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Abstract

Drug-induced cardiovascular complications are the most common adverse drug events and account
for the withdrawal or severe restrictions on use of multitudinous post-marketed drugs. In this
study, we developed new /n sifico models for systematic identification of drug-induced
cardiovascular complications in drug discovery and post-marketing surveillance. Specifically, we
collected drug-induced cardiovascular complications covering five most common types of
cardiovascular outcomes (hypertension, heart block, arrhythmia, cardiac failure, and myocardial
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The Supporting Information is available free of charge on the ACS Publications website. Detailed description for cardiac safety index
is provided in Supporting Method S1, and detailed description of three ensemble approaches (majority vote, maximum and minimum)
is provided in Supporting Method S2. Drug information for the five cardiovascular complications used for model building and
validation (Table S1), lists of selected molecular descriptors used in this study (Table S2), detailed comparison of performance for
single classifiers (Table S3), detailed prediction results of the five cardiovascular complications by the four best single classifiers and
combined classifiers, known cardiotoxic profiles derived from Drugs@FDA database, and relevant literature evidence of 63 anticancer
agents (Table S4), detailed performance of different ensemble approaches on 5-fold cross validation (Table S5), and predicted list of
drug-induced CV complications for the top-10 anticancer agents with highest probability by the combined classifiers (Table S6).
Distribution of drugs according to the classification of drug-target pairs in the five training sets covering five types of drug-induced
cardiovascular complications (Figure S1), comparison among the area under the receiver operating characteristic curves (AUC) scores
of all single classifiers on 5-fold cross validation and the external validation respectively (Figure S2), predicted cardiovascular
complications for cancer chemotherapeutic agents (non-kinase inhibitors) by four best single classifiers and combined classifiers
respectively (Figure S3), and circos plot representing the predicted associations between 63 anticancer drugs and the five types of
cardiovascular complications of which predicted associations with positively predicted probabilities higher than 0.5 from the
combined classifiers are exhibited (Figure S4).
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infarction) from four publicly available data resources: Comparative Toxicogenomics Database,
SIDER, Offsides, and MetaADEDB. Using these databases, we developed a combined classifier
framework through integration of five machine-learning algorithms: logistic regression, random
forest, k-nearest neighbors, support vector machine, and neural network. The totality of models
included 180 single classifiers with area under receiver operating characteristic curves (AUC)
ranging from 0.647 to 0.809 on 5-fold cross validations. To develop the combined classifiers, we
then utilized a neural network algorithm to integrate the best four single classifiers for each
cardiovascular outcome. The combined classifiers had higher performance with an AUC range
from 0.784 to 0.842 compared to single classifiers. Furthermore, we validated our predicted
cardiovascular complications for 63 anticancer agents using experimental data from clinical
studies, human pluripotent stem cell-derived cardiomyocyte assays, and literature. The success
rate of our combined classifiers reached 87%. In conclusion, this study presents powerful in silico
tools for systematic risk assessment of drug-induced cardiovascular complications. This tool is
relevant not only in early stages of drug discovery, but throughout the life of a drug including
clinical trials and post-marketing surveillance.
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INTRODUCTION

The systematic evaluation of drug cardiovascular (CV) safety profiles is essential for drug
development and patient care. Cardiotoxicity is one of the most common severe and life-
threatening adverse effects of drug treatments and thus is a major concern in drug discovery
and post-marketing surveillance.l Acute and chronic cardiotoxicity induced by drug
treatments has a relatively high incidence rate and is characterized by severe negative
symptoms including high blood pressure, heart failure, and death.2 According 1to a study of
all safety-related withdrawals of prescription drugs from worldwide markets from 1960 to
1999, heart toxicity is one of the most common reasons for drug withdrawal.3 Numerous
otherwise effective drugs, including terfenadine, astemizole, cisapride, vardenafil, and
ziprasidone, have been withdrawn from the market owing to CV complications.3
Compounding the problem, cardiotoxicity has been reported for many anticancer drugs
including chemotherapies, targeted therapies, and immunotherapies.*~ These reports likely
represent the tip of the iceberg, given the explosion of molecular targeted therapies with few
systematic evaluations of cardiotoxicity risk. One of the 10 recommendations for 2016
Cancer Moonshot initiative is to “Accelerate the development of guidelines for monitoring
and management of patient symptoms to minimize side effects of therapy.”® This statement
emphasizes the driving imperative to accelerate drug development by systematically
identifying drug-induced CV complications.

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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In the past several decades, tests including radio ligand binding assays, electrophysiology
measurements, rubidium-flux assays, and fluorescence-based assays have been used to
assess the propensity of compound cardiotoxicity.? Such experimental methods are not
suitable for evaluation of a large number of compounds in early stage drug discovery due to
high expense, and poor throughput. Moreover, animal models are limited by significant
functional disparities between animal and human cardiomyocytes.1% Recent advances of in
silico approaches and tools have promise for systematic evaluation of drug-induced CV
complications in both drug discovery and post-marketing surveillance.11-16 For example, a
recent study has integrated chemical, biological, and phenotypic properties of drugs to
develop predictive and reasonably accurate machine-learning models for evaluation of
adverse drug reaction. In 2010, Frid and co-workers developed /7 silico predictive models
for prediction of cardiac adverse effects with good sensitivity.1> Building on this, Hitesh and
co-workers built classifiers for assessment of drug cardiotoxicity with accuracies ranging
from 0.675 to 0.95 by leave-one-out cross validation.18 Reported studies thus far are largely
limited by use of only a single machine-learning algorithm with low or moderate accuracy.
In order to advance the field of drug development, it is vital to develop robust and effective
in sifico models with high accuracy for evaluation of drug-induced cardiotoxicity.

In this study, we proposed a combined classifier framework for prediction of five common
CV complications associated with drug treatments (Figure 1). In total, we built 180 single
classifiers through integration of molecular fingerprint (FP) and physical descriptors of
drugs with four machine-learning algorithms: logistic regression, random forest, A-nearest
neighbors, and support vector machine. We then utilized a neural network to combine the
four best single classifiers for each CV complication. We showed that the combined
classifiers outperformed the single classifiers. Using our combined classifier, we
computationally identified multiple CV complications induced by various anticancer agents.
We validated the predicted CV complications for various anticancer agents with
experimental data. Altogether, the combined classifiers presented here offer a useful
computational framework for systematic evaluation of drug-induced CV complications in
drug discovery and post-marketing surveillance.

MATERIALS AND METHODS

Data Preparation

We searched over 20 types of CV events defined by Medical Subject Headings (MeSH) and
Unified Medical Language System (UMLS) vocabularies.2” All drug-induced CV
complications were collected from four databases: Comparative Toxicogenomics Database
(CTD),18 SIDER,19 Offsides,2? and MetaADEDB.2!

The protocol of data collection is implemented in five steps: (1) All CV complication terms
were further screened based on the publication of “Common Terminology Criteria for
Adverse Events” (CTCAE, version 4.03, 2010) released by the U.S. Department of Health &
Human Services; (2) Each item was annotated with the most commonly used MeSH and
UMLS; (3) The four databases were searched using the MeSH unique 1D or UMLS ID to
obtain drug-induced CV complication information and then the InChl Keys of according
drugs were calculated via Open Babel GUI;22 (4) Drugs annotated in DrugBank?3 with
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unique 1D were pinpointed by matching the InChl Keys; and (5) The items with well-
annotated clinical report data were used and all the duplicated drugs in the same class of CV
complications were excluded. To maintain a sufficient number of drugs with well-annotated
CV complication information, we finally obtained five common drug-induced CV
complications for building models: hypertension (MeSH ID: D006973), heart block (MeSH
ID: D006327), arrhythmia (MeSH 1D: D001145), cardiac failure (MeSH 1D: D006333), and
myocardial infarction (MeSH ID: D009203). The drug information of the five CV
complications is provided in Supporting Information, Table S1. Detailed statistical results
are listed in Table 1.

Chemical structure representation

In this study, two-dimensional (2D) descriptors of drugs were generated by MOE 2010
software24 to represent molecular descriptors (MD) and structural information. All drug
structures were processed in MOE 2010 software by protonating strong bases, deprotonating
strong acids, removing inorganic counter ions, adding hydrogen atoms, generating stereo
isomers, and validating single 3D conformers by molecular washing and energy minimizing
using. Descriptors calculated by MOE consist of 186 2D descriptors, including physical
property descriptors, atom count and bond count descriptors, adjacency and distance matrix
descriptors, subdivided surface area descriptors, Kier and Hall connectivity and Kappa shape
indices descriptors, pharmacophore feature descriptors, and partial charge descriptors.
Moreover, four sets of molecular fingerprints were also generated by PaDEL-Descriptor,2
including MACCS, EState, Pubchem, and Substructure fingerprint (SubFP). The more
details of the descriptors can be found in recent studies.2526

Molecular descriptor selection

Pearson correlation coefficient analysis is a common measure for eliminating irrelevant and
redundant features (descriptors). In this study, all descriptors were selected based on two
criteria: (1) highly relevant label of CV complications (CV complication [1] vs. hon-CV
complications [-1]); (2) lack of inter-correlation or self-correlation to avoid the over-fitting
issue.2728 Specifically, descriptors that have absolute Pearson correlation coefficient less
than 0.1 (JPCCJ<0.1) with the label “CV complications” were eliminated to reduce irrelevant
descriptors. In addition, for any two descriptors having a pairwise correlation coefficient
higher than 0.9 (JPCC|>0.9), the one with the lower correlation coefficient with the CV
complication label was excluded. In total, 36, 36, 26, 32 and 37 molecular descriptors
(Supporting Information, Table S2) were ultimately selected to build single classifiers for
hypertension, heart block, arrhythmia, cardiac failure, and myocardial infarction,
respectively.

Description of four single classifiers

Four machine-learning methods, including A-nearest neighbors (ANN), logistic regression
(LR), random forest (RF), and support vector machine (SVM), were employed to build
single classifiers. We then utilized a neural network (NN) algorithm to construct the
combined classifiers based on the single classifiers with the best performance. All tools are
freely available in Orange Canvas (version 2.7.6).2°

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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k-nearest neighbors (KNN)—ANN is a non-parametric algorithm to classify objects
based on the closest training samples in the feature space.30 It determines the category of a
sample based on the categories of its A nearest neighboring samples. In this study, the &
value was set to 5, and the distance d between samples x and ywas measured by Euclidean
distance that is calculated using equation (1) where 7 is the number of descriptors.

d(x,y) = ,/ PIRCTER Y
k=1

Logistic Regression (LR)—LR is a classification algorithm developed by statistician
David Cox in 1958.31 LR calculates the probabilities using a logistic function to measure the
relationship between a multitude of independent variables and categorical dependent
variables. It maps the result of a linear regression function to a value ranging from 0 to 1 by
the sigmoid function, and this value can be modeled as a probability. The realization of LR
can be summarized as equation (2) and (3), where aand b are the coefficients determined by
LR, nis the number of independent variable x.

Random Forest (RF)—REF is an ensemble algorithm for classification developed by Leo
Breiman and Adele Cutler.32 It creates a large number of decision trees by bootstrapping
training samples and randomly selecting subsets of original independent variables and
predicts the category of new samples via integrating the outputs of the individual trees.33 RF
is appealing because it is relatively fast at training models and can be used directly for high-
dimensional problems.34 In this study, the number of decision trees in forest is set to 10, the
minimal number of instances in a leaf is set to 5, and the considered number of attributes at
each split is equal to the square root of the number of attributes in the input dataset.

Support Vector Machine (SVM)—SVM was first developed by Vapnik.3® The core idea
of this algorithm is to map data into a higher dimensional space on the basis of the frame of
Vapnik-Chervonenkis (VC) theory. SVM defines a decision boundary which is expressed as
separating hyperplane based on a linear combination of functions parameterized by support
vectors. It seeks the support vectors by maximizing the margin between the instances of
different classes. Each molecule is expressed in terms of an eigenvector t, and the chosen
patterns #;, £, ... t,are the components of t. The classification label y’was introduced in

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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SVM training. The 1 molecule in the data set is defined as M ;= (#;, ), where y;= 1 for the
“CV complication” class and y;= —1 for the “non-CV complication” class.3® SVM gives a
decision function (classifier) using equation (4)

n

f(t) = sgn (% D K, ) +b

i=1

(4)

where a;is the coefficient to be trained, and K'is a kernel function. Parameter a; is trained
via maximizing the Lagrangian expression using equations (5) and (6).

n n n

maximize Z a; — Z Z aiajyl.yjK(tl., ) (B

o Q=1 i=1/=1

| —

subject to: Z yi2;=0, 0<q;<C (6)
yi=]

In this study the commonly used kernel, Gaussian radial basis function (RBF), was utilized.
In order to obtain the optimal performance model, the auto searching program “grid” in the
LibSVM 3.2 package3” was employed to determine the kernel parameter » and penalty
parameter C by utilizing a grid strategy based on 5-fold cross validation.

The SVM algorithm in this study is provided by an SVM learner in Orange Canvas 2.7,
which can provide posterior predictive probability for each prediction. Probabilities are
created by directly training an SVM and then training the parameters of an additional
sigmoid function to map the SVM outputs into probabilities.38:39 Given training examples x;
ER,i=1,..., [ labeled by y; € {+1, -1}, the conversion algorithm for the probability »
ny=1|x) is described as equation (7)

Priy=1 |x)zPA’B(f)E 1+ expl(Af+B) 0

where 7;is an estimate of decision function f{x;) , and parameters A and B are determined by
minimizing the negative log likelihood of the training data, which is a cross-entropy error
function (with A/ of the y; s positive, and A negative):

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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_ min B !
=@ i; (t;log (p) + (1 = 1) log (1 = py), (8)
+
N++ 1 ify,= +1
NT+2 .
fOr p[=PA’B(fl)’ and[i= 1 ,l=1,...,l.
N +2 "7

The detailed description about probability generation in SVM approach are provided in
original works.38:39

Description of Combined Classifiers

Combined classifiers can improve prediction accuracy to some extent via comprehensively
synergizing the complementary information provided by other methods. This approach is
particularly suitable for the cases where single classifiers may not achieve satisfactory
predictive accuracy. A combined classifier optimizes the performance of single classifiers by
enhancing prediction reliability.36:49.41 |n this study, four best single classifiers were
combined using the NN algorithm (Figure 1).

Neural Network (NN)—NN is an information processing paradigm that is inspired by
biological neural networks.#2 A collection of connected units called artificial neurons is the
basis of NN. Each connection between neurons can transmit a unidirectional signal with
various activating strength hinges on the weight of neurons. The combined incoming signals
that exceed a given threshold will promote the propagation of a signal to the downstream
neurons and activate them. The output of neuron 7is given in Equations (9) and (10).

n
net; = ZWijxj—Q 9
=1

Yi= f(neti) (10)

where wj;the connect weighting value from neuron jto neuron / @is the threshold, and fis
the activation function.

In Orange Canvas 2.7, the NN is implemented by a multilayer perceptron with a single
hidden layer. It is performed by minimizing an L,-regularized cost function with SciPy’s
implementation of Limited-memory BFGS (L-BFGS), which is often used for parameter
estimation in machine-learning.#344 In this study, the number of hidden layer neurons is set
to 11, the regularization factor is set to 3.0, the max iteration is set to 200, and data was

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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normalized prior to learning. Normalization was done by subtracting each column by the
mean and dividing by the standard deviation.

Experimental design

Drugs with at least one of five types of CV complications (hypertension, arrhythmia, heart
block, cardiac failure and myocardial infarction) were curated from CTD, SIDER,
MetaADEDB, and Offsides. The same number of corresponding decoys were then randomly
selected from remaining drugs in DrugBank. The drugs collected from CTD, SIDER and
MetaADEDB were combined with their decoys as the training sets, while the drugs from
Offsides and the corresponding decoys were used as the validation sets after eliminating the
ones existing in the training sets. The drugs with CV complications were labeled as “+1”
and the decoys (or negative) were labeled as “—1”. Eventually, the training sets of
hypertension, arrhythmia, heart block, cardiac failure and myocardial infarction contained
1,162, 1,450, 544, 630 and 638 drugs, and the validation sets included 290, 142, 402, 540
and 178 drugs, respectively (Table 2).

For each CV complication, single classifiers were firstly built using four algorithms (RF,
KNN, SVM and LR) and the selected molecular descriptors. Subsequently, four types of
fingerprints were introduced to enhance the predictive accuracy. For each algorithm and
specific CV complication, the best single classifiers were constructed using the selected
molecular descriptors combined with molecular fingerprints. Then the training sets were
predicted with the four best single classifiers to obtain positive and negative output

probabilities (PL.+1 and Pl._1 7=1,2,3,4). After that, the eight output probabilities were chosen

as new descriptors to develop the NN classifiers, generating probabilities ( P“El and PEl) for

each drug as final predictions.

Model validation

All classification models were assessed by true positives (TP, drugs with known CV
complication were predicted as cardiotoxic drugs), true negatives (TN, drugs with non-CV
complication were predicted as non-cardiotoxic drugs), false positives (FP, drugs with non-
CV complication were predicted as cardiotoxic drugs), and false negatives (FN, drugs with
known CV complication were predicted as non-cardiotoxic drugs). In addition, four metrics
(sensitivity [SE], specificity [SP], overall predictive accuracy [Q], and precision [P]) were
calculated using equations (11-13) for further evaluation of model performance.

TP

SE= 1o (Y
TN

SP = TN+FP (12)

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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0= TP+TN
~ TP+FN +FP + TN

(13)

TP

P= 1 (19

Moreover, receiver operating characteristic (ROC) curves were used to evaluate the
performance of the classifiers.?> An ROC curve exhibits the behavior of a model by
measuring the relationship between true positive rate and false positive rate. The area under
ROC curve (AUC) was computed for each of the classifiers. A perfect classifier yields an
AUC of 1, whereas a random model has an expected AUC of 0.5.

RESULTS

GPCRs are the most common target family in training sets

To explore target distribution of drugs in the training sets, we extracted the drug-target
interactions for drugs in the training sets from DrugBank23 and examined the drug target
family distribution according to the IUPHAR/BPS Guide to PHARMACOLOGY in 2018.46
Here, targets are divided into five categories: kinases, G-protein-coupled receptors (GPCRs),
nuclear receptors, ion channels, or others (Figure S1). We found that GPCRs were most
highly represented among the four types of target families across five types of CV
complications, following by ion channels, kinases, and nuclear receptors.

Molecular descriptors together with molecular fingerprint were the best single classifiers

We built 36 single classifiers for each CV complication: a. 4 classifiers built by 4 machine-
learning algorithms (ANN, LR, RF and SVM) with the selected molecular descriptors, b. 16
classifiers built by combining 4 machine-learning algorithms with 4 different types of
fingerprints (EState, MACCS, Pubchem and SubFP), and c. 16 classifiers built by 4
machine-learning algorithms with 4 types of integrated features by the selected molecular
descriptors and fingerprints. In total, we built 180 single classifiers across 5 types of drug-
induced CV complications. The performance of each classifier was assessed by both 5-fold
cross validation and external validation. The performances of the 180 single classifiers are
provided in Supporting Information, Table S3.

To make a more intuitive comparison between the single classifiers, the average AUC scores
of the single classifiers developed using the selected molecular descriptors (MD) only,
molecular fingerprint (FP) only, and combination of MD and FP (MD & FP) respectively are
shown in Figure 2. The average AUC scores ranged from 0.687 to 0.793 on the 5-fold cross
validations and ranged from 0.613 to 0.710 on the external validation sets. The MD&FP
classifiers showed better performance on both 5-fold cross validations and the external
validation sets compared to classifiers built by the MD or FP alone (Supporting Information,
Figure S2). Hence, single classifiers built on MD & FP together were selected as the best

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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single classifiers for further studies. Table 3 illustrates the performance of all single
classifiers based on MD & FP across four machine-learning algorithms.

Combined classifiers outperform single classifiers

For each type of CV complications, we selected the best single classifiers built by MD & FP
and generated by the 4 machine-learning algorithms in order to construct the combined
classifiers. From the comparison of AUC values as shown in Figure 3, the combined
classifiers outperformed single classifiers in cross validation. For example, the AUC of the
combined classifier (AUC = 0.842) is higher than all four single classifiers (A\NN AUC =
0.809, LR AUC =0.755, RF AUC =0.802, SVM AUC = 0.808) for prediction of drug-
induced heart block. Building on this observation, Figure 4 further shows that the combined
classifiers outperform the corresponding four best single classifiers for all 5 types of CV
complications on both cross validations and external validation sets. Table 4 provides
detailed performance of the five combined classifiers. Overall, most of the combined
classifiers achieved a satisfactory performance in both cross validation and external
validation sets. For example, the AUC values of the combined classifiers for prediction of
drug-induced hypertension are 0.800 in the 5-fold cross validation and 0.756 in the external
validation set. High cross validation AUC values are also achieved by the combined
classifiers on other CV complications including heart block (AUC = 0.842), arrhythmia
(AUC = 0.784), myocardial infarction (AUC = 0.790), and cardiac failure (AUC = 0.785).
Taken together, the combined classifiers offer potential tools for computational risk
assessment of drug-induced CV complications with high accuracy compared to the single
classifiers. We hence examined the predicted drug-induced CV complications for anticancer
agents via combined classifiers.

Clinical studies and human pluripotent stem cell-derived cardiomyocyte assays validate
combined classifiers

Despite advances in cancer treatments, the frequency of CV complications induced by
anticancer agents (i.e., chemotherapy and targeted therapy) has been substantially
increasing.*’ We applied the four best single classifiers as well as the combined classifiers to
predict 5 types of CV complications for 63 anticancer small molecular agents, including 26
targeted therapeutic agents (kinase inhibitors in Figure 5A) and 37 chemotherapeutic agents
(non-kinase inhibitors in Supporting Information, Figure S3). According to the known drug-
induced CV complications labeled by Drugs@FDA database*®, we found a higher success
rate of 87% (108/124) for the combined classifiers compared to the four best single
classifiers (79%=392/496, Supporting Information, Table S4). For instance, pazopanib-
induced cardiac failure and myocardial infarction are severe adverse reactions listed in the
Drugs@FDA database and have been reported by several double-blind placebo-controlled
trials in patients*950 and a variety of clinical reports.51-54 Our combined classifiers
successfully identified pazopanib-induced cardiac failure and myocardial infarction, while
only one of the best single classifiers offered true prediction in this case. An additional
example includes Arsenic trioxide (AsoOs3), which is approved for treating acute
promyelocytic leukemia. Here itwas predicted to have potential cardiac failure by the
combined classifiers, while only half of the best single classifiers generated the toxicity
consistent prediction. Arsenic trioxide was reported to lead to dysfunction of myocardium

J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.
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and reduction of contractility,®> suggesting 100% accuracy of the combined classifiers
compared to 50% accuracy of the best single classifiers.

Human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are an effective way to
assess drug cardiotoxicity i vitro.55 We computationally evaluated CV complications using
the combined classifiers for 16 tyrosine kinase inhibitors (TKIs) with known cardiotoxic
profiles identified by PSC-CMs assays®® and literature evidence. We calculated cardiac
safety indexes (CSI) to provide a relative metric for cardiotoxicity by normalizing 4
contractility and viability parameters (cessation of beating, effective concentration,
amplitude of effect, and median lethal dose) as described previously® (See the details in
Supporting Method S1). Then we compared CSI values with the corresponding true
probabilities of having CV complications predicted by the combined classifiers. The
combined classifiers successfully predicted the reported CV complications for all reported
TKIs except vemurafenib (Figure 5B). Altogether, the combined classifiers show high
accuracy for identification of drug-induced CV complications.

Combined classifiers predict oncology molecularly targeted therapeutic agent-induced
cardiovascular complications

We next used our model to predict several novel CV complications in cancer molecularly
targeted therapeutic agents. Figure 5A shows the predicted CV complications for 26 FDA
approved kinase inhibitors covering multiple biological pathways, including epidermal
growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR),
platelet-derived growth factor receptor (PDGFR), cyclin-dependent kinases (CDKs), BRAF
V600E kinases, mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase
(MAPK), janus kinase (JAK), Abelson murine leukemia viral oncogene homolog (Abl), and
breakpoint cluster region-Abelson leukemia virus (Bcr-Abl). Erlotinib was predicted to have
a high probability of inducing arrhythmia and myocardial infarction by the combined
classifiers. In support of our model, recent studies reported that erlotinib induced QTc
interval in patients®” and CV damage in rat model.®8 In addition, an increasing number of
clinical case reports of acute myocardial infarction following treatment by erlotinib in cancer
patients also were reported.>%-61 Gefitinib, a multi-targeted tyrosine kinase inhibitor, was
approved for treating lung cancer. Our combined classifiers predicted that gefitinib induced
all five CV complications (hypertension, heart block, arrhythmia, cardiac failure and
myocardial infarction), consistent with recent clinical and preclinical studies.62:63 Sunitinib,
a FDA-approved tyrosine Kinase inhibitor for treatment of renal cell carcinoma and imatinib-
resistant gastrointestinal stromal tumor in 2006, was predicted to induce all five CV
complications by the combined classifiers. Among them, myocardial infarction and heart
block have not yet been listed on its FDA label. Interestingly, a multicenter and randomized
phase 3 trial reported that 1.33% (5/375) of sunitinib-treated patients had myocardial
infarction, the most common reported CV complication (NCT00098657).64 A multi-
parameter /n vitro toxicity screening approach based on a human cardiac cell model also
reported that sunitinib significantly altered the cardiac beat pattern and selectively blocked
the human Ether-a-go-go Related Gene (hERG) channel,%° consistent with our predicted
heart block by the combined classifiers. Tandutinib (MLN-518), a novel and selective
inhibitor of PDGFR, has no reported cardiotoxic profiles in Drugs@FDA database.*8 In
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stark contrast, tandutinib was predicted to have a high likelihood of cardiotoxicity via the
combined classifiers. An in vitro experiment reported that tandutinib potentially caused a
progressive increase in rats’ ventricular myocyte damage,®® confirming our prediction.

Integration of five machine-learning algorithms uncover cardiovascular complications
induced across a diversity of anticancer drugs

It is plausible to hypothesize that drugs in the same class may have similar pharmacological
characteristics, of which adverse reactions can be inferred.57:68 Figure 6 presents the
relationships among anticancer agents, their target families, and the predicted CV
complications. Interestingly, anticancer agents covering Bcr-Abl, DNA topoisomerase, and
microtubule inhibitors are clustered together (Figure 6 and Figure S4). Ber-Abl inhibitors
are the first-line treatment for chronic myelogenous leukemia. Recently, cardiovascular
safety has been an emerging challenge in patients treated with second-generation Bcr-Abl
inhibitors.”® For example, dasatinib reportedly may induce potentially fatal pulmonary
hypertension,’? and ponatinib and nilotinib may induce CV disease.’1:72 Topoisomerases are
ubiquitous enzymes involving in regulating the over- or underwinding of DNA strands.”3
Anthracyclines, typical topoisomerase I1 inhibitors, have demonstrated cardiotoxicity.”3
Microtubule inhibitors are anti-mitotic agents and known anticancer agents by inhibiting
tubulin polymerization.” The CV complications induced by several known drugs in this
category have been successfully identified by our combined classifiers. For example,
paclitaxel and docetaxel, as members of taxanes, lead to dysfunctional microtubules and
release massive histamine, resulting in arrhythmias, myocardial ischemia, and conduction
disturbances.” In addition, cabazitaxel, as the fourth taxane, has the potential to induce
cardiac-related deaths, including ventricular fibrillation, sudden cardiac death, and cardiac
arrest.”®77 put together, the combined classifiers successfully identified multiple CV
complications across multiple pathways targeted by various anticancer agents. Hence, our
combined classifiers offer powerful tools for identifying potential cardiotoxicity across drug
families

DISCUSSION

In this study, we developed combined classifiers for the systematic identification of 5 types
of drug-induced CV complications. We demonstrated that the combined classifiers
outperformed the single classifiers in both cross validation and the external validation sets.
Moreover, the newly predicted CV complications by the combined classifiers were validated
by clinical study experimental data, cardiomyocyte assays and literature. Building on
previous studies,1>16 this study adds to the field by: (1) collecting comprehensive CV
complications for over 1,000 FDA-approved drugs by integrating clinically reported data
from 4 databases, which are reliable and sufficient; (2) improving on the efficiency and
accuracy of single classifier algorithms by leveraging a combined classifier infrastructure;
(3) demonstrating that our combined classifiers outperformed several traditional ensemble
approaches: maximum, minimum, and majority vote (Supporting Information, Method S2
and Table S5); (4) Utilizing our combined classifiers on 63 anticancer agents with high
validated accuracy (especially for the top-10 predicted agents, Supporting Information,
Table S6).
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Several shortcomings should be recognized in the presented current study. First, high quality
negative samples is quietly crucial for the accuracy of the machine-learning models. In this
work, the decoy sets were randomly extracted from the rest drugs of DrugBank database?3
without the known cardiotoxicity, which may bring in potential noise and data bias. Second,
data quality of the validation sets may affect the model performance evaluation.”® In this
study, the external validation sets were derived from Offsides, which contains
computationally inferred adverse drug events from FDA's Adverse Event Reporting System
(FAERS).20 This may explain the lower AUC range (0.693 to 0.756) of the combined
classifiers on the external validation sets compared to high AUC range in the 5-fold cross
validations (0.784 to 0.842). Third, current models were built based on integration of
molecular descriptors and fingerprints of drugs. Recent studies have shown that integration
of biological descriptors from drug-target networks may further improve model
performance.’® In addition, an ideal drug target would be expressed only in disease tissue
and sparsely anywhere else.89 In the future, we plan to integrate more relevant biological
descriptors and tissue-specific expression profiles of drug targets to further improve the
model performance. Furthermore, replacement of the currently used NN algorithm by deep
learning algorithms81:82 could further improve accuracy. Finally, the predicted CV
complications by the combined classifiers should be further validated by experimental
assays or pharmacoepidemiologic analyses from the real-world data (e.g., electronic medical
records or health insurance claims databases)83 in the future.

CONCLUSIONS

In this study, four different classification algorithms were applied to develop 180 single
classifiers for evaluation of 5 types of drug-induced cardiovascular complications. The best
four single classifiers of each cardiovascular complications were used to together construct
the combined classifiers with a neural network algorithm. The combined classifiers
outperformed the single classifiers not only in 5-fold cross validation but also external
validation. Lastly, the combined classifiers were employed to pinpoint anticancer agents
with cardiovascular complications. We report novel drug-induced cardiovascular
complications which have been discovered and further validated by reported experimental
data from clinical studies, /n vitro assays, and literature. In summary, the combined
classifiers presented here offer powerful /n silico tools for systematic evaluation of drug-
induced cardiovascular complications throughout the life cycle of a drug.
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Figure 1. Diagram illustrating a combined classifier framework for prediction of drug-induced

cardiovascular (CV) complications

Five types of drug-induced CV complications are collected from three public databases
(CTD, SIDER and MetaADEDB). The single classifiers are built on the basis of molecular
fingerprints and the selected physical descriptors using four machine-learning algorithms
(logistic regression, random forest, k-nearest neighbors, and support vector machine). The
four best single highest performance classifiers were picked for building the combined
classifiers using a neural network algorithm. The performance of all models was evaluated
by both 5-fold cross-validation and the external validation sets collected from Offsides
database 29, ANN: A-nearest neighbors; SVM: support vector machine; RF: random forest;

LR: logistic regression.
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Comparison of the average area under the receiver operating characteristic curves (AUC)

scores across the single classifiers built using three types of descriptors: (i) molecular
descriptors only, (ii) molecular fingerprint only, and (iii) molecular descriptors combined
with molecular fingerprints, for 5-fold cross validations (A) and the external validation sets

(B). Note: MD: molecular descriptors; SubFP: Substructure fingerprint.
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Figure 3.
Receiver operating characteristic (ROC) curves of combined classifiers and the four best

MD & FP classifiers built by combining the selected molecular descriptors and molecular
fingerprints across five types of drug-induced cardiovascular complications on 5-fold cross
validation. Note: AUC: the area under the receiver operating characteristic curves; MD:
molecular descriptors; SubFP: Substructure fingerprint; ANN: A-nearest neighbors; SVM:
support vector machine; RF: random forest; LR: logistic regression.
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Figure 4.
Comparison of area under the receiver operating characteristic curves (AUC) of the

combined classifiers with the average AUC for four best single classifiers and on 5-fold
cross validation (A) and external validation sets (B).
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Figureb.
Validation of the combined classifiers using reported experimental data from human

pluripotent stem cell-derived cardiomyocyte assays and literature data. (A) Predicted
cardiovascular complications for molecularly targeted cancer therapeutic agents (kinase
inhibitors) by four best single classifiers and the combined classifiers respectively. Drugs
existing in the training sets are underlined. (B) Comparison of cardiotoxic profiles from
human pluripotent stem cell-derived cardiomyocyte assays (cardiac safety indexes described
in Supporting Method S1) and the predicted probabilities from the combined classifiers for
16 kinase inhibitors. A lower cardiac safety index represents higher risk of cardiotoxicity. A
predicted probability of more than 0.5 denotes an identified probable cardiovascular
complication. A higher probability (e.g., 1.0) shows increased likelihood of cardiotoxicity.
Red color indicates higher relative likelihood of drug-induced CV complications, while
green or blue color indicates a lower relative likelihood of drug-induced CV complications.
Note: HTN: hypertension; HB: heart block; Arrhy: arrhythmia; MI: myocardial infarction;
CF: cardiac failure; MD: molecular descriptors; SubFP: Substructure fingerprint; ANN: &
nearest neighbors; SVM: support vector machine; RF: random forest; LR: logistic
regression.
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Figure®6.
Circos plot representing the predicted associations between 63 anticancer drugs and the five

types of cardiovascular complications. The predicted associations with positively predicted
probabilities higher than 0.8 from the combined classifiers are connected lines. Drugs are
grouped based on their target families using annotation from DrugBank database.?3 Kinase
inhibitors are highlighted in bold font. Circos plot was drawn using Circos (v0.69).59
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