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Abstract

We present a practical and easy-to-run in silico workflow exploiting a structure-based strategy 

making use of docking simulations to derive highly predictive classification models of the 

androgenic potential of chemicals. Models were trained on a high-quality chemical collection 

comprising 1689 curated compounds made available within the CoMPARA consortium from the 

US Environmental Protection Agency and were integrated with a two-step applicability domain 

whose implementation had the effect of improving both the confidence in prediction and statistics 

by reducing the number of false negatives. Among the nine androgen receptor X-ray solved 

structures, the crystal 2PNU (entry code from the Protein Data Bank) was associated with the best 

performing structure-based classification model. Three validation sets comprising each 2590 

compounds extracted by the DUD-E collection were used to challenge model performance and the 

effectiveness of Applicability Domain implementation. Next, the 2PNU model was applied to 

screen and prioritize two collections of chemicals. The first is a small pool of 12 representative 

androgenic compounds that were accurately classified based on outstanding rationale at the 

molecular level. The second is a large external blind set of 55450 chemicals with potential for 

human exposure. We show how the use of molecular docking provides highly interpretable models 

and can represent a real-life option as an alternative nontesting method for predictive toxicology.
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1. Introduction

In the past several decades, the exposure of people and environmental species to xenobiotics 

has dramatically increased (Egeghy et al., 2012; Judson et al., 2009) due to the use and 

manufacture of tens of thousands of natural and synthetic chemicals, derived from 

agricultural and industrial processes as well as from medical applications. It is suspected that 

some of these are responsible for a broad spectrum of adverse health effects seen in humans 

and wildlife (Diamanti-Kandarakis et al., 2009; Mrema et al., 2013). In particular, risks are 

posed by exposure to chemicals interfering with the physiological functioning of the 

endocrine system whose dysregulation can cause adverse effects in an intact organism or its 

progeny (Kavlock et al., 1996; Testai et al., 2013; Zoeller et al., 2012). It is widely 

acknowledged that the mode of action of well-known endocrine disrupting chemicals 

(EDCs) consists of either mimicking the interaction of natural hormones at the receptor level 

or of altering synthesis, transport, and metabolism pathways (Schug et al., 2011). A well-

known case is diethylstilbestrol (DES), a synthetic estrogenic drug (Bibbo et al., 1975) 

widely prescribed until the early 1970s to pregnant women to prevent spontaneous abortion 

and to stimulate fetal growth. DES was banned upon discovery of its causative role in 

affecting the development of the reproductive system and in inducing vaginal cancer after 

puberty in women exposed in utero.(Hoover et al., 2011)

The need to protect human health and the environment has led to the development of 

scientific and regulatory approaches to detecting potential EDCs. A key milestone in this 

area is REACH (EC, 2006), the European regulation whose Annexes explicitly mention 

endocrine disruption as an important toxicological end point. In parallel, the assessment of 

EDCs is a focus of the Endocrine Disruptor Screening Program (EDSP) of the US 

Environmental Protection Agency (US-EPA). Two recent projects carried out under the 

EDSP have combined (quantitative) structure activity relationship ((Q)SAR) models from 

multiple research groups to predict estrogen receptor (ER) and androgen receptor (AR) 

activity of tens of thousands of chemicals in the environment (ER, Collaborative Estrogen 

Receptor Activity Prediction Project (CERAPP) (Mansouri et al., 2016); and AR, 
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Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) (Mansouri et 

al., 2017).

These projects are examples of collaborations between national governments, the chemical 

industry, and academic scientific researchers to develop and apply in silico methods, such as 

QSAR and read-across (Jacobs, 2004; Low et al., 2013; Nicolotti et al., 2009, 2014; 

Patlewicz et al., 2014; Raunio, 2011), as alternatives to animal experimentation, with the aim 

of limiting the in vivo testing of chemicals that is time-consuming, costly, and ethically 

questionable (Devillers, 2009). (Q)SAR and read-across can work well when there is a high 

similarity between a data-poor target chemical whose activity is to be predicted and a panel 

of structural analogues having known toxicological profiles (Devillers et al., 2006). (Q)SAR 

and read-across can often fail when the target chemical and its analogues are built from 

significantly different scaffolds (Jagiello et al., 2016).

To overcome this intrinsic limitation (i.e., lack of data rich analogues with close structural 

similarity to a given target chemical), a strategy that is often adopted in drug discovery 

programs with protein receptor or enzyme targets is to use 3-dimensional information on the 

interaction of the ligand and its protein binding site. This can be especially useful when the 

known active compounds (ones that bind to the protein target) span a range of structural 

classes or backbones. Following this approach, we have used molecular docking to help 

predict whether chemicals could be EDCs through interaction with AR. Molecular docking 

is a very effective method to predict the preferred posing of a given molecule approaching a 

specific target macromolecule to form an energetically stable complex. Docking employs the 

wealth of physicochemical information contained in experimentally solved structures of 

target proteins, in order to infer interactions and other mechanistic knowledge about 

structurally heterogeneous small molecules (Ferreira et al., 2015; Meng et al., 2011). 

Docking benefits from the growing availability of solved crystallographic protein structures 

(https://www.wwpdb.org/stats/deposition). These structures represent a great high quality 

resource for improving the state of the art of predictive toxicology relative to endocrine 

disruption and other modes of action irrespective of their chemical structural class (Nicolotti 

et al., 2008; Vedani and Smiesko, 2009). A docking model was included in the CERAPP 

collaboration (Mansouri et al., 2016; Trisciuzzi et al., 2015) which combined results of a 

large number of in silico models to predict the ability of chemicals to interact with the ER. 

The results of this collaboration are being used to prioritize further testing of potential 

EDCs.

Comparable to estrogenic hormones, androgens are involved in the development and 

maintenance of the sexual reproductive system and secondary physical changes associated 

with puberty (Gao et al., 2005; Wilson, 1999). Recent studies (Emmelot-Vonk et al., 2008; 

Matsumoto et al., 2013) demonstrated that chemicals interfering with AR or dysregulating 

androgen-dependent signaling pathways can be classified as EDCs, and are responsible for 

the onset of several pathological conditions (e.g., decreased sperm counts, increased 

infertility) (Luccio-Camelo and Prins, 2011) or diseases (e.g., testicular dysgenesis 

syndrome, prostate cancer) (Fisher, 2004; Kim et al., 2005).
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The integrated approach of the CERAPP project for evaluating candidate estrogenic 

compounds (Browne et al., 2015; Mansouri et al., 2016) was subsequently adapted to 

identify potential AR active chemicals through the CoMPARA initiative, a large-scale 

modeling collaboration between 35 research groups in the Americas, Europe, and Asia.

Following the CERAPP approach of Mansouri et al. (2016) each participating group in 

CoMPARA developed one or more in silico models using high quality experimental data 

derived from multiple in vitro AR high-throughput screening (HTS) assays (Kleinstreuer et 

al., 2017). The ultimate goal of CoMPARA consisted of deriving consensus scores in order 

to prioritize compounds for further analysis regarding their potential to interact with AR 

(Mansouri et al., 2017)

Building on recently published work (Trisciuzzi et al., 2015), we herein demonstrate a 

practical and easy-to-run protocol employing molecular docking to derive classification 

models able to identify compounds that interact with AR. The models were developed 

within the CoMPARA program using a 3D collection of 1689 chemicals with high-quality 

AR data provided by the US-EPA (Kleinstreuer et al., 2017). Importantly, we illustrate how 

docking-based classification models should be carefully evaluated in the context of 

predictive toxicology and how to interpret related statistical parameters. Special attention is 

given to the definition and implementation of the applicability domain (AD). Interestingly, 

restricting predictions to chemicals within the AD allowed us to improve robustness and 

reliability of our classification model in distinguishing AR active from inactive chemicals. 

From a methodological point of view, this work thus represents the first attempt to extend 

the concept of AD, normally used in (Q)SAR and 3D-(Q)SAR strategies (Gissi et al., 2014; 

Sahigara et al., 2012), to predictive models based on docking simulations.

2. Material and Methods

2.1. Starting training set EPA-ARDB

The starting training data set provided by the US-EPA (subsequently referred to as EPA-

ARDB) consisted of a curated collection of 1689 chemicals having high quality 

experimental data. For each chemical, the AR bioactivity was quantified based on the results 

of 11 AR-related in vitro assays, conducted in HTS measuring the androgen-related activity 

at multiple points along the AR signaling pathway (Kleinstreuer et al., 2017). This data set is 

taken from the Tox21 and ToxCast programs (Kavlock et al., 2012; Tice et al., 2013). For 

classification modeling, a binary (0/1) value was assigned to each compound as a function of 

biological response. The training set contained 205 compounds (i.e., class = 1) acting as 

binders (i.e., approximately 12%), and 1484 compounds (i.e., class = 0) acting as nonbinders 

(i.e., approximately 88%). It is worth noting that the EPA-ARDB includes a relatively small 

fraction of binders, thus resulting in a strongly unbalanced training set. The full set of 1689 

chemicals was supplied as SMILES strings, provided in the Supporting Information.

The training data additionally classified chemicals as being agonist or antagonists, but in the 

current model, we treat all actives as a single class of binders. For the sake of clarity, we 

hereafter refer to androgenic/nonandrogenic compounds as binders/nonbinders, respectively.
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2.2. Molecular docking

Docking simulations were conducted using nine AR crystal structures retrieved from the 

Protein Data Bank (PDB) (Berman et al., 2000) selected as follows: six crystal structures 

previously selected by Kolšek et al. (2014) based on their capability to provide highly 

predictive docking-based classification models, and two of the most recent AR X-ray solved 

crystals available in the PDB (PDB IDs: 5CJ6 (Saeed et al., 2016) and 4QL8 (Ullrich et al., 

2014)). In addition, a crystal structure (PDB ID: 2HVC (Wang et al., 2006)) showing a 

noncanonical binding mode of the cognate ligand compared to the other selected X-ray 

complexes was selected. For further details, the chemical structures of the X-ray cognate 

ligands and their interactions patterns are reported in Table S1. The receptor structures 

considered as targets for docking studies are summarized in Table 1.

All protein structures were refined using Protein Preparation Wizard (Schrödinger Suite 

2016–3) for correcting common problems such as missing hydrogen atoms, incomplete side 

chains and loops, ambiguous protonation states, and flipped residues. The 3D conformations 

of the EPA-ARDB were processed by LigPrep (Schrödinger Suite 2016–3) in order to 

properly generate all the possible tautomers and ionization states at a pH value of 7.0 ± 2.0. 

This procedure increased the database size to 2634 structures. Finally, all of the chemicals 

were docked into the nine pretreated AR protein structures using GOLD (Genetic 

Optimization for Ligand Docking) software (Jones et al., 1997). For all simulations, a 

spherical grid having a radius of 10 Å centered on the center of mass of the cognate ligands 

was used. All the default flexible ligand docking settings from Gold v.5.2 (Jones et al., 1997) 

and the fitness function ChemScore were used. Finally, all the compounds were ranked 

according to their docking scores.

In order to corroborate the robustness of our docking protocol, each original X-ray cognate 

ligand was redocked back into its corresponding protein binding site. Comparing the 

Cartesian coordinates of the corresponding heavy atoms of the obtained poses, the X-ray 

cognate ligands moved back to the original positions with a root mean square deviation 

(RMSD) < 2 Å (Wilantho et al., 2008) as reported in Table S2.

2.3. Applicability Domain (AD)

The AD represents the space of reliability of a model, where the predictions are the result of 

interpolations rather than extrapolations. Basically, the quality of the AD depends on the 

number of chemicals and, more importantly, on the set of molecular descriptors forming a 

model (Gadaleta et al., 2016; Sahigara et al., 2012). In our study, an initial pool of 237 2D 

physicochemical and topological molecular descriptors was generated for each chemical in 

the EPA-ARDB using CANVAS, a cheminformatics program available in the Schrödinger 

Suite (Canvas, Schrödinger Suite 2016–3). To compare the contribution of each descriptor to 

the model reliability, we calculated their statistical population variance. The molecular 

descriptors having population variance equal to zero were discarded, resulting in a final set 

of 162 descriptors. It is worth noting that the AD assessment is strongly influenced by the 

modeling approach and the characteristics of the starting training data set (Sahigara et al., 

2012). In other words, the AD is determined case-by-case based on the pursued data 

modeling strategy (Nembri et al., 2016). In the present investigation, the AD was defined 
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using a two-step approach. First, we applied a range-based method, known as the bounding-

box (Gadaleta et al., 2016; Sahigara et al., 2012): a chemical is inside the AD if its set of 

molecular descriptors falls in the range bounded by the maximum and minimum values of 

the selected molecular descriptors calculated for the EPA-ARDB. In other words, a given 

predicted external compound showing even only one descriptor exceeding the range defined 

by the descriptors calculated over the training set chemicals is considered outside the AD 

(Jaworska et al., 2005). The maximum and minimum values for each molecular descriptor 

defining the bounding-box are listed in Table S3.

Chemicals within the initial AD were then further examined by using the convex-hull 

strategy (Sahigara et al., 2012). Following this geometric-based approach, an interpolation 

space based on the Cartesian coordinates of the top two principal components (PCs), 

obtained from the initial 162 descriptors, was defined.

The model AD is represented by the smallest convex area whose borders describe the 

perimeter of a polygon containing the training set compounds. In order to avoid the 

overestimation of underrepresented areas (Gissi et al., 2013), the polygon area was further 

restricted to an inner region containing the top 95% of EPA-ARDB chemicals on the basis of 

their closeness to the EPA-ARDB centroid in the PC space. In doing that, a given predicted 

external compound located outside the inner polygon is flagged as being outside of the AD.

2.4. Validation set

Three validation sets (VS) were obtained by extracting data from the DUD-E (Directory of 

Useful Decoys Enhanced) database (Mysinger et al., 2012). In particular, a total of 14619 

chemicals relevant to AR interaction were available from the DUD-E web interface (the 

details of individual chemicals can be found at http://dude.docking.org/targets/andr). Three 

VS (hereafter referring to VS1, VS2, and VS3, respectively) comprised 2590 chemicals and 

were all equally sized. In particular, each benchmark database contained the same pool of 

259 binders (10% of the set size), doped with three different groups of 2331 nonbinder 

compounds (90% of the set size) randomly chosen. Notably, duplicate compounds (same 

entry in both the VS and EPA-ARDB) were identified and removed from the validation set.

The 3D structures of all the compounds were processed by LigPrep (Schrödinger Suite 

2016–3) in order to properly generate all the tautomers and ionization states at a pH value of 

7.0 ± 2.0. This procedure increased the three VS sizes to 4323, 4332, and 4364 structures, 

respectively.

2.5. Performance evaluation

As elsewhere described (Trisciuzzi et al., 2015), a statistical confusion matrix was used to 

assess the goodness of fit of the molecular docking strategy to discern binders from 

nonbinders. As shown in Table S4, the confusion matrix contains the instances of 

experimental and predicted classes obtained from each considered classification model 

(Provost and Kohavi, 1998). More specifically, the confusion matrix reports the number of 

experimental positive and negative cases that were correctly predicted, i.e., true positives 

(TPs) and true negatives (TNs), as well as the number of experimental negative and positive 

cases that were incorrectly identified, otherwise called false positives (FPs) and false 
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negatives (FNs), respectively. From a regulatory oriented conservative toxicological point of 

view, it is important to pay special attention to the FNs, whose number should be kept as low 

as possible to minimize the number of truly active compounds predicted to be inactive.

Sensitivity (SE) and specificity (SP) are used to measure the goodness of a classification 

model. They range from 0 to 1, represent the correctly classified proportion of binders and 

nonbinders, respectively, and are defined as parameters:

SE = TP
TP + FN

and

SP = TN
TN + FP

Furthermore, the performance of a classification model is assessed by the receiver operating 

curve (ROC) curve, which reports the variation of SE with respect to 1 – SP values, 

representing the TP and FP rates, respectively. In the present work, the area under the curve 

(AUC) and ROC-based enrichment factor (EF) were computed to evaluate and compare 

different docking-based classification models (Triballeau et al., 2005). The AUC curve 

provides an immediate idea of the goodness in the overall classification irrespective of any 

docking score used as cutoff. AUC values < 0.5 indicate that a given model is worse than a 

random classifier while AUC values > 0.5 indicate that a given model works better than a 

random classifier. The EF is defined as the percentage of binders found in a given early 

fraction of the ranked database, defined as follows:

EF =
HSCR
HTOT

×
DBTOT
DBSCR

where HSCR is the number of binders recovered at a specific percentage level of the binder/

nonbinder ratio of the ranked database, HTOT is the total number of binders for a given 

target, DBSCR is the number of compounds screened at a specific percentage level of the 

database, and DBTOT is the total number of compounds in the database. Notably, we 

considered the percentage of binders found in the top 1% of the ranked EPA-ARDB (EF1%). 

Remarkably, EF1% depends on the binder to nonbinder ratio, and its value should be 

compared to the ideal EF (EFmax) obtained by dividing the total number of compounds of 

database by the total number of binders. The smaller the gap between EF1% and EFmax is, 

the higher the ranks of binders and thus the lower the number of FPs (Li et al., 2009). For 

the EPA-ARDB, the ideal EFmax value is equal to 8.2.

In addition to be useful for drawing ROC curves, SE can be employed to set user-definable 

thresholds (Kolšek et al., 2014). In particular, SE values equal to 0.25, 0.50 and 0.75 were 

chosen to define four classes of binding, for each AR crystal receptor, summarized as 

follows:

• SE ≤ 0.25, the class with very high probability of binding (i.e., hazard molecules)
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• 0.25 < SE ≤ 0.50, the class with high probability of binding (i.e., warning 

molecules)

• 0.50 < SE ≤ 0.75, the class with medium probability of binding (i.e., suspicious 

molecules)

• SE > 0.75, the class with low probability of binding (i.e., safe molecules)

Based on the obtained rankings, the energetic docking scores better approximating the SE-

based thresholds equal to 0.25, 0.50 and 0.75 were identified.

The goodness of the classification can be computed using the following parameters:

NPV = TN
TN + FN

and

PPV = TP
TP + FP

At a given threshold, PPV is related to the probability that a chemical predicted as a binder 

(over-threshold) is actually a binder, whereas NPV is related to the probability that a 

chemical predicted as a nonbinder (under-threshold) is actually a nonbinder. In the present 

work, NPV and PPV values were calculated for each SE threshold (SE = 0.25, SE = 0.50 

and SE = 0.75). The prediction classes were generated automatically by using an in-house 

Python script implementing the computation of PPV and NPV from desired SE.

Given that the EPA-ARDB is strongly unbalanced (i.e., very low number of binders), two 

additional parameters were computed at each set SE threshold, which are the positive/

negative likelihood ratio (+/− LR) and the Balanced Classification Rate (BCR).

The positive (+LR) and negative (-LR) likelihood ratio were computed for each SE threshold 

as follows:

+LR = SE
1 − SP

and

−LR = 1 − SE
SP

A +LR value equal to 4 would indicate a four-fold increase of the probability of a compound 

being a binder with respect to the initial condition before the classification; similarly, a -LR 

= 0.4, shows that, for an under-threshold compounds, the probability to be a binder is equal 

to 4/10 with respect to that at the initial condition. The larger the +LR value (or the lower the 

-LR) is, at a given SE threshold, the better the performance of the classification model. 

Usually applied in the medicine to assess the accuracy of diagnostic tests, the likelihood 
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ratios were herein adapted to evaluate the performance of classification models in the 

toxicological field.

The BCR is a modification of the well-established correct classification rate. BCR awards 

with higher scores those models showing an optimal balance between SE and SP (Sokolova 

and Lapalme, 2009). It is defined as follows:

BCR = SE + SP
2 × (1 − ∣ SE − SP ∣ )

For each given SE threshold (SE = 0.25, SE = 0.50 and SE = 0.75), the best model is 

selected as the one having the highest value of the BCR metric. (68).

3. Results & discussion

3.1. Models evaluation

The entire EPA-ARDB was docked into the binding sites of the nine selected X-ray crystal 

structures, and thereby nine docking-based classification models were derived. For the sake 

of clarity, each classification model is named using the same PDB code of the crystal 

structure used for docking simulations. Notice that the models were derived excluding a 

small fraction of compounds from the training set (i.e., percentage from 2.79% (2PNU) to 

6.09% (2AM9) that are undocked or returning unrealistic (positive) values of docking score 

(see Table S5)). As reported in previous works (Kolšek et al., 2014; Trisciuzzi et al., 2015), 

the goodness of the docking protocol was preliminarily evaluated considering the AUC and 

ROC-based enrichment factor at 1% (EF1%) of the ranked database. ROC curves related to 

the nine classification models are reported in Figure 1 while the corresponding statistical 

parameters are summarized in Table 2.

Notably, the AUC values range from 0.70 to 0.76 demonstrating the high probability of all 

the models to catch binders (or nonbinders) with good accuracy with respect to a random 

choice. Likewise, the EF at 1% displays eligible values comparable to the ideal EFmax (i.e., 

8.2).

At first glimpse, this preliminary analysis shows a good predictive power of the whole 

docking procedure for all the considered models. Indeed, albeit ligand based models 

showing even better performances are available in the literature (Li et al., 2010; Bohl et al., 

2004; Jensen et al., 2011; Waller et al., 1996; Vinggaard et al., 2008) they cannot capture the 

wealth of information on the protein binding sites, thus, making structure-based models 

more easily interpretable according to regulatory purposes.

In particular, 2PNU and 2HVC returned the highest AUC values in agreement with the ROC 

curves depicted in Figure 1. For each AR crystal, the docking scores values corresponding to 

the considered SE thresholds are reported in Table 3.

For each AR crystal structure, the docking scores whose rank are closest to the SE 

thresholds will be designated as values for compound classification.
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In this respect, compounds belonging to EPA-ARDB and ranked above the threshold SE = 

0.25 were considered to have a high probability of binding; on the other hand, chemicals 

ranked below the threshold SE = 0.75 were predicted to have a low probability of binding. 

The remaining compounds were designated as substances difficult to classify and were 

placed into two diverse classes of prediction with two different degrees of potential toxicity, 

namely warning (0.25 < SE ≤ 0.50) and suspicious (0.50 < SE ≤ 0.75), according to their 

docking score values.

The PPVs and NPVs for each SE threshold were calculated (see Table 4). PPVs range from 

29.1 to 64.4 for the first threshold (SE = 0.25) and from 16.8 to 22.3 for the third threshold 

(SE = 0.75). In drug discovery programs, PPVs play a key role to detect potential 

therapeutically active small molecules. Applied to computational toxicology, the focus shifts 

towards the latest fraction of the ranked database (that is below the threshold SE = 0.75). 

The ultimate goal is the prediction of potentially harmful chemicals while minimizing the 

number of FNs. In other words, we could consider acceptable a classification model even if 

it returns a high rate of FPs (low PPVs) but with a low number of FNs (high NPVs) at the 

SE threshold equals to 0.75. This is especially true in a screening and prioritization context 

where there will be follow-up studies to validate the initial positive calls (binders in this 

case). Keeping this in mind, we observe that the NPV values range from 94.0 in the case of 

5CJ6 model to 95.1 in the case of 2PNU model, thus indicating a high general capability to 

minimize FNs. It can also be noted that PPVs displays a larger gap (computed considering 

the maximum and minimum value across all the models) with respect to NPVs. This 

apparent discrepancy is strictly connected to the already discussed unbalanced nature of the 

EPA-ARDB (only approximately 12% of the compounds are binders), which makes it 

difficult to estimate of the best performing classification model. To overcome this issue, we 

exploited more informative statistical parameters: the positive (+LR) and the negative (-LR) 

likelihood ratio and the Balanced Classification Rate (BCR). These parameters are indeed 

independent of the data distribution within the starting training set.

As reported in Table 5, the 2AM9 crystal structure (+LR = 14.33 at SE = 0.25) is potentially 

able to catch binders with a good accuracy for further pharmacological investigations. 

However, as already mentioned, for our toxicological virtual screening application, the 

classification model should minimize the FNs. Consequently, model performance can be 

evaluated by computing –LR at SE = 0.75. Building on this evidence, one can see that 2PNU 

is the best performing model, returning the lowest –LR equal to 0.38 at SE = 0.75. The BCR 

values are similar for all the models at SE = 0.25 (ranging from 0.17 to 0.19) and SE = 0.50 

(from 0.43 to 0.46). Conversely, BCR ranges from 0.47 (2AX9 and 5CJ6) to 0.62 (2PNU) at 

SE = 0.75, hence again confirming, among the different models, the best performance of 

2PNU.

From a methodological point of view, all the models could be ranked according to the sum 

of their ranking positions taking into account three performance parameters (NPV, BCR and 

-LR metrics at SE = 0.75) in order to clarify the best performing classification model).
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As clearly shown in Figure 2, the classification model based on the 2PNU crystal structure 

ranks at the first position for all metrics. Consequently, we can conclude that 2PNU 

produced the best performing model.

3.2. AD assessment using three validation sets

A key stage for the development of a predictive and robust classification model involves the 

validation step (Dearden et al., 2009; Mangiatordi et al., 2016). In this regard, we built three 

VS by extracting data from the DUD-E database. Following the computational details 

described in the Material and Methods section 2.2, all the compounds of each considered VS 

were first docked into the binding site of the selected 2PNU X-ray structure and then the AD 

two-step approach was implemented to assess its effect (see Material and Methods section 

2.3).

Our attention was focused on the class of non-binding molecules set at SE>0.75, given our 

goal of minimizing the number of FNs. Within the non-binding class predicted by 2PNU 

model we detected 7.59% (VS1), 8.00% (VS2) and 8.56% (VS3) of binders thus indicating 

an almost random distribution (i.e., 10%). This disappointing result was reinvestigated by 

implementing the AD. Interestingly, the AD two-step approach had the effect of improving 

statistics significantly. As shown in Table 6, we observed a drop in the occurrence of the 

percentage of true binders (i.e. FNs) within the class of predicted non-binders (i.e., from 

7.59% to 4.42%, from 8.00% to 4.59% and from 8.56% to 5.09% for VS1, VS2 and VS3 

respectively) after applying both AD filters (VS – Bounding box/Convex hull). In other 

words, AD implementation simultaneously increased model reliability and model 

performance and reduced the FN rate.

The interested reader can look at Table S6 of the Supporting Information to inspect the 

amount of excluded compounds after the application of the first AD filter (VS – Bounding 

box) and after the application of both filters (VS – Bounding box/Convex hull) for all the 

three docked VS.

Figure 3 shows the projection of both EPA-ARDB and VS1 into the top two PCs obtained 

from the 162 descriptors previously computed for each compound of the EPA-ARDB. The 

perimeter of the polygon that defines the smallest convex area containing the top 95% of the 

EPA-ARDB compounds based on their closeness to the centroid is depicted in solid line. 

More specifically, a total number of 253 chemicals (9.76%) falls outside this polygon and 

thereby was excluded from the VS1. Additional details about VS2 and VS3 are reported in 

Figure S1.

The performance of the previously selected classification model (2PNU) was assessed by 

evaluating how the percentage of binders decreases when moving from random selection 

(i.e., 10%) to the AD selection (see Table 6). In particular, the AD filtering effectiveness was 

assessed considering before (total VS) and after the application of the first filter (VS – 

Bounding box) and then adding also the Convex hull filter (VS – Bounding box/Convex 

hull). This allowed us to obtain the best performance in validation among different strategies 

used to define the AD (see Table S7 and the section “Supplementary methodological details” 

in the Supporting Information).
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Taken together, these encouraging results make us confident about the high predictive power 

of the developed model. To the best of our knowledge, this work represents the first 

methodological attempt to integrate docking experiments and AD.

3.3. External predictions of twelve representative androgenic substances and of the 
CoMPARA blind set

To prove its real-life predictive power, our model was challenged with two additional tests. 

The first challenge consisted of the prediction of 12 reference androgenic substances. In this 

respect, two groups of chemicals were chosen: six drugs (R1881, nandrolone, ketoprofen, 

diclofenac, naproxen, and ibuprofen) and six compounds widely employed for industrial and 

commercial uses (bisphenol A, dichlorodiphenyldichloroethylene better known as p,p′-
DDE, 2,2′,4,4′,5-pentabromodiphenyl ether better known as PBDE-99, methylparaben, 

propylparaben, and butylparaben).

R1881 and nandrolone are synthetic anabolic steroid analogues of testosterone. R1881, also 

known as methyltrienolone, binds the AR with a high affinity and therefore is used as a 

marker in prostatic tumors (Roediger et al., 2014); nandrolone and its ester form are 

employed for testosterone replacement therapy in hypogonadotropic hypogonadism and in 

AIDS-associated cachexia (de Souza and Hallak, 2011). Ketoprofen, diclofenac, naproxen, 

and ibuprofen are four nonsteroidal anti-inflammatory drugs (NSAIDs) mainly used in 

treatment of acute pain and chronic arthritis (Ezechiáš et al., 2016). Bisphenol A,(79–81) 

commonly abbreviated as BPA, is a key constituent of epoxy resins and one of the most 

common forms of polycarbonate plastic largely used in food containers and consumer 

products (i.e., water bottles for infants, kitchen utensils, and medical consumables) (Geens et 

al., 2012). p,p′-DDE, the main metabolite of DDT, is an organochlorine pesticide that 

bioaccumulates in the environment and directly interacts with the AR (Gray et al., 2006; 

Kelce et al., 1995). PBDE-99 is a flame retardant added to manufactured materials such as 

plastics, textiles, and surface finishes and coatings (Gray et al., 2006). The parabens are a 

class of parahydroxybenzoates or esters of parahydroxybenzoic acid with a broad spectrum 

of commercial applications such as personal care products, pharmaceuticals, and bactericidal 

and fungicidal preservatives (Rastogi et al., 1995).

Interestingly, none of these 12 chemicals violated the AD two-step approach and are thus 

considered inside the AD of our model. We compared the docking score of each of these 

representative compounds with the values approximating the SE thresholds of the 2PNU 

classification model (see Table 3). Figure 4 reports the progression of the docking scores for 

each compound of EPA-ARDB docked on 2PNU as a function of ranking. Note that the 

graph is split according to the SE thresholds and translated into four color-coded regions 

corresponding to four binding classes of compounds with a different degree of binding 

probability: (i) high probability of binding (red class); (ii) warning molecules (orange class); 

(iii) suspicious molecules (yellow class); and (iv) nonbinding molecules (green class). Based 

on these criteria, we placed the 12 selected substances in the four binding classes as depicted 

in Figure 4.

For the sake of completeness, the values of docking scores obtained for each representative 

compound are reported in Table S8.
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From a structural point of view, it is not surprising that R1881 and nandrolone are predicted 

to be binders as both are structurally similar to testosterone. Furthermore, it is also known 

that the wide abuse of the ester form of nandrolone (specifically nandrolone decanoate) by 

athletes in order to enhance their physical performance could be associated with infertility 

and testicular toxicity (Ahmed, 2015). Next, all four of the anti-inflammatory drugs were 

classified as suspicious molecules. In this regard, a recent study (Ezechiáš et al., 2016) 

warns of the intrinsic endocrine disrupting nature of these pharmaceuticals that contribute to 

explain a wide range of adverse health effects on human reproductive systems. For instance, 

ketoprofen is predicted with the best docking score value among the other NSAIDs in 

accordance with greatest ability to interact with the AR (Ezechiáš et al., 2016).

In the second group of industrial chemicals, three out of six are predicted to be warning 

compounds. The European Union and Canada have indeed banned the use of BPA in baby 

plastic bottles and infant formula packaging (Fischnaller et al., 2016; Kolšek et al., 2015). 

Additionally the use of p,p′-DDE and PBDE-99 are strictly restricted in several pieces of 

legislation, as they are persistent organic pollutants (POPs) that act as competitive inhibitors 

of AR binding (Gray et al., 2006; Kojima et al., 2013; Stoker et al., 2005). The parabens are 

chemicals with weak potential endocrine activity. It has been demonstrated that their 

endocrine activity increases with the size of the alkoxy ester group (Darbre and Harvey, 

2008). It is worth noting that docking scores increase as a function of the length of the alkyl 

group (butyl > propyl > methyl). In particular, butylparaben has a docking score very close 

to the threshold of the class of suspicious molecules, whereas methylparaben and 

propylparaben are classified as nonbinding chemicals. Accordingly, a study (Kolšek et al., 

2015) has recently documented that these two substances do not have androgenic activity.

Finally, encouraged by successful performance on the three VS and on 12 representative 

androgenic compounds, the 2PNU classification model was employed in the CoMPARA AR 

activity prediction challenge using a blind set consisting of 55450 chemicals provided by 

US-EPA.

First, the AD two-step approach was applied to check whether the external compounds were 

inside/outside AD. Specifically, 6912 chemicals (12.46%) were excluded by the application 

of both of the AD filters. Figure S2 depicts the projection of both EPA-ARDB and external 

data set compounds into the top two PCs obtained from the 162 descriptors.

Finally, the remaining 48538 chemicals were screened using the selected classification 

model. Considering the classification criteria, 3073 chemicals were classified as binders (SE 

≤ 0.25) and 27730 substances as nonbinders (SE > 0.75). We also discerned the intermediate 

subclasses with different degree of binding affinity of 6725 and 10275 chemicals 

corresponding to warning (0.25 < SE ≤ 0.50) and suspicious (0.50 < SE ≤ 0.75) compounds, 

respectively.

4. Conclusion

In the present study, we proposed an innovative and practical in silico protocol which 

exploits the use of molecular docking to derive highly predictive classification models able 
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to identify potential androgenic chemicals. The best performing model was derived from a 

starting training set of high-quality androgenic experimental data and was successfully 

challenged against a large blind external set. We also implemented the use of AD to define 

the areas of the chemical space where model predictions can be considered reliable. The AD 

implementation had the effect of significantly increasing the reliability of the docking 

model. To the best our knowledge, this is the first investigation aiming at integrating AD and 

docking-based toxicology studies.

The success of molecular docking in distinguishing binder from nonbinder chemicals with a 

high level of confidence can pave the road to its acceptance as a valuable nontesting method 

for regulatory purposes alongside QSAR and read-across approaches. More importantly, 

docking results can intrinsically provide an easier and more comprehensive mechanistic 

interpretation and thus add a valuable plus to the model beyond its mere statistical validity. 

This indeed matches the expectations of the OECD principles explicitly claiming “a 

mechanistic interpretation, if possible” for the validation of (Q)SAR (Gissi et al., in press; 

OECD, 2007).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Receiver operating characteristic (ROC) curves derived from the nine selected AR structures 

(PDB IDs: 2AM9, 2AX9, 2PNU, 3B66, 3L3X, 3RLJ, 5CJ6, 4QL8 and 2HVC). Each 

classification model is named as the PDB code of the crystal structure employed to perform 

docking simulations. Red line: AUC = 0.50; black line: AUC = 1.0. All ROC-curves are 

colored as defined in the legend.
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Figure 2. 
Summary of the crystals ranking obtained by the three statistical metrics (NPV, -LR and 

BCR) computed at SE = 0.75. NPV: Negative Predictive Value; -LR: Negative likelihood 

ratios; BCR: Balanced Classification Rate.
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Figure 3. 
The projection of both EPA-ARDB and VS1 into the top two PCs obtained from the 162 

descriptors computed for each compound of the EPA-ARDB. The outer polygon (dashed 

line) takes into accounts all the chemicals in the EPA-ARDB (black circles), while the inner 

polygon (solid line) retains the 95% of them. Chemicals of the VS1 (red circles) outside the 

inner 95% polygon are flagged as outside AD.
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Figure 4. 
Progression of docking scores for EPA-ARDB compounds based on the 2PNU docking-

based classification model. Twelve representative chemicals were assigned to a given 

binding class according to their docking scores. The curve is color-coded on the basis of 

binding class: the hazard, warning, suspicious and safe class is in red, orange, yellow and 

green, respectively.
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Table 1.

Detailed information of the nine selected X-ray crystal structures.

PDB
CODE Cognate ligand Ligand

effect Resolution(Å)
R-

Value
Free

References

2AM9 testosterone agonist 1.64 0.230 (Pereira de Jésus-Tran et al., 2006)

2AX9 (R)-3-bromo-2-hydroxy-2-methyl-n-[4-nitro-3(trifluoromethyl)phenyl]propanamide] agonist 1.65 0.249 (Bohl et al., 2005)

2PNU (5S,8R,9S,10S,13R,14S,17S)-13-{2-[(3,5-difluorobenzyl)oxy]ethyl}-17-hydroxy-10-
methylhexadecahydro-3h-cyclopenta[a]phenanthren-3-one agonist 1.65 0.205 (Cantin et al., 2007)

3B66 4-{[(1R,2S)-1,2-dihydroxy-2-methyl-3-(4-nitrophenoxy)propyl]amino}-2-(trifluoromethyl)benzonitrile agonist 1.65 0.242 (Bohl et al., 2008)

3L3X 5-alpha-dihydrotestosterone agonist 1.55 0.206 (Zhou et al., 2010)

3RLJ (2S)-3-(4-cyanophenoxy)-n-[4-cyano-3-(trifluoromethyl)phenyl]-2-hydroxy-2-methylpropanamide antagonist 1.90 0.265 (Duke et al., 2011)

5CJ6 agonist 2-chloro-4-{[(1R,2R)-2-hydroxy-2-methylcyclopentyl]amino}-3-methylbenzonitrile agonist 2.07 0.222 (Saeed et al., 2016)

4QL8 2-chloro-4-[(3S,3aS,4S)-4-hydroxy-3-methoxy-3a,4,5,6-tetrahydro-3H-pyrrolo[1,2-b]pyrazol-2-yl]-3-
methylbenzonitrile agonist 2.10 0.275 (Ullrich et al., 2014)

2HVC 6-[bis(2,2,2,-trifluoroethyl)amino]-4-(trifluoromethyl)quinolin-2(1h)-one agonist 2.10 0.253 (Wang et al., 2006)
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Table 2.

Area under the curve (AUC) of receiver operating characteristic (ROC) curves and enrichment factor at 1% 

(EF1%) relative to the Protein Data Bank entries (PDB IDs: 2AM9, 2AX9, 2PNU, 3B66, 3L3X, 3RLJ, 5CJ6, 

4QL8 and 2HVC).

PDB
CODE AUC EF1%

2AM9 0.75 8.2

2AX9 0.70 3.2

2PNU 0.76 6.7

3B66 0.72 4.7

3L3X 0.75 7.6

3RLJ 0.70 4.1

5CJ6 0.72 6.9

4QL8 0.74 6.4

2HVC 0.76 8.0
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Table 3.

Docking scores related to the applied SE-based thresholds (docking scores are expressed as kJ/mol).

PDB
CODE SE=0.25 SE=0.50 SE=0.75

2AM9 −34.76 −29.21 −22.66

2AX9 −32.90 −28.13 −22.63

2PNU −37.72 −31.34 −25.67

3B66 −35.22 −30.47 −24.18

3L3X −33.94 −29.47 −23.01

3RLJ −34.53 −30.61 −24.10

5CJ6 −34.59 −29.32 −22.55

4QL8 −34.99 −31.05 −24.68

2HVC −36.22 −31.51 −24.69
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Table 4.

Negative and positive predictive values computed at three SE-thresholds (SE = 0.25, SE = 0.50 and SE = 

0.75).

PDB
CODE

SE=0.25 SE=0.50 SE=0.75

PPV NPV PPV NPV PPV NPV

2AM9 64.4 91.1 34.7 93.2 17.8 94.6

2AX9 48.0 90.8 27.7 92.7 16.8 94.1

2PNU 42.1 90.3 29.5 92.5 22.3 95.1

3B66 33.1 90.3 27.1 92.5 18.5 94.4

3L3X 58.8 91.0 36.5 93.2 19.3 94.9

3RLJ 29.1 90.0 27.0 92.3 18.7 94.3

5CJ6 60.0 90.8 31.7 92.9 16.9 94.0

4QL8 47.5 90.7 34.3 93.0 19.8 94.8

2HVC 60.0 90.9 39.3 93.3 20.2 95.0
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Table 5.

Positive (+LR) and the negative (−LR) likelihood ratio and the Balanced Classification Rate (BCR) computed 

at three SE-thresholds (SE = 0.25, SE = 0.50 and SE = 0.75).

PDB
CODE

SE=0.25 SE=0.50 SE=0.75

+LR −LR BCR +LR −LR BCR +LR −LR BCR

2AM9 14.33 0.75 0.17 4.11 0.56 0.43 1.68 0.44 0.52

2AX9 6.97 0.77 0.18 2.92 0.60 0.45 1.53 0.48 0.47

2PNU 5.38 0.77 0.18 3.06 0.59 0.45 2.10 0.38 0.62

3B66 3.69 0.79 0.19 2.76 0.61 0.45 1.69 0.44 0.52

3L3X 11.09 0.76 0.17 4.39 0.56 0.43 1.83 0.42 0.56

3RLJ 2.99 0.81 0.19 2.70 0.61 0.46 1.68 0.44 0.52

5CJ6 11.04 0.76 0.17 3.48 0.58 0.44 1.53 0.48 0.47

4QL8 6.86 0.77 0.17 3.94 0.56 0.43 1.86 0.41 0.56

2HVC 11.55 0.76 0.17 4.93 0.55 0.43 1.92 0.40 0.58
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Table 6.

Percentage of binders found at SE >0.75 in the class of predicted non-binders. Based on 2PNU model only 

(total VS), after the application of the first AD filter (VS – Bounding box) and after the application of both AD 

filters (VS – Bounding box/Convex hull) on the three VS.

VS1 VS2 VS3

total VS 7.59% 8.00% 8.56%

VS – Bounding box 7.09% 7.51% 8.09%

VS – Bounding box/Convex hull 4.42% 4.59% 5.09%
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