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Abstract

Domains that belong to immunoglobulin (Ig) fold are extremely abundant in cell surface receptors, 

which play significant roles in cell-cell adhesion and signaling. Although the structures of domains 

in Ig fold share common topology of β-barrels, functions of receptors in adhesion and signaling 

are regulated by the very heterogeneous binding between these domains. Additionally, only a 

small number of domains are directly involved in the binding between two multi-domain 

receptors. It is challenging and time-consuming to experimentally detect the binding partners of a 

given receptor, and further determine which specific domains in this receptor are responsible for 

binding. Therefore, current knowledge in binding mechanism of Ig-fold domains and their impacts 

on cell adhesion and signaling is very limited. A bioinformatics study can shed lights on this topic 

from a systematic point of view. However, there is so far no computational analysis on the 

structural and functional characteristics of entire Ig fold. We constructed non-redundant structural 

datasets for all domains in Ig fold, depending on their functions in cell adhesion and signaling. We 

found that datasets of domains in adhesion receptors show different binding preference from 

domains in signaling receptors. Using structural alignment, we further built a common structural 

template for each group of domain dataset. By mapping the protein-protein binding interface of 

each domain in a group onto the surface of its structural template, we found binding interfaces are 

highly overlapped within each specific group. These overlapped interfaces, as we called consensus 

binding interfaces, are distinguishable among different datasets of domains. Finally, the residue 

compositions on the consensus interfaces was used as indicators for multiple machine learning 

algorithms to predict if they can form homotypic interactions with each other. The overall 

performance of the cross-validation tests shows that our prediction accuracies are ranged between 

0.6 and 0.8.

1. Introduction

Cells adapt to their surrounding environments by forming dynamic contacts with each 

other1, 2. The process of forming these intercellular contacts, called cell adhesion, is 

maintained by the molecular interactions between receptors expressed on surfaces of 

respective cells3, 4. The binding of cell surface receptors further triggers multiple 

intracellular signaling pathways5 and finally leads to the phenotypic variation of cells6 
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(Figure 1a). Based on these facts, it is appreciated that cell surface receptors are critical 

components in adhesion and signaling7, 8. Immunoglobulin (Ig) fold, as the largest and the 

most typical class of domains for cell surface recognition9, are widely distributed in many 

types cell surface receptors that involve in adhesion and signaling10. The genes encoding 

domains that belong to Ig fold include both multigene and single-gene representatives11. 

They possess of common structural features of a β-sandwich framework (Figure 1e) with 

hypervariable loops12. Ig-fold cell surface receptors play essential roles in regulating 

diversified functions that are closely relevant to human health. For instance, the binding 

between Ig domains in T cell receptors (TCR) and major histocompatibility complex (MHC) 

triggers the T cell signaling pathway during immune response13-16, while the differential 

binding between domains of specific types of cadherin superfamily are the major driving 

force of tissue morphogenesis during embryonic development17. As a result, the diverse 

functions of receptors in cell adhesion and signaling are conducted by the binding of their 

Ig-fold domains which share high structural similarity. The underlying question is: how 

functional diversity of Ig-fold domains is encoded in their common structural template.

There is a more straightforward way to ask above question: if it is possible to distinguish 

binding between different Ig domains based on their sequences which all end up with similar 

structures. One extreme case is to identify the Ig-fold domains that are directly involved in 

binding from others that have no binding targets. The reason for doing this is due to the fact 

that most cell surface receptors contain multiple copies of Ig-fold domains in their 

extracellular regions18-20. However, not all these domains are involved in the functional 

dimerization of receptors. For an example, the extracellular region of the Down syndrome 

cell adhesion molecule (DSCAM) consists of 10 Ig-like domains and 6 Fibronectin domains. 

Among these domains, only domains Ig2, Ig3 and Ig7 are directly involved in the 

intermolecular contact21. Generally, in order to elucidate the function of a cell surface 

receptor, it is necessary to determine which specific domains of the receptor are responsible 

for binding with its partner22. This task is traditionally accessed either by structural 

determination of entire complex of the receptor and its binding partner, which is only 

succeeded in a very few limited cases23-25, or by carrying out site-directed mutagenesis on 

residues in each domain to detect whether these mutations can affect binding of the 

receptor26-28. Unfortunately, it is intractable to enumerate all possible domain combinations 

by brute-force screening every single residue, not to mention the fact that many of the 

receptor’s binding targets are unknown. Therefore, current knowledge on binding of Ig-fold 

domains and their impacts on cell adhesion and signaling is very limited. Computational 

approaches that capable of offering predictive analysis to the functions of Ig-fold domains 

provide a complementary strategy. In practice, these methods can to a great extent reduce the 

complexity of experimental tests by providing a shortlist of functional domains in a receptor 

for verification. This can greatly facilitate our understanding to the molecular mechanism of 

receptors in cell adhesion and signaling. Cyrus Chothia and coworkers made pioneering 

analysis to the structural determinants in sequences of Ig domains29, 30. Many computational 

and bioinformatics efforts were followed on structural and functional characterization of 

domains in different superfamily of Ig fold31-35. To the best of our knowledge, a systematic 

evaluation to the structural similarity of the entire Ig fold, especially in the context of their 

functional allocation in cell adhesion and cell signaling, has not been documented.
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In this article, we analyzed the structure-function relationship for protein domains in the 

entire Ig fold. All cell surface receptors that participate in cell-cell adhesion and signaling 

have been selected from the UniProt database36. All domains that belong to the Ig fold were 

curated from these proteins. These domains were classified into different groups based on 

their sequence and function similarity. For each specific group, a non-redundant structural 

dataset was constructed. Each item in the dataset contains not only the spatial coordinates, 

but also the information about its state in domain-domain interactions. Each group of protein 

domains shows different binding preference, corresponding to their cellular functions. Using 

structural alignment, we further built a common structural template for each group of 

domain dataset. By mapping the protein-protein binding interface of each domain in a group 

onto the surface of its common structural template, we found these binding interfaces are 

highly overlapped for each specific group. These overlapped interfaces, as we called 

consensus binding interfaces, are distinguishable among different groups of domains. We 

used the residue compositions on the consensus interfaces of an Ig-fold domain as indicators 

for multiple machine learning algorithms to predict if it can bind to different types of 

domain targets. Cross-validation results show that we achieved reasonably high accuracy for 

domains that are involved in homo-dimerization. Therefore, our study served as the first 

predictive method that can recognize homotypic binding between domains in different 

functional classes of Ig fold. The results brought valuable insights to the molecular 

mechanisms of protein-protein interactions in the diverse functions of cell surface receptors.

2. Models and Methods

2.1. Construct non-redundant datasets for Ig-fold domain structures

Our study mainly focuses on Ig-fold domains in membrane proteins which function as 

receptors in adhesion and signaling on cell surfaces. The first step is to generate the lists for 

all adhesion or signaling receptors by searching the UniProt database36. The next step is to 

find Ig-fold domains from the list by searching the Pfam database37. Ig-fold domains in most 

cell surface receptors are from two Pfam clans: the immunoglobulin superfamily (CL0011) 

and the immunoglobulin-like fold superfamily (CL0159). Structures of domains selected 

from these two clans were further obtained by downloading its three-dimensional 

coordinates from the Protein Data Bank (PDB)38. Different binding modes were recorded 

for all Ig-fold domains in the datasets. Specifically, if a domain has binding partner, three 

types of binding modes were denoted. The first is heterotypic binding (HETE) which 

indicate binding is formed between different types of protein (Figure 1b). The second is 

homotypic binding between different domains (HODD), which indicate the binding is 

formed through different domains of two proteins with the same type (Figure 1c). The third 

is homotypic binding between same domains (HOSD), which indicate the binding is formed 

between two proteins of the same type through the same domains (Figure 1d). It is worth 

mentioning that the binding model of a domain is not exclusive, considering it can have 

more than one binding partners.

There is repetitive information in the datasets derived from Pfam. The redundancy was 

removed in order to carry out statistically meaningful analysis on the datasets. As a result, 

147 domains that belong to Ig superfamily (CL0011) were left for adhesion receptors. 
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Similarly, 112 domains were left for adhesion receptors that belong to Ig-like fold 

superfamily (CL0159). For signaling receptors, 149 domains from CL0011 were left and 47 

domains that belong to CL0159 were left. The detailed information of final datasets can be 

downloaded online, and the procedure of dataset construction is in the supplemental 

documents.

2.2. Generate consensus binding interfaces of Ig-fold domains by structural alignment

A large portion of domains in the non-redundant datasets form interactions with domains in 

other proteins, through which these proteins can aggregate into hetero-oligomers or homo-

oligomers. In order to understand the functional similarity among domains in the datasets, 

the first step is to structurally align domains together so that their binding interfaces can be 

quantitatively compared with each other. However, the structures of two domains cannot be 

directly superimposed together, considering the fact that each domain in the datasets has 

different number of amino acids. Moreover, there are small structural variations between 

different domains in terms of the length of each β-strand, connectivity of different strands in 

β-sheets and conformational diversity of each connecting loop. Therefore, we applied the 

algorithm TM-align to carry out the pairwise structural superposition between two 

domains39.

Using TM-align as a tool for structural comparison, we selected a common structural 

template for each of the three datasets. Detailed procedure can be found in the supplemental 

documents. This structural template was used later as a platform to analyze the similarity of 

binding interfaces for different domain in the same dataset. After we selected the structural 

template for a dataset, we can project the binding interface of each domain in the dataset 

onto the corresponding residues of the template. Before the projection, residues that form 

intermolecular contacts with domains of other proteins in a complex were annotated as 

binding residues for all domains in three datasets. If the distance between any atom in the 

sidechain of a given residue and any atoms in other proteins of the complex is below the 

cutoff (5.5 Å), this residue will be marked as binding residue and become part of the binding 

interface of the corresponding domain. Otherwise, if no atom in the sidechain of a given 

residue forms contact with atoms in other proteins, this residue will be excluded from the 

binding interface of the domain. When all binding residues of a domain were identified, the 

entire binding interface was mapped to the structural template of the corresponding dataset. 

Specifically, TM-align was used to implement the superposition between the domain and the 

template. The algorithm generates maximal number of residue pairs between the domain and 

the template by dynamic programming to optimize the spatial superposition. As a result, if a 

residue in the domain belongs to part of the binding interface, its annotation of binding will 

be transformed to its paired reside in the template. The entire binding interface was 

projected to the template after transformations were carried out for all residue pairs.

In more detail, three types of binding interfaces are specifically differentiated, same as 

annotation used in 2.1. Different types of interfaces can coexist in the same domain, 

considering that each domain can have more than one binding partners. For each domain, all 

types of binding interfaces were separately projected to the template. After projecting any of 

the three binding interfaces in all domains of a dataset to their corresponding structural 
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template, the consensus interface for all three different binding modes can be further 

constructed by calculating how many times each residue in the template is counted as part of 

these three binding interfaces. In detail, three variables were assigned to each residue in the 

template, corresponding to the frequencies of the residue that were involved in the three 

different interfaces. By superimposing a domain to the template, the values of variables for 

all residues were updated. The values were added by one to a variable of all residues that 

were marked as the corresponding type of binding interface in the aligned domain. Same 

was carried out for other two variables. After alignment was performed for all domains in 

the dataset, three profiles were generated along the residue index of the template, indicating 

how likely each residue was involved in the potential intermolecular interactions of three 

different types. Consequently, a specific type of consensus binding interface in a structural 

template is made up of all residues which corresponding variable has higher value than an 

empirically determined cutoff. In summary, we generated a structural template for each of 

the three non-redundant domain datasets and three types of consensus binding interfaces for 

each of the three structural templates.

2.3. Predict domain binding state by machine learning

Given the structural template and consensus binding interfaces for each of the three datasets, 

machine learning was applied to predict the binding state of an Ig-fold domain. There are 

three binding states for each domain. Each binding state is a binary signal indicating whether 

this domain forms interactions with domains of other proteins through the corresponding 

binding mode. While the binding state of a domain was the output of machine learning, the 

compositional vector of residues in the consensus binding interface was constructed as 

inputs for machine learning. In order to build the compositional vector of a query domain, 

the structure of the domain was aligned to the template of which dataset the query belongs 

to. This was done by TM-align. A list of residue pairs between the query and the template 

was attained after the structural alignment. The residues in the query were separately 

selected if their paired partners in the template were in one of the three consensus binding 

interfaces. For each interface of the query domain, the composition of selected residues 

constitutes the twenty-dimensional vector. Each dimension of the vector stands for the 

probability of finding a specific type of residue from the selected ones. Consequently, three 

vectors were derived for the query domain, corresponding to the three consensus binding 

interfaces. These vectors were the input indicators of machine learning to identify if the 

query domain interacts with other proteins through the corresponding binding mode.

After formatting the inputs and outputs, different algorithms of machine learning were tested 

to compare the prediction results, including back-propagation neural network (BPNN), 

support vector machine (SVM), and random forest (RF). Details of these algorithms are 

described in supplemental documents. In order to calibrate the behaviors of machine 

learning, cross-validation was separately applied to all three datasets. The leave-one-out 

strategy was used to avoid the potential over-fitting. In detail, three different processes of 

cross-validation were carried out for each dataset, corresponding to the test of three binding 

states. Each process consists of multiple runs of training, which is determined by the number 

of domains in each dataset. During each run of the leave-one-out training, one domain was 

selected from the dataset as the test, while the remaining domains were considered as the 
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training set. Domains in the training set were assigned into two groups based on the 

classification of the specific binding state. Both inputs and outputs of training set were fed 

into the three machine learning algorithms. After training, the residue compositional vector 

of selected test domain was used as input for prediction. The predicted outcome was 

compared with the real binding state. After above leave-one-out training was performed for 

all domains, the overall performance of individual machine learning algorithm to a specific 

dataset and binding state can be attained.

A weighted voting strategy was further proposed to make an integrative decision from 

machine learning outputs. Specifically, the integration of machine learning outputs for a 

given domain D were obtained by calculating the value ∑
i

wiδi D , in which the summation i 

is carried out through all the three algorithms. The delta function δi D is the binary signal of 

the corresponding machine learning output to the domain, which equals 1 if positive results 

are predicted, and −1 if negative results are predicted. The parameter wi gives the weight of 

each machine learning algorithm in the voting, indicating their relative contributions to the 

final prediction. The range for each of the three weights is from 0 to 1. The positive or 

negative output of binding state from the voting, corresponding to with or without binding 

target under specific binding mode, depends on whether the calculated summation is larger 

or smaller than 0. In order to search for the best performance that the cross-validation can 

achieve, the weight space was discretized into small intervals (0.01) and the combinations of 

weights were then enumerated. The weights which optimized the cross-validation results are 

suggested to be used in the real test. Finally, a prediction program is available for download 

at: https://github.com/wujah/IgBDPredictor/. Detailed description of the package can be 

found in supplemental documents.

3. Results

3.1. Binding modes of Ig domains in adhesion and signaling receptors

Non-redundant datasets for different super-families of Ig-fold domains in adhesion and 

signaling receptors have been constructed from the integration of UniProt, Pfam and PDB 

databases. Each domain in these datasets might form different patterns of interactions with 

domains in other proteins. Three specific binding modes were designated to distinguish 

patterns in inter-molecular interactions. As defined in the Methods and Materials section 

2.1, these modes are represented as HETE, HODD and HOSD. By calculating the atomic 

distances of inter-molecular residue pairs, all possibilities of these binding modes for a given 

domain in its complex were attained. The information of binding mode was collected for all 

domains in the three datasets. In order to compare domains in different super-families, or 

domains in receptors with different functional annotations, we carried out an overall 

statistical analysis on the likelihood of occurrence for each binding mode in each of the three 

datasets. The likelihood of occurrence for a given binding mode and dataset was simply 

derived by calculating the ratio of the number that this mode was observed through all 

domains in the dataset versus the total number of domains in the dataset. Consequently, the 

likelihoods of all three binding modes are plotted as histogram in Figure 2 for all three 

datasets.
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In general, Figure 2 shows that a large portion of domains in all three datasets forms 

contacts with other proteins. For instance, over 60% domains of Ig superfamily in adhesion 

receptors (left columns of Figure 2) or signaling receptors (middle columns of Figure 2) 

interact with other proteins, while inter-molecular contacts were found in over 50% domains 

of Ig-like fold superfamily in adhesion receptors (right columns of Figure 2). This indicates 

that inter-molecular interactions play a significant role in functions of proteins that contain 

Ig-fold domains. Among the Ig superfamily domains of adhesion receptors, 35% of them 

form inter-molecular contacts through the HOSD binding mode, 23% through the HODD 

mode and only 9% through the HETE mode. Similarly, among the Ig-like fold superfamily 

domains of adhesion receptors, 26% of them form inter-molecular contacts through the 

HOSD binding mode, 28% through the HODD mode and only 2% through the HETE mode. 

Therefore, homotypic interactions are much more commonly observe in domains of 

adhesion receptors, no matter if they belong to Ig superfamily or Ig-like fold superfamily. 

The homogeneous binding between proteins of the same family is a common feature of cell 

adhesion molecules (CAM). These homotypic interactions are the basis of many 

physiological processes, such as embryonic development and tissue morphogenesis. More 

specifically, it is interesting to find that Ig superfamily domains prefer binding through the 

HOSD mode. On the contrary, Ig-like fold superfamily domains prefer binding through the 

HODD mode. This observation is consistent with a number of examples in which binding 

between different domains that belong to Ig-like fold is formed in the crystal structure of 

different adhesion receptors systems, including proto-cadherin40 and receptor protein 

tyrosine phosphatase (RPTP)41.

In contrast to the adhesion receptors, domains in signaling receptors show different modes of 

binding. In specific, a much higher portion of domains in signaling receptors are involved in 

heterotypic interactions than domains in adhesion receptors. As shown in Figure 2a, 

comparing with 9% in Ig superfamily and 2% in Ig-like fold superfamily of adhesion 

domains, 26% signaling domains form inter-molecular contacts through the HETE binding 

mode. The preference of signaling domains in heterotypic binding is resulted from their 

functions in cells. Different from homotypic interactions between domains of adhesion 

receptors which connect cells of the same type, the heterotypic interactions are formed 

between domains in signaling receptors and their extracellular ligands. This asymmetric 

mode of binding initiates the process of cell signal transduction. Although a large portion of 

signaling domains are involved in heterotypic interactions, it is interesting to find that there 

is still 32% of them form inter-molecular contacts through the HOSD binding mode (middle 

column of Figure 2c). This binding is formed between signaling receptors on surface of the 

same cell. There are examples existing in our dataset. In some cases, homo-dimerization is 

an initial step to their activation and ligand binding. For instance, the back-to-back binding 

between the membrane proximal Ig domains of immune-type receptor glycoprotein VI42 

(PDB id 2GI7) provide a structural basis of this receptor in signaling responses to ligand 

collagen. In contrast, many other receptors containing Ig superfamily domains perform their 

functions through homo-dimerization after they are activated by ligand-binding. One classic 

example is the receptor of human growth hormone43 (PDB id 3HHR), in which a growth 

hormone ligand simultaneously bind with two receptors. In another example, dimer is 
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directly formed between the extracellular ligand binding regions of fibroblast growth factor 

receptors44 (PDB id 1FQ9).

In summary, we carried out statistical studies on large-scale datasets of Ig-fold domains. The 

binding preference of these domains in adhesion receptors shows distinctive patterns from 

domains in signaling receptors. The differences of binding preference are originated from 

the functions of these domains in cell adhesion and signaling. Therefore, we show that 

functional characteristics of membrane receptors can be reflected from the structural basis of 

domain interactions, which will be further justified in the following parts.

3.2. Structural characteristic and function diversity of Ig domains

The Ig fold usually consists of 7 to 10 β-strands. The index of these strands is designated 

from letter A to letter G, as shown in Figure 1e. Depending on the arrangement of these 

strands, domains that belong to Ig fold can be classified into different groups. For instance, 

there are four major sets in Ig superfamily: the V-set, I-set, C1-set and C2-set, in which the 

I-set is a truncated V-set without the C’ and C” strands (Figure 1e). In each Ig fold domain, 

two β-sheets form a β-sandwich framework. One sheet that contains strands C, F and G is 

called CFG face, while the other that contains strands B, E and D is called BED face (Figure 

1e).

In order to find the common structural template, the method TM-align was applied to all 

pairs of domains in the datasets. The average TM-score was calculated for each domain after 

it was aligned to all other domains in the dataset. The domain which has the highest average 

score was selected as the template of the dataset. This procedure was carried out for all three 

datasets. Consequently, the N-terminal domain of human nectin-3 becomes the template of 

the dataset for adhesion domains of Ig superfamily. The domain is ranged from residue 61 to 

residue 167 of the protein45 (PDB id 4FOM). The average TM-score of the template is 

0.727, while a median value of this average score throughout the dataset is 0.641. According 

to the definition of TM-score, two proteins are usually considered to have global structural 

similarity if they have a score higher than 0.546. Therefore, the average score of our selected 

template indicates that it shares significant portion of structure with all other domains in the 

dataset. We further plot a profile in Figure 3a, the number of which describes how many 

alignments were found for each residue in the template. The aligned number n for residue i 
in the profile means this residue was paired to residues in n domains during alignment. 

Figure 3a shows that most parts of the template, especially the two β-sheets, can be aligned 

to almost all domains in the dataset. The only regions with high structural variations are 

located close to the C’ and C” strands that are highlighted with the color code of blue in 

Figure 3b. These regions are well known to be highly variable between different families of 

Ig fold47. Therefore, our results suggest that it is robust to use this domain as the structural 

representation of the dataset. For other two datasets, similar results were attained. The N-

terminal domain of programmed cell death protein 1 becomes the template of the dataset for 

signaling domains of Ig superfamily. The domain is ranged from residue 35 to residue 145 of 

the protein (PDB id 5IUS). The average TM-score of the template is 0.67, while a median 

value of this average score throughout the dataset is 0.61. Finally, the second ectodomain of 

human N-cadherin becomes the template of the dataset for adhesion domains of Ig-like fold 
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superfamily. The domain is ranged from residue 113 to residue 214 of the protein (PDB id 

3Q2W). The average TM-score of the template is 0.68, while a median value of this average 

score throughout the dataset is 0.61. We also calculated the average TM-score for domains 

of one dataset with the template from another different dataset. The results of these cross-

dataset TM-scores are listed in Table S1 of supplemental documents. As shown from the 

table, the TM-scores calculated by templates within the same datasets are always higher than 

those using templates of other datasets.

As shown in Figure 3a, residues in different domains were aligned to the same position of 

the template. In order to check the composition of these aligned residues in different 

positions of the template, we calculated the participation ratio (PR) of each position to 

quantify its conservation of residue type. The PR48, 49 is defined in supplemental documents. 

The value of PR is ranged between 0 and 1. A higher value indicates that residue types are 

more conservative at the corresponding position of the template. On the other hand, a lower 

value means that aligned residue at the position are highly variated. As a result, the profile of 

participation ratio is plotted in Figure 3c across all positions of the template. This plot is for 

adhesion domains of Ig superfamily. The sidechains of residues with the highest PR values 

are highlighted in the atomic representation in Figure 3d. The figure shows that some 

residues are highly conserved among all alignments. These residues can be grouped into 

three classes. A pair of salt bridge is highlighted in orange, while a di-sulfide bond is 

highlighted in green. Additionally, a hydrophobic core that consists of several less conserved 

non-polar residues is highlighted in red of Figure 3d. These sequence signatures from our 

structural comparison are consistent with previous analysis using sequence and structural 

alignments10, 50. We suggest that these conserved residues are the most important building 

blocks that stabilize the overall structural features of domains in Ig superfamily. Our results 

therefore reveal the physical chemical basis to the topological feature of this domain 

superfamily.

After the construction of structural template for each dataset, the frequency of being part of 

the binding interface was further calculated for each residue in the template by transferring 

the binding residues from each domain. In Figure 4 we projected these frequencies onto 

structures of the templates. In the figure, the frequency profiles are represented by 

transparent surfaces with color code, and the backbones of templates are in grey. The 

residues of high frequency are shown by blue regions of the surfaces, corresponding to the 

potential binding interfaces. The low frequency residues are shown in red, corresponding to 

the regions that are less likely involved in binding interfaces. The distributions of frequency 

for different types of binding interfaces in different datasets are plotted. The structures in the 

figure are positioned along the same orientation based on the connectivity of their β-strands. 

Figure 4 shows that binding interfaces are located at specific regions of template surfaces, 

while different types of interfaces in different datasets are highly distinctive.

In detail, the heterotypic binding interfaces (HETE) in Ig superfamily (CL0011) domain 

template of adhesion receptors are mainly concentrated on the surface of its CFG face (the 

left β-sheet in Figure 4a). In comparison, the homotypic binding interfaces (HOSD) in the 

same domain template are more extensively distributed on the surface of both CFG face and 

BED face (Figure 4b). Different from adhesion domains, the HETE binding interfaces in Ig 
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superfamily domains of signaling receptors are mainly concentrated on the surface of its 

BED face (the right β-sheet in Figure 4c). It is worth of mentioning that molecular 

recognitions of antibodies51 and TCR52 are the most important functions of Ig superfamily 

in signaling. The so-called complementarity determining region (CDR) loops53 in the V-set 

domains of these proteins are responsible for recognizing their binding targets, which 

normally don’t belong to Ig fold, such as MHC for TCR54 and HIV-1 gp120 envelope 

glycoprotein for Antibody VRC-PG0455. The regions of these CDR loops, however, were 

not strongly highlighted here in Figure 4c. This is partly because most antibodies are not 

membrane proteins and not included in the datasets. The binding propensity of CDR loops 

can be reflected if we extend our current study by including all Ig domains that are not in 

membrane receptors. Finally, the HOSD interfaces in adhesion domain belonging to Ig-like 

fold superfamily (CL0159) are shown in Figure 4d. Similar to Ig superfamily, the HOSD 

interfaces of Ig-like fold superfamily are also extensively distributed. However, instead of 

being on the surfaces of β-sheets in Figure 4b, the binding interfaces in Figure 4d are mainly 

distributed on the side edges of β-sheets. Overall, these results suggest that homotypic 

interactions between Ig domains are formed through more extensive binding interfaces than 

heterotypic interactions. The heterotypic binding interfaces of Ig domains are more 

specifically evolved. Moreover, distinctive regions of Ig domains are used as binding 

interfaces when they are functioned in adhesion and signaling. Therefore, the functional 

diversity of Ig fold domains is reflected by the distinguish patterns of their binding 

interfaces, although structural features are highly conserved across different families of these 

domains.

3.3. The prediction accuracy of homotypic interactions between Ig domains

After calculating the frequency of being at binding interfaces for each residue in a template, 

the consensus interface of a specific binding mode was constructed as the region in which 

the frequency of all residues is higher than a predetermined cutoff value. We used the top 

20% highest-frequency residues as the relative cutoff value. The residue composition in the 

consensus binding interface was selected as the input features to train different machine 

learning algorithms. We tested if these machine learning algorithms can recognize the signal 

of domain-domain interactions through the HOSD mode. Leave-one-out cross-validations 

were carried out for all three datasets, as described in the Methods. In order to calibrate the 

performance of the cross-validation, the sensitivity, specificity, precision and overall 

accuracy were calculated from the testing results, as defined in supplemental documents.

The overall performance of our testing results is listed in Table 1. The table shows that the 

accuracies are ranged between 0.6 and 0.8 for all three datasets. The accuracies were 

accompanied by the qualified values of specificities and precisions, while the sensitivities 

are relatively low but still on the reasonable levels. The cross-validation results therefore 

suggest that our machine learning algorithms are able to recognize the HOSD binding mode 

for Ig domains in different functional groups and super-families. The high accuracy and 

specificity indicates the reliability of our machine learning method, while the reason of the 

low sensitivity will be discussed in the next paragraph. Moreover, a weighted voting strategy 

was proposed to integrate the test results from all three machine learning algorithms. We 

found that under an optimal combination, this voting mechanism can improve the 
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sensitivities, while maintaining the overall specificities and accuracies. The values of derived 

weights for SVM, RF and BPNN are 0.12, 0.8 and 0.9, respectively. Especially, for domains 

of Ig superfamily in adhesion receptors, we attained the final sensitivity 0.51, with the 

specificity 0.77, precision 0.57 and accuracy 0.69.

It is well-known that protein functions are more conserved in structure space than sequence 

space. In order to evaluate how much more information can be gained from structure 

alignment on the basis of sequence similarity, comparable predictions were performed by 

changing the cutoff value of highest-frequency interface residues as the inputs of machine 

learning algorithm. As a result, if we included more residues with lower-frequency as part of 

the consensus binding interfaces, the testing results became worse. Specifically, if we use the 

top 100% highest-frequency residues, all sequences of a domain will be included as inputs 

and there will be no information on binding interface as structural guidance for prediction. 

In this case, the prediction becomes a purely sequence-based method with the same machine 

learning algorithms and the same format of inputs and outputs. Using this sequence-based 

method, we attained the final results from weighted voting with the sensitivity 0.37, 

specificity 0.78, precision 0.47 and accuracy 0.63 for the dataset of adhesion receptors of Ig 

superfamily. Relative to the prediction against the same dataset with the sensitivity 0.51, 

specificity 0.77, precision 0.57, accuracy 0.69 in the original test which only contains top 

20% residues in the binding interface, the purely sequence-based method resulted in much 

lower sensitivity, precision and accuracy. This indicates that strong sequence signals of 

homotypic binding between Ig domains are located on their binding surfaces. Binding is 

very sensitive to the sequence variations at these regions.

Because three machine learning methods use the same format of inputs and give the same 

format of outputs, the pairwise correlation coefficients between outputs from any of the two 

methods were calculated to investigate how they scored differently. Considering that the 

outputs from the machine learning methods are binary variables, whether or not a domain 

has binding partners, we used φ coefficient to quantify the correlation between different 

methods. The φ coefficient is defined as φ = n11n00 − n10n01 / n1 •n0 •n • 1n • 0. In this 

equation, n11 and n00 indicate the numbers that both methods give positive or negative 

outputs, while n10 and n01 indicate the numbers that one method gives positive outputs and 

the other gives negative outputs. In the denominator, n1● and n●1 indicate the number of 

positive outputs from each of the two methods, and n0● and n●0 indicate the number of 

respective negative outputs. The value of coefficient is ranged from −1 to +1, whereas +1 

stands for the strongest positive correlation, 0 means no correlation, and −1 indicates the 

strongest negative correlation. Consequently, the φ coefficient between support vector 

machine and random forest is 0.41. The φ coefficient between support vector machine and 

BP neural network is 0.54. The φ coefficient between random forest and BP neural network 

is 0.51. Therefore, out results show that outputs from different machine learning methods are 

all positively correlated, although the correlations are not very strong. This explains why the 

consensus voting of these positively, but weakly correlated methods can further improve the 

final predictions.
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Comparing the results of the HOSD mode, our tests on the other two modes led into much 

lower accuracies. This is due to the fact that binding through the HOSD mode is formed by 

two domains of the same types. They share the same consensus binding interface. Therefore, 

information is sufficient to predict if they can interact with each other. On the contrary, 

binding through the HETE or HODD modes is formed by two domains of different types. 

The information from both interfaces should be involved as inputs of machine learning. In 

order to predict if two specific domains interact, machine learning inputs that contain residue 

compositional vectors from binding interfaces of both domains will be taken into accounts 

of future improvement.

Some specific cases of our test results are shown in Figure 5. The domains in the dataset for 

cross-validation are colored in red, while their predicted binding partners are colored in 

green. The rest parts of complexes are colored in grey. Figure 5a and Figure 5b are two 

examples of Ig domains that form homotypic interactions and were correctly recognized by 

our methods. A pair of N-terminal domains from Nectin-256 is shown in Figure 5a (PDB id 

4HZA). Nectin-2 proteins at cell interfaces were found to homo-dimerize through these 

domains. Similarly, the crystal structure of a SYG-1 homodimer is shown in Figure 5b (PDB 

id 4OF3). SYG-1 is a type of multipurpose cell adhesion molecule participating in diverse 

physiological functions such as synapse formation57. Dimers are formed through the N-

terminal domains of these proteins. In both cases of Nectin-2 and SYG-1, their binding 

modes were successfully predicted by only using the information of residue composition at 

their binding interfaces. Comparing with these two examples, Figure 5c and Figure 5d plot 

the protein complexes in which their binding modes were not correctly recognized by our 

methods. The crystal structure of neural cell adhesion molecules NCAM2 is shown in Figure 

5c (PDB id 2WIM). In the cross-validation, they were predicted as forming homodimers 

through the HOSD binding mode of their N-terminal domains (red and green domains in 

Figure 5c). In reality, although NCAM2 proteins form homodimers, binding is taken place 

through the HODD mode between the N-terminal domain of one protein and the second 

domain of the other protein, as shown in Figure 5c58. Therefore, our method successfully 

recognized the binding state of the domain through its interface, but missed the correct 

binding mode. Similar cases exist in datasets as one important source of false positive during 

the cross-validation. Finally, the Protein Tyrosine Phosphatase δ is shown in Figure 5d (PDB 

id 2YD7). The prediction from our method showed that the N-terminal domain of this 

domain is a monomer. However, a homodimer that is formed through the HOSD mode 

between N-terminal domains is found in the crystal structure. In reality, it is found that this 

dimer is not functional under the physiological condition59. The dimer shown in the crystal 

structure is more likely an artificial complex through crystal packing. Therefore, the output 

of our methods on this case should be regarded as a correct recognition. We noticed this is 

one important source of false negative which resulted in the low sensitivity of our cross-

validation results. Cautious removal of those artificial complexes will thus largely improve 

the sensitivity of our test. Future improvement should include methods that can identify 

biological binding interfaces from the crystal packing.
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4. Concluding Discussions

Domains that belong to Ig fold are widely distributed in a large variety of cell surface 

receptors. Functions of these receptors in adhesion and signaling are fulfilled through the 

specific patterns of binding between their domains in the extracellular regions. Moreover, 

although most receptors contain multiple copies of Ig domains, only a small number of them 

are directly involved in binding. This is, however, an important feature of cell surface 

receptors. Receptors need to present their binding sites away from plasma membrane 

surfaces in order to reach out for their ligand. Therefore, due to the large inter-cellular 

distance that is commonly observed during cell adhesion, most extracellular domains of 

receptors serve as building blocks to support a small number of ligand-binding domains, 

which are normally located at the N-terminus of receptors. It is worth of mentioning that the 

I-set of Ig domains or the domains from FN fold often play roles as building blocks, so they 

naturally do not engage in recognition. In contrast, the V-set of Ig domains has high 

tendency to appear at the N-terminus of receptors and engage in ligand recognition.

This heterogeneity in binding of different structurally similar domains leads to the functional 

diversity of receptors, and increases the difficulties in decoding the molecular mechanisms 

of these proteins in cells. In order to bridge the structural and functional characteristics of 

domains in Ig fold, we constructed non-redundant structural datasets for Ig-fold domains 

specifically functioned in cell adhesion and signaling. We found that datasets of domains in 

adhesion receptors show different binding preference from domains in signaling receptors. 

The preference is resulted from the cellular functions of these receptors. A common 

structural template was further been constructed for each group of domain dataset. 

Comparing the template with each domain in the dataset, we found that some regions in the 

template are highly variated in structures, while some other residues are highly conserved in 

sequences across all domains in the dataset. These findings bring insights to the design of 

new protein sequences of this specific fold. After the construction of structural template for 

each dataset, the protein-protein binding interfaces of each domain in the dataset were 

projected onto the surface of the template. We found that distinctive regions of Ig domains 

are used as binding interfaces when they are functioned in adhesion and signaling, while the 

heterotypic binding interfaces are more specifically evolved, comparing with the more 

extensively distributions of homotypic binding interfaces. Finally, the residue compositions 

on the consensus interfaces of Ig-fold domains was used as indicators for multiple machine 

learning algorithms to predict if they can form homotypic interactions with each other.

The accuracies of our predictions are ranged between 0.6 and 0.8 for all datasets. The 

accuracies are high relative to the predictions based on random guesses, which generally 

lead to the accuracy of 0.5. However, it is worth of noting that the high accuracies in the 

study are accompanied with the relatively low sensitivities, which is due to the fact that a 

number of artificial complexes exist in the current datasets through crystal packing, as 

discussed in the results. Especially, for adhesion domains belonging to Ig-like fold 

superfamily (CL0159), the SVM algorithm gave a fairly good accuracy (0.71), although the 

method can only identify a marginal number of domains which actually exhibit a HOSD 

binding mode (sensitivity equals 0.01). Furthermore, if none of the domains is predicted to 

have a HOSD binding mode, high accuracy will be attained for all three datasets (0.65 for 
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the dataset of adhesion domains from CL0011, 0.68 for the dataset of signaling domains 

from CL0011, and 0.74 for the dataset of adhesion domains from CL0159). The high 

accuracies of such extreme prediction are biased by the observation that the majority of 

domains in the datasets don’t have binding partners with HOSD mode. Moreover, the 

accuracies are compensated by absolutely low (0.0) sensitivity and precision. An ideal 

prediction should be a good strategy to balance the scores of sensitivity and specificity. In 

that sense, the positive likelihood ratio (LR+), which is defined as the ratio between 

sensitivity and 1-specificity, can be used to quantify the performance of a prediction. The LR

+ with a value higher than 1 indicates the prediction is better than random guess. 

Consequently, there will be no predictive significance by assuming no domain in a dataset 

has HOSD binding mode, although this assumption will result in high accuracy. In contrast, 

Table 1 shows that, except the SVM prediction on the dataset of adhesion domains from 

CL0159, the LR+ of all others are higher than 1, indicating that our prediction results are 

meaningful. In general, our study provides comprehensive evaluations to the structural 

function relationship of domains in the entire Ig fold. The machine-learning-based 

prediction could be a useful tool to recognize homotypic binding between Ig domains in 

specific functional classes.
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Figure 1. 
(a) Cell surface receptors not only are the essential building block of intercellular adhesion, 

but also initiate the intracellular signaling pathway. The intermolecular interactions between 

receptors are conducted through different modes, including (b) the heterotypic binding 

between domains from different receptors (HETE), (c) the binding between different 

domains of two homotypic receptors (HODD), and (d) the binding between the same 

domains of two homotypic receptors (HOSD). Domains that belong to immunoglobulin fold 

(e), which share structural features of a β-sandwich framework with hypervariable loops, is 

the largest group of domain families in these receptors. In this study, a computational 

framework (f) was constructed to characterize the structural similarity and functional 

diversity of domains in the entire Ig fold.
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Figure 2. 
An overall statistical analysis was carried out on the likelihood of occurrence for all three 

types of binding modes in three different datasets. The likelihood of occurrence was defined 

in Result 3.1. The HETE mode is plotted in the black histogram (a). The HETE mode is 

plotted in the grey histogram (b). The HETE mode is plotted in the striped histogram (c). 
The index of datasets is shown in the bottom of the figure. Different preferences of binding 

modes were observed for different datasets.
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Figure 3. 
A profile which describes how many alignments were found for each residue in the template 

is plotted in (a) for the dataset of Ig superfamily domains in adhesion receptors. The profile 

is projected to the structure of the template in (b) with the color index, in which blue 

indicates the regions with high structural variations. A profile of participation ratio (PR) 

which quantifies the conservation of residue type at each position is plotted in (c) for the 

same template. The sidechains of residues with the highest PR values are highlighted with 

the atomic representation in (d).
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Figure 4. 
The frequency of each residue as part of binding interfaces was projected onto the structure 

of each template. The regions of high frequencies are shown in blue, indicating the potential 

binding interfaces. The HETE and HOSD binding interfaces of Ig superfamily domains in 

adhesion receptors are plotted in (a) and (b), respectively. The HETE binding interfaces of 

Ig superfamily domains in signaling receptors are plotted in (c), while the HOSD binding 

interfaces of Ig-like fold superfamily domains in adhesion receptors are plotted in (d).
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Figure 5. 
Some specific cases from the datasets are shown, in which homodimers of Nectin-2 (a) and 

SYG-1 (b) are two examples that were correctly recognized by our machine learning 

methods. The domains in the dataset and their binding partners are colored in red and green, 

while the rest parts of complexes are colored in grey. In contrast, NCAM2 (c) and Protein 

Tyrosine Phosphatase δ (d) are two examples that were not correctly recognized during the 

cross-validation.
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