charge. For fXa, His57 and 83 were protonated on the Nδ1 atom, His91, 145, and 199 on 
the Nε2 atom, and His13 on both atoms. DHFR does not contain any His residues. To be comparable 
to our previous studies,7,10,11,19 DHFR was described with the Amber 99SB force field,20 whereas 
fXa was described by the Amber 99 force field.21 All ligands were treated with the general Amber 
force field,22 with charges derived by the restrained electrostatic potential (RESP) method23 using 
potentials calculated at the Hartree–Fock 6-31G* level and sampled with the Merz–Kollman 
scheme.24  

The protein–ligand complexes and the free ligands were solvated in a truncated octahedral box 
of TIP3P waters25 that extended at least 8 Å from the solute using the tleap module of the Amber 11 
suite of programs.26 Truncated systems were obtained by deleting all residues more than a certain 
distance (r) from the ligand; distances of 25, 20, 15, and 10 Å were employed (and also 35 and 30 Å 
for the larger fXa protein). The systems were truncated before they were solvated, so the size of the 
periodic box also decreased for the truncated systems. To avoid unphysical movements of the 
remaining atoms, heavy atoms between r and r – 4 Å were included in the calculations, but they 
were restrained towards the starting structure with a force constant (kres) of either 4184 or 1.3 
kJ/mol/Å2. An example of the truncations is shown in Figure 3. The truncated residues retained the 
same charges as in the full system and no capping groups were employed.  

Molecular dynamics simulations 
The MD simulations were performed with the sander module of Amber 11 or 12.26,27 The 

temperature was kept constant at 300 K using a Langevin thermostat28 with a collision frequency of 
2.0 ps–1, and the pressure was kept constant at 1 atm using a weak-coupling isotropic algorithm29 
with a relaxation time of 1 ps. Particle-mesh Ewald summation13 with a fourth-order B spline 
interpolation and a tolerance of 10–5 was used to calculate electrostatic energies and forces. The cut-
off for the Lennard-Jones interactions was set to 8 Å and the non-bonded pair list was updated 
every 50 fs. The SHAKE algorithm30 was used to constrain bonds involving hydrogen atoms so that 
a 2 fs time step could be used. 

The FEP calculations were performed in the following way: The system at each λ value was 
minimized for 500 cycles of steepest descent, with all atoms except water molecules and hydrogen 
atoms restrained to their start position with a force constant of 418 kJ/mol/Å2. This was followed by 
a 20 ps constant-pressure simulation, using the same constraints, and a 200 ps constant-pressure 
simulation without any restraints. Finally, a 2 ns constant-pressure production run was performed, 
during which coordinates and energies were sampled every 10 ps.  

Free-energy calculations 
We have calculated the relative free energy of six and eight inhibitor transformations for DHFR 

and fXa, respectively, as is described in Figures 1 and 2, using a thermodynamic cycle that involves 
the conversion of one ligand (L1) to the other (L2) both in the protein binding site and in 
solution.10,32 The free energies of the transformations were calculated using the multi-state Bennett 
acceptance ratio (MBAR) approach,33 but other methods, including BAR,34 exponential 
averaging,35 and thermodynamic integration,36 were also considered. All these free-energy 
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differences were calculated with the PYMBAR software.33 We employed the single transformation-
approach10,11 in which both electrostatic and van der Waals interactions are modified in the same 
step. The calculations employed soft-core versions of both the van der Waals and Coulomb 
potentials, which have been calibrated for this type of calculations with the AMBER software.37,38 

To improve the convergence of the free-energy difference, the transformation L1→L2 was 
divided into several small steps, involving intermediate states, defined by the potential energy  
V(l) = (1 – l) V0 + lV1, where V0 and V1 are the potential energies of the L1 and L2 states, 
respectively. Eleven l values were used (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95). 
Data for l = 0 and 1 were obtained by a linear interpolation using the two closest values. In all 
calculations, we use a dual-topology scheme with two sets of coordinates for the atoms that differ 
between L1 and L2.  

To improve the precision of the results, DHFR simulations were rerun with the pmemd module 
of the AMBER 16 software,39 allowing for single-topology simulations also at the l = 0 and 1 
endpoints.40 The final two MD simulations were elongated to 1 ns equilibration and 5 ns 
production, and energies were sampled every 1 ps for the MBAR free-energy calculations. These 
are the DHFR results discussed throughout the text. 

Error estimates 
All reported uncertainties are standard errors of the mean (standard deviations divided by the 

square root of the number of samples). The uncertainty of the MBAR free energies calculated at 
each λ value was estimated by bootstrapping using the PYMBAR software33 and the total 
uncertainty was obtained by error propagation.  

The performance of the free-energy estimates was quantified by the mean absolute deviation 
(MAD), the root-mean-squared deviation (RMSD), the slope of the best correlation line (slope), the 
correlation coefficient (R2), and Kendall's rank correlation coefficient (τr) compared to experimental 
data. The latter was calculated only for the transformations that were explicitly studied, not for all 
combinations that can be formed from these transformations. Moreover, it was also evaluated 
considering only differences (both experimental and calculated) that are statistically significant at 
the 90% level (τr,90).41 Note that R2 and the slope depend on the direction of the perturbation (i.e. 
whether L1→L2 or L2→L1 is considered, which is arbitrary). This was solved by considering both 
directions (both forward and backward, giving the same results but with the opposite sign) for all 
perturbations when these two measures were calculated. The standard deviation of the quality 
measures was obtained by a simple simulation approach.42 For each transformation, 1000 Gaussian-
distributed random numbers were generated with the mean and standard deviation equal to the 
MBAR and experimental results for that transformation. Then, the quality measures were then 
calculated for each of these 1000 sets of simulated results and the standard error over the 1000 sets 
is reported as the uncertainty. For fXa, no uncertainty for the experimental measurements was 
reported.14 Therefore, we assumed a typical uncertainty of 2.4 (= 1.7 √2) kJ/mol for these values 
when estimating the precision of the quality measures.43 

Result and Discussion 
In this paper, we study whether it is possible to truncate periodic systems in FEP calculations, 

in the same way as we have done for spherical simulations.11 We emphasize that the aim of this 
article is not to see whether the calculations reproduce the experimental affinities, but rather 
whether simulations of truncated systems reproduce the calculated results of the full (non-truncated) 
systems. We have studied two proteins and the results of these are described in separate sections.  



6 

DHFR results 
We have studied the relative affinities of the seven nanomolar 2,4-diaminopyrimidine inhibitors 

of DHFR, shown in Figure 1.15,16 The calculated affinities for the seven considered transformations 
are shown in Table 1. It can be seen that the precision of the calculated relative affinities is 
excellent, with standard errors of 0.02–0.12 kJ/mol, i.e. appreciably better than in the experiments 
(0.4–0.9 kJ/mol). Although it is not the primary aim of this article, it is satisfying to note that the 
calculations also reproduce the experimental relative affinities16 well with errors of 0–3 kJ/mol, 
giving a MAD of only 1.6±0.2 kJ/mol and a R2 of 0.79±0.04 (cf. Figure S1). Four of the 
transformations form a closed thermodynamic cycle (F→H→G→E→F), allowing us to estimate 
the convergence of the calculations. Quite satisfying, the cycle gives a free energy of 0.19±0.16 
kJ/mol, showing that the simulations are converged within the estimated uncertainty. 

The same seven ligands were also considered in our previous large-scale test of FEP 
calculations, but the simulations were performed on spherical systems and with only three λ values.7 
The results of those calculations are also included in Table 1. The old calculations gave a slightly 
worse precision with standard errors of 0.04–0.6 kJ/mol. In most cases, they underestimated the 
energy differences, probably owing to the too short simulations and integration errors caused by the 
low number of λ values. They reproduced the experimental results slightly worse, but for most 
quality measures, the difference is not statistically significant. In conclusion, the present 
calculations seem to be reliable and therefore can be used for calibration of the results obtained with 
truncated systems (for which the reproduction of experimental results is of a secondary interest). 

Next, we truncated the protein by removing all residues with all atoms more than a certain 
distance r from the ligand (r = 25, 20, 15, and 10 Å were tested, retaining 207, 180, 137, and 78 of 
the 233 residues in the protein, respectively; cf. Table S1) and keeping atoms between r and r – 4 Å 
restrained in the MD simulations with a force constant of kres = 4184 kJ/mol/Å2. The relative 
binding energies for the seven transformations were then calculated from these simulations. The 
results in Figure 4a show that the truncation error (i.e. the difference in relative binding free energy 
of the truncated and full calculations) typically increases when the truncation radius is decreased: 
On average (last columns in Figure 4a), the truncation error varies between 1.1 and 3.6 kJ/mol as 
the truncation radius decreases from 25 to 10 Å. Clearly, a truncation radius of 10 Å is too small, 
giving a maximum error of 7 kJ/mol. However, already for a truncation radius of 25 Å, the 
maximum error is 3.8 kJ/mol. The precision of the truncated simulations is similar to that of the full 
simulations (0.02–0.12 kJ/mol for the various transformations, with a variation of only 0.01 kJ/mol 
between the various truncation radii; the raw data are shown in Table S1 in the supplementary 
material). Therefore, all truncation errors in Figure 4a are statistically significant at the 95%, except 
two (A→F and C→A at r = 25 Å). However, the cycle-closure hysteresis is somewhat larger for the 
truncated systems than for the full system, 0.4–1.0±0.2 kJ/mol, although it is not large enough to 
explain the truncation errors. 

Consequently, the truncation errors are much larger than in our previous study of spherical 
systems.11 To understand why periodic simulations are more sensitive to truncations than the 
spherical systems, we performed some additional test calculations. First, we recalculated the 
relative free energies without any periodicity (i.e. we wrapped all atoms in the snapshots of the 
periodic simulations into a single box, centred on the ligand and then recalculated the binding free 
energies from these snapshots without using any periodicity). The results in Figure 4b show that the 
errors are similar to those with the periodic systems (average errors of 1.0–3.7 kJ/mol and 
maximum errors of 2–8 kJ/mol). This indicates that periodicity is not the prime problem. We also 
made some calculations of the truncated systems in a water box with the same size as in the original 
system, showing errors of the same magnitude as with the smaller water boxes in Figure 4a. This 
also confirms that periodicity is not the problem. 

Second, we tried to truncate the systems after the MD simulations, i.e. the snapshots of the full 
system were again wrapped into a single box, after which they were truncated, keeping the same 
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residues and the same number of water molecules (those closest to the ligand) as in the calculations 
leading to Figure 4a, and finally the free-energy differences were calculated without any 
periodicity. Figure 4c shows that the results of these calculations were totally different compared to 
when the truncation was performed before the MD simulations: The average truncation error was 
only 0.2–0.9 kJ/mol for all four truncation radii. In fact, only two transformation gave an error 
larger than 1 kJ/mol (both at r = 10 Å). This is quite amazing, considering that the truncated 
systems are quite strange, involving large volumes of empty space where protein residues were 
removed (note that this applies only to this truncation after MD and not to any of the other 
truncations in the article). However, the results clearly show that in energy terms, truncation of FEP 
calculations can be performed to quite small radii without any significant effect on the relative 
binding free energies. Unfortunately, there is no gain in computation time of truncating after the 
MD simulations, because the calculation of energies for the free-energy calculations are essentially 
for free, compared to the cost of running the simulation.  

Consequently, we can conclude that the rather large truncation errors observed in Figure 4a are 
mainly caused by changes in the structures sampled in the MD simulations for the truncated 
systems. It may be that the truncated simulations allow too much movement of the atoms, compared 
to the full system. However, it is also possible that the restrained atoms in the simulations restrict 
the movement too much. We performed a set of test calculations for the E→G perturbation with 
different force constants for these restraint (cf. Table S2). These indicated that the restraints actually 
were too large. Therefore, we repeated the FEP calculations on the truncated systems with a force 
constant of only kres = 1.3 kJ/mol/Å2 (4184 kJ/mol/Å2 in the previous calculations; calculations 
without any restraint gave similar results, but then some residues sometimes dissociated from the 
protein). From Figure 4d, it can be seen that the results are improved for all radii: The average error 
increases regularly from 0.6 kJ/mol at r = 25 Å to 3.0 kJ/mol at r = 10 Å, which are all smaller than 
the corresponding results in Figure 4a. The maximum errors are 1.9–5.1 kJ/mol. The precision 
(0.02–0.12 kJ/mol) is slightly lower in the simulations with the larger force constant. 

The timing of the simulations of the truncated systems is shown in the last column of Table S1. 
It can be seen that r = 20 Å reduced the time consumption by a factor of two and that the smallest 
radius gave a reduction by a factor of four. 

fXa simulations 
To check that the results for DHFR are not specific for that protein, we have also considered 

another test case, viz. the binding of the ten 3-amidinobenzyl-1H-indole-2-carboxamide inhibitors 
in Figure 2 to blood-clotting factor Xa (fXa). The calculated affinities with the full protein are 
collected in Table 2. It can be seen that the calculated affinities reproduce experimental affinities14 
reasonably well, with errors for all transformations of 0–5 kJ/mol, except for the 63→39 
transformation, for which the error is much larger, 10 kJ/mol. The present results are similar to 
those obtained for the same transformations with slightly different methods (periodic or spherical 
systems with 3–11 λ values),7,10,11 with mean absolute differences of 1.4–2.8 kJ/mol. Thus, the 
previous calculations also had (even larger) problems with the 63→39 transformation. Therefore, 
the present calculations reproduce the experimental data slightly better than the previous 
calculations, with a MAD of 3.1±0.7 kJ/mol (3.9–4.5 kJ/mol for the previous studies; Figure S2). 
The standard errors of the affinity estimates are 0.3–0.8 kJ/mol. This is similar to the previous 
calculations with periodic systems,10 but larger than the calculations with spherical systems and 11 
λ values (0.1–0.3 kJ/mol).11 Again, the new calculations seem reliable and can therefore be used as 
a reference for the truncated calculations.  

Next, we truncated the protein in the same way as for DHFR, testing r = 35, 30, 25, 20, 15, and 
10 Å (more radii than for DHFR because the protein is larger). This corresponds to 280–83 of the 
288 residues in the protein, as can be seen in Table S3. The results for these calculations are shown 
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in Figure 5a, presented as the difference compared to the full-protein calculation (raw data are given 
in Table S3). 

It can be seen that for r = 35 Å, all results agree with those using the full system within 0.6 
kJ/mol (0.3 kJ/mol on average). However, already for r = 30 Å, the maximum error has increased to 
1.8 kJ/mol (0.9 kJ/mol on average). For r = 25 Å, the truncation error for the problematic 63→39 
transformation is 3.6 kJ/mol, whereas it is up to 1.9 kJ/mol for the other transformations and the 
average error is 1.1 kJ/mol. However, for smaller radii, the truncation error for the other 
transformations also start to increase, with maximum errors of 5.1–5.6 kJ/mol. The average errors 
are 2.1, 2.3, and 2.5 kJ/mol for r = 20, 15, and 10 Å, respectively.  

The standard error remains within 0.1 kJ/mol of that for the full simulations for all 
transformations. Consequently, for r = 35 Å, none of the differences between the full and truncated 
simulations is statistically significant (at 95% confidence). However, already at r = 30 Å two of the 
differences are statistically significant and this increases to six of the eight transformations at r = 10 
Å. 

The timing of the various truncated calculations is shown in Table S3. It can be seen that r = 25 
Å gave reduction of the time consumption by a factor of two and the smallest radius gave a 
reduction by almost a factor of 4. 

To see whether the results improved also for fXa if the restraints are reduced, we repeated the 
simulations for the truncated systems with the force constant for the restrained atoms reduced to kres 
= 1.3 kJ/mol/Å2. From Figure 5b, it can be seen that the results are clearly improved for the smaller 
truncation radii: For r = 10 Å, the maximum truncation error is reduced from 5.6 to 3.1 kJ/mol 
(average error from 2.5 to 1.5 kJ/mol). Similar improvements are observed also for r = 15 and 20 Å, 
and also for the maximum error at r = 25 Å, although the average errors are the same (1.1 kJ/mol). 
However, for the two largest radii, the maximum error is actually slightly larger with the smaller 
force constant (e.g. 1.3 kJ/mol compared to 0.6 kJ/mol for r = 35 Å). This reflects that the results 
with the smaller force constant are somewhat more uneven with less clear trends. On the other hand, 
the precision of the two sets of simulations is identical (0.2–0.6 kJ/mol).  

Conclusions 
In this article, we have studied whether FEP calculations of ligand-binding affinities can be 

sped up by truncating the simulated protein in calculations involving periodic systems treated with 
particle-mesh Ewald summation. We have employed two different proteins, DHFR and fXa to study 
how the truncation effects depend on the simulated systems. The results are qualitatively similar, 
indicating that they are probably quite general. For both systems, the average truncation error 
increases as the truncation radius is decreased. Keeping atoms between r and r – 4 Å restrained 
towards the starting structure with a large force constant gives large truncation errors, especially for 
small radii, e.g. with maximum errors of 6–7 kJ/mol and average errors of 2.5–3.6 kJ/mol for r = 10 
Å. The errors do not seem to be caused by the enforced periodicity, but rather by the change in the 
sampled structures, partly owing to the strong restraints on the outer atoms. In fact, the results can 
be improved by reducing the force constant of the restraints to kres = 1.3 kJ/mol/Å2. Then, the 
maximum and average error at r = 10 Å are reduced to 3–5 and 1.5–3.0 kJ/mol, respectively. 

However, the truncation errors are still quite sizeable: Only for four systems, with r ≥ 20 Å, are 
the average error below 1 kJ/mol. In particular, the errors are appreciably larger than for the 
spherical systems, studied in our previous investigation using the Q software.12 In those 
calculations, the simulated system for fXa could be reduced from around 39 000 to 1500 atoms 
without affecting the calculated affinities by more than 0.5 kJ/mol on average (maximum change 
1.4 kJ/mol). The reason for this is partly technical: With the Q software, the whole protein was 
included in the calculations, but the outer parts (outside the truncation) was kept fixed and those 
atoms did not contribute to the time-consuming calculations. Still they prohibit any non-physical 
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movement of the remaining atoms and avoids that water molecules occupy space that that is part of 
the protein. However, in Amber, also fixed atoms contribute fully to the time-consumption and all 
simulated atoms must fit into the simulated periodic box, with a significant buffer of water 
molecules. Therefore, residues must be removed in the Amber calculations (entire residues to keep 
an integer net charge) and a buffer of restrained atoms needs to be included to avoid unphysical 
movements of the remaining residues, especially those that are no longer covalently connected (if 
the restraint is removed, some residues dissociate from the protein). Finally, in the spherical 
calculations, atoms were removed based on a radius from a single central atom in the ligand (the 
nitrogen atom of the indole ring, cf. Figure 2), whereas in the present calculations, residues with 
any atom within a certain distance from any atom in the ligand were included in the calculations. 
Therefore, for the same truncation radius, the present calculations contain many more atoms than in 
the spherical calculations.  

Consequently, it seems to be much harder to truncate periodic simulations than spherical 
simulations. In fact, the timings show that for the smallest radius (r = 10 Å), the time consumption 
is reduced only by a factor of four. Thus, such a simulation takes approximately the same time as 
the corresponding Q simulation with the most truncated system. Considering that the truncation 
errors were smaller with the spherical simulations, we have to conclude that there does not seem to 
be any gain of truncating periodic simulations.  

It can be noted that our results are in accordance with conclusions obtained from the related 
problem of truncating the electrostatic interactions in MD simulations:44 Simulations with cut-offs 
smaller than 15 Å are not recommended because they give rise to severe artefacts in the 
simulations, in particular for inhomogeneous systems and at interfaces between regions of high and 
low dielectric constants. Moreover, truncation will of course not give accurate results if the binding 
of ligands gives rise to changes in the conformation of the protein outside the truncated region that 
is different for different ligands and significantly affects the binding.  

Still, the results in Figure 4c are promising, showing that if the truncation is made after the MD 
simulation (i.e. if the MM free energies are calculated for truncated snapshots without periodicity 
from the original MD simulation), the average truncation error is less than 0.9 kJ/mol for all tested 
radii (maximum error less than 1.4 kJ/mol). At first thought, this may not seem very impressive, 
because the time consumption is completely dominated by the MD simulations. However, the 
results show that post-processing of FEP results can be performed with much smaller systems than 
those simulated by MD. This would be of great interest if the post-processing is performed with a 
more expensive energy function, e.g. a polarisable force field or with quantum-mechanical methods. 
However, it should be noted that such free energies are strictly not valid, because they are based on 
structures sampled with one method and energies calculated with another method.45 Still, many 
widely used approaches ignore this problem, e.g. the MM/GBSA approach for ligand binding, for 
which structures are sampled by MD in explicit solvent, whereas energies are calculated with a 
continuum-solvation method.46,47  
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Table 1. Results for the FEP calculations on DHFR with the full enzyme (kJ/mol). Experimental 
results16 and results from our previous calculations with a spherical system and only three λ values7 
are also included. Note that two of the transformations were studied in the opposite direction in that 
study. In the second part of the table, quality measures for the calculated data are given: the mean 
absolute deviation (MAD) from experimental results, root-mean-squared deviation (RMSD), the 
slope of the best correlation line, the correlation coefficient (r2), Kendall's rank-correlation 
coefficient, based only on the calculated transformations (τr), and the same coefficient evaluated 
only for differences that are statistically significant at the 90% level (τr,90). 
 
 periodic, 13 λ spherical, 3 λ7 Exp.16 

 
A→F 1.76±0.12 2.7±0.6 3.0±0.9 
B→A 0.02±0.02 -0.1±0.04 1.7±0.9 
C→A -0.71±0.04 -0.1±0.1 1.0±0.9 
E→G 7.71±0.05 2.9±0.2 7.1±0.4 
F→E 0.65±0.10 2.9±0.6 0.5±0.4 
F→H 7.62±0.06 2.8±0.2 4.2±0.4 
H→G 0.93±0.10  3.4±0.4 
MAD 1.6±0.2 1.9±0.3  
RMSD 1.9±0.2 2.3±0.2  
slope 1.02±0.05 0.51±0.03  
R2 0.79±0.04 0.66±0.06  
τr 0.71±0.11 0.33±0.20  
τr,90 1.00±0.02 1.00±0.02  
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Table 2. Experimental14 and calculated relative binding affinities for fXa (kJ/mol) with the full 
protein. Results from our three previous investigations were also included.7,10,11 The second part of 
the table lists the same quality measures as in Table 1.  

 
 Exp.14 periodic, 11 λ spherical, 3 λ7 spherical, 11 λ11 periodic, 9 λ10 
5→47 -4.9 -2.4±0.8 0.5±0.5 0.2±0.3  
53→9 -1.9 -1.7±0.5 -0.4±0.3 -0.6±0.1 -1.2±0.5 
53→47 -2.5 -0.7±0.4 -1.6±0.6 -1.1±0.2 -1.1±0.5 
53→49 2.5 -0.2±0.5 1.2±0.2 -1.1±0.1 -1.8±0.6 
53→50 -1.9 -0.9±0.6 0.8±0.2 -0.4±0.1 -0.2±0.7 
53→51 3.5 -1.8±0.6 0.5±0.2 -0.6±0.1  
125→53 -1.0 -2.1±0.3 -0.3±0.1 -0.2±0.1 -2.4±0.4 
63→39 10.1 0.0±0.6 -10.3±0.7 -3.8±0.2 -4.0±0.8 
MAD  3.1±0.7 4.5±0.7 3.9±0.7 3.9±0.8 
RMSD  4.3±0.8 7.6±0.9 5.6±0.8 6.1±1.1 
slope  0.1±0.1 -0.6±0.1 -0.2±0.04 -0.3±0.1 
R2  0.06±0.07 -0.54±0.12 -0.53±0.12 -0.41±0.14 
τr  0.25±0.28 0.25±0.27 0.00±0.26 0.33±0.32 
τr,90  1.00±0.29 -1.00±0.00 -1.00±0.00 -1.00±0.00 
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Figure	1.	The	seven	DHFR	ligands	considered	and	the	six	studied	transformations.	
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Figure	2.	Factor	Xa	ligands	and	transformations	considered	in	this	study.	The	three	groups	in	
brackets	in	the	upper	right	part	of	the	figure	are	the	R1,	R2,	R3	groups,	whereas	the	single	
group	in	the	lower	right	part	is	the	R4	group.	
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Figure 3. DHFR before (a) and after (b) the r = 10 Å truncation. The ligand is shown in green space 
filling, the protein in yellow sticks and water molecules in wireframe. In (b) restrained atoms are 
shown in red. 
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Figure 4. Effect of the truncations of the FEP calculations for DHFR. The results are presented as 
the absolute difference between the full and the truncated simulation for each of the six studied 
transformations for DHFR. The last column shows the mean absolute error (MAE) over the six 
transformations. (a) Standard calculations with atoms within r and r – 4 Å restrained towards the 
crystal structure with a force constant of kres = 4184 kJ/mol/Å2. (b) The same calculations, but with 
free energies calculated without periodicity. (c) The same calculations, but truncated after the MD 
and calculated without periodicity. (d) Calculations performed with kres = 1.3 kJ/mol/Å2. The 
uncertainties in the truncation errors are 0.03–0.17 kJ/mol. 
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Figure 5. Effect of the truncation of the FEP calculations for fXa. The results are presented as the 
absolute difference between the full and the truncated simulation for each of the eight studied 
transformations. The last column shows the mean absolute error (MAE) over the eight 
transformations. The individual bars for the various transformations show the error for the specific 
cut-off radii, r. Calculations with kres = (a) 4124 or (b) 1.3 kJ/mol/Å2 (force constant for the restraint 
towards the starting structure for atoms between r and r – 4 Å). The uncertainties in the truncation 
errors are 0.3–0.8 kJ/mol. 
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