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Abstract

Drug-induced cardiovascular complications are the most common adverse drug events and account 

for the withdrawal or severe restrictions on use of multitudinous post-marketed drugs. In this 

study, we developed new in silico models for systematic identification of drug-induced 

cardiovascular complications in drug discovery and post-marketing surveillance. Specifically, we 

collected drug-induced cardiovascular complications covering five most common types of 

cardiovascular outcomes (hypertension, heart block, arrhythmia, cardiac failure, and myocardial 

*To whom correspondence should be addressed: fangjs@gzucm.edu.cn(J.F.); f.cheng@neu.edu (F.C.). 

Disclaimer: The views expressed in this manuscript do not necessarily represent those of the U.S. Food and Drug Administration.

Competing interests
All authors do not have any conflicts of interest.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website. Detailed description for cardiac safety index 
is provided in Supporting Method S1, and detailed description of three ensemble approaches (majority vote, maximum and minimum) 
is provided in Supporting Method S2. Drug information for the five cardiovascular complications used for model building and 
validation (Table S1), lists of selected molecular descriptors used in this study (Table S2), detailed comparison of performance for 
single classifiers (Table S3), detailed prediction results of the five cardiovascular complications by the four best single classifiers and 
combined classifiers, known cardiotoxic profiles derived from Drugs@FDA database, and relevant literature evidence of 63 anticancer 
agents (Table S4), detailed performance of different ensemble approaches on 5-fold cross validation (Table S5), and predicted list of 
drug-induced CV complications for the top-10 anticancer agents with highest probability by the combined classifiers (Table S6). 
Distribution of drugs according to the classification of drug-target pairs in the five training sets covering five types of drug-induced 
cardiovascular complications (Figure S1), comparison among the area under the receiver operating characteristic curves (AUC) scores 
of all single classifiers on 5-fold cross validation and the external validation respectively (Figure S2), predicted cardiovascular 
complications for cancer chemotherapeutic agents (non-kinase inhibitors) by four best single classifiers and combined classifiers 
respectively (Figure S3), and circos plot representing the predicted associations between 63 anticancer drugs and the five types of 
cardiovascular complications of which predicted associations with positively predicted probabilities higher than 0.5 from the 
combined classifiers are exhibited (Figure S4).

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2018 May 30.

Published in final edited form as:
J Chem Inf Model. 2018 May 29; 58(5): 943–956. doi:10.1021/acs.jcim.7b00641.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infarction) from four publicly available data resources: Comparative Toxicogenomics Database, 

SIDER, Offsides, and MetaADEDB. Using these databases, we developed a combined classifier 

framework through integration of five machine-learning algorithms: logistic regression, random 

forest, k-nearest neighbors, support vector machine, and neural network. The totality of models 

included 180 single classifiers with area under receiver operating characteristic curves (AUC) 

ranging from 0.647 to 0.809 on 5-fold cross validations. To develop the combined classifiers, we 

then utilized a neural network algorithm to integrate the best four single classifiers for each 

cardiovascular outcome. The combined classifiers had higher performance with an AUC range 

from 0.784 to 0.842 compared to single classifiers. Furthermore, we validated our predicted 

cardiovascular complications for 63 anticancer agents using experimental data from clinical 

studies, human pluripotent stem cell-derived cardiomyocyte assays, and literature. The success 

rate of our combined classifiers reached 87%. In conclusion, this study presents powerful in silico 
tools for systematic risk assessment of drug-induced cardiovascular complications. This tool is 

relevant not only in early stages of drug discovery, but throughout the life of a drug including 

clinical trials and post-marketing surveillance.

Graphical Abstract

INTRODUCTION

The systematic evaluation of drug cardiovascular (CV) safety profiles is essential for drug 

development and patient care. Cardiotoxicity is one of the most common severe and life-

threatening adverse effects of drug treatments and thus is a major concern in drug discovery 

and post-marketing surveillance.1 Acute and chronic cardiotoxicity induced by drug 

treatments has a relatively high incidence rate and is characterized by severe negative 

symptoms including high blood pressure, heart failure, and death.2 According 1to a study of 

all safety-related withdrawals of prescription drugs from worldwide markets from 1960 to 

1999, heart toxicity is one of the most common reasons for drug withdrawal.3 Numerous 

otherwise effective drugs, including terfenadine, astemizole, cisapride, vardenafil, and 

ziprasidone, have been withdrawn from the market owing to CV complications.3 

Compounding the problem, cardiotoxicity has been reported for many anticancer drugs 

including chemotherapies, targeted therapies, and immunotherapies.4–7 These reports likely 

represent the tip of the iceberg, given the explosion of molecular targeted therapies with few 

systematic evaluations of cardiotoxicity risk. One of the 10 recommendations for 2016 

Cancer Moonshot initiative is to “Accelerate the development of guidelines for monitoring 

and management of patient symptoms to minimize side effects of therapy.”8 This statement 

emphasizes the driving imperative to accelerate drug development by systematically 

identifying drug-induced CV complications.
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In the past several decades, tests including radio ligand binding assays, electrophysiology 

measurements, rubidium-flux assays, and fluorescence-based assays have been used to 

assess the propensity of compound cardiotoxicity.9 Such experimental methods are not 

suitable for evaluation of a large number of compounds in early stage drug discovery due to 

high expense, and poor throughput. Moreover, animal models are limited by significant 

functional disparities between animal and human cardiomyocytes.10 Recent advances of in 
silico approaches and tools have promise for systematic evaluation of drug-induced CV 

complications in both drug discovery and post-marketing surveillance.11–16 For example, a 

recent study has integrated chemical, biological, and phenotypic properties of drugs to 

develop predictive and reasonably accurate machine-learning models for evaluation of 

adverse drug reaction.14 In 2010, Frid and co-workers developed in silico predictive models 

for prediction of cardiac adverse effects with good sensitivity.15 Building on this, Hitesh and 

co-workers built classifiers for assessment of drug cardiotoxicity with accuracies ranging 

from 0.675 to 0.95 by leave-one-out cross validation.16 Reported studies thus far are largely 

limited by use of only a single machine-learning algorithm with low or moderate accuracy. 

In order to advance the field of drug development, it is vital to develop robust and effective 

in silico models with high accuracy for evaluation of drug-induced cardiotoxicity.

In this study, we proposed a combined classifier framework for prediction of five common 

CV complications associated with drug treatments (Figure 1). In total, we built 180 single 

classifiers through integration of molecular fingerprint (FP) and physical descriptors of 

drugs with four machine-learning algorithms: logistic regression, random forest, k-nearest 

neighbors, and support vector machine. We then utilized a neural network to combine the 

four best single classifiers for each CV complication. We showed that the combined 

classifiers outperformed the single classifiers. Using our combined classifier, we 

computationally identified multiple CV complications induced by various anticancer agents. 

We validated the predicted CV complications for various anticancer agents with 

experimental data. Altogether, the combined classifiers presented here offer a useful 

computational framework for systematic evaluation of drug-induced CV complications in 

drug discovery and post-marketing surveillance.

MATERIALS AND METHODS

Data Preparation

We searched over 20 types of CV events defined by Medical Subject Headings (MeSH) and 

Unified Medical Language System (UMLS) vocabularies.17 All drug-induced CV 

complications were collected from four databases: Comparative Toxicogenomics Database 

(CTD),18 SIDER,19 Offsides,20 and MetaADEDB.21

The protocol of data collection is implemented in five steps: (1) All CV complication terms 

were further screened based on the publication of “Common Terminology Criteria for 

Adverse Events” (CTCAE, version 4.03, 2010) released by the U.S. Department of Health & 

Human Services; (2) Each item was annotated with the most commonly used MeSH and 

UMLS; (3) The four databases were searched using the MeSH unique ID or UMLS ID to 

obtain drug-induced CV complication information and then the InChI Keys of according 

drugs were calculated via Open Babel GUI;22 (4) Drugs annotated in DrugBank23 with 
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unique ID were pinpointed by matching the InChI Keys; and (5) The items with well-

annotated clinical report data were used and all the duplicated drugs in the same class of CV 

complications were excluded. To maintain a sufficient number of drugs with well-annotated 

CV complication information, we finally obtained five common drug-induced CV 

complications for building models: hypertension (MeSH ID: D006973), heart block (MeSH 

ID: D006327), arrhythmia (MeSH ID: D001145), cardiac failure (MeSH ID: D006333), and 

myocardial infarction (MeSH ID: D009203). The drug information of the five CV 

complications is provided in Supporting Information, Table S1. Detailed statistical results 

are listed in Table 1.

Chemical structure representation

In this study, two-dimensional (2D) descriptors of drugs were generated by MOE 2010 

software24 to represent molecular descriptors (MD) and structural information. All drug 

structures were processed in MOE 2010 software by protonating strong bases, deprotonating 

strong acids, removing inorganic counter ions, adding hydrogen atoms, generating stereo 

isomers, and validating single 3D conformers by molecular washing and energy minimizing 

using. Descriptors calculated by MOE consist of 186 2D descriptors, including physical 

property descriptors, atom count and bond count descriptors, adjacency and distance matrix 

descriptors, subdivided surface area descriptors, Kier and Hall connectivity and Kappa shape 

indices descriptors, pharmacophore feature descriptors, and partial charge descriptors. 

Moreover, four sets of molecular fingerprints were also generated by PaDEL-Descriptor,25 

including MACCS, EState, Pubchem, and Substructure fingerprint (SubFP). The more 

details of the descriptors can be found in recent studies.25,26

Molecular descriptor selection

Pearson correlation coefficient analysis is a common measure for eliminating irrelevant and 

redundant features (descriptors). In this study, all descriptors were selected based on two 

criteria: (1) highly relevant label of CV complications (CV complication [1] vs. non-CV 

complications [−1]); (2) lack of inter-correlation or self-correlation to avoid the over-fitting 

issue.27,28 Specifically, descriptors that have absolute Pearson correlation coefficient less 

than 0.1 (|PCC|<0.1) with the label “CV complications” were eliminated to reduce irrelevant 

descriptors. In addition, for any two descriptors having a pairwise correlation coefficient 

higher than 0.9 (|PCC|>0.9), the one with the lower correlation coefficient with the CV 

complication label was excluded. In total, 36, 36, 26, 32 and 37 molecular descriptors 

(Supporting Information, Table S2) were ultimately selected to build single classifiers for 

hypertension, heart block, arrhythmia, cardiac failure, and myocardial infarction, 

respectively.

Description of four single classifiers

Four machine-learning methods, including k-nearest neighbors (kNN), logistic regression 

(LR), random forest (RF), and support vector machine (SVM), were employed to build 

single classifiers. We then utilized a neural network (NN) algorithm to construct the 

combined classifiers based on the single classifiers with the best performance. All tools are 

freely available in Orange Canvas (version 2.7.6).29
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k-nearest neighbors (kNN)—kNN is a non-parametric algorithm to classify objects 

based on the closest training samples in the feature space.30 It determines the category of a 

sample based on the categories of its k nearest neighboring samples. In this study, the k 
value was set to 5, and the distance d between samples x and y was measured by Euclidean 

distance that is calculated using equation (1) where n is the number of descriptors.

d(x, y) = ∑
k = 1

n
(xk − yk)2 (1)

Logistic Regression (LR)—LR is a classification algorithm developed by statistician 

David Cox in 1958.31 LR calculates the probabilities using a logistic function to measure the 

relationship between a multitude of independent variables and categorical dependent 

variables. It maps the result of a linear regression function to a value ranging from 0 to 1 by 

the sigmoid function, and this value can be modeled as a probability. The realization of LR 

can be summarized as equation (2) and (3), where a and b are the coefficients determined by 

LR, n is the number of independent variable x.

z = a + ∑
i = 1

n
bixi (2)

p = 1
1 + e−z (3)

Random Forest (RF)—RF is an ensemble algorithm for classification developed by Leo 

Breiman and Adele Cutler.32 It creates a large number of decision trees by bootstrapping 

training samples and randomly selecting subsets of original independent variables and 

predicts the category of new samples via integrating the outputs of the individual trees.33 RF 

is appealing because it is relatively fast at training models and can be used directly for high-

dimensional problems.34 In this study, the number of decision trees in forest is set to 10, the 

minimal number of instances in a leaf is set to 5, and the considered number of attributes at 

each split is equal to the square root of the number of attributes in the input dataset.

Support Vector Machine (SVM)—SVM was first developed by Vapnik.35 The core idea 

of this algorithm is to map data into a higher dimensional space on the basis of the frame of 

Vapnik-Chervonenkis (VC) theory. SVM defines a decision boundary which is expressed as 

separating hyperplane based on a linear combination of functions parameterized by support 

vectors. It seeks the support vectors by maximizing the margin between the instances of 

different classes. Each molecule is expressed in terms of an eigenvector t, and the chosen 

patterns t1, t2, … tn are the components of t. The classification label y was introduced in 
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SVM training. The ith molecule in the data set is defined as Mi = (ti, yi), where yi = 1 for the 

“CV complication” class and yi = −1 for the “non-CV complication” class.36 SVM gives a 

decision function (classifier) using equation (4)

f (t) = sgn 1
2 ∑

i = 1

n
ai K(ti, t) + b (4)

where αi is the coefficient to be trained, and K is a kernel function. Parameter αi is trained 

via maximizing the Lagrangian expression using equations (5) and (6).

maximize
αi

∑
i = 1

n
αi − 1

2 ∑
i = 1

n
∑
j = 1

n
αiα jyiy j K(ti, t) (5)

subject to: ∑
yi = 1

yiαi = 0, 0 ≤ αi ≤ C (6)

In this study the commonly used kernel, Gaussian radial basis function (RBF), was utilized. 

In order to obtain the optimal performance model, the auto searching program “grid” in the 

LibSVM 3.2 package37 was employed to determine the kernel parameter γ and penalty 

parameter C by utilizing a grid strategy based on 5-fold cross validation.

The SVM algorithm in this study is provided by an SVM learner in Orange Canvas 2.7, 

which can provide posterior predictive probability for each prediction. Probabilities are 

created by directly training an SVM and then training the parameters of an additional 

sigmoid function to map the SVM outputs into probabilities.38,39 Given training examples xi 

∈ Rn, i = 1, … , l, labeled by yi ∈ {+1, −1}, the conversion algorithm for the probability P 
r(y = 1|x) is described as equation (7)

P r(y = 1 ∣ x) ≈ PA, B( f ) ≡ 1
1 + exp (A f + B) (7)

where fi is an estimate of decision function f(xi) , and parameters A and B are determined by 

minimizing the negative log likelihood of the training data, which is a cross-entropy error 

function (with N+ of the yi’s positive, and N− negative):
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z = min
(A, B)F(z) = − ∑

i = 1

l
(ti log (pi) + (1 − ti) log (1 − pi)),

for pi = PA, B( f i), and ti =

N+ + 1
N+ + 2

i f yi = + 1

1
N− + 2

i f yi = − 1
, i = 1, …, l .

(8)

The detailed description about probability generation in SVM approach are provided in 

original works.38,39

Description of Combined Classifiers

Combined classifiers can improve prediction accuracy to some extent via comprehensively 

synergizing the complementary information provided by other methods. This approach is 

particularly suitable for the cases where single classifiers may not achieve satisfactory 

predictive accuracy. A combined classifier optimizes the performance of single classifiers by 

enhancing prediction reliability.36,40,41 In this study, four best single classifiers were 

combined using the NN algorithm (Figure 1).

Neural Network (NN)—NN is an information processing paradigm that is inspired by 

biological neural networks.42 A collection of connected units called artificial neurons is the 

basis of NN. Each connection between neurons can transmit a unidirectional signal with 

various activating strength hinges on the weight of neurons. The combined incoming signals 

that exceed a given threshold will promote the propagation of a signal to the downstream 

neurons and activate them. The output of neuron i is given in Equations (9) and (10).

neti = ∑
j = 1

n
wi jx j − θ (9)

yi = f (neti) (10)

where wij the connect weighting value from neuron j to neuron i, θ is the threshold, and f is 

the activation function.

In Orange Canvas 2.7, the NN is implemented by a multilayer perceptron with a single 

hidden layer. It is performed by minimizing an L2-regularized cost function with SciPy’s 

implementation of Limited-memory BFGS (L-BFGS), which is often used for parameter 

estimation in machine-learning.43,44 In this study, the number of hidden layer neurons is set 

to 11, the regularization factor is set to 3.0, the max iteration is set to 200, and data was 
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normalized prior to learning. Normalization was done by subtracting each column by the 

mean and dividing by the standard deviation.

Experimental design

Drugs with at least one of five types of CV complications (hypertension, arrhythmia, heart 

block, cardiac failure and myocardial infarction) were curated from CTD, SIDER, 

MetaADEDB, and Offsides. The same number of corresponding decoys were then randomly 

selected from remaining drugs in DrugBank. The drugs collected from CTD, SIDER and 

MetaADEDB were combined with their decoys as the training sets, while the drugs from 

Offsides and the corresponding decoys were used as the validation sets after eliminating the 

ones existing in the training sets. The drugs with CV complications were labeled as “+1” 

and the decoys (or negative) were labeled as “−1”. Eventually, the training sets of 

hypertension, arrhythmia, heart block, cardiac failure and myocardial infarction contained 

1,162, 1,450, 544, 630 and 638 drugs, and the validation sets included 290, 142, 402, 540 

and 178 drugs, respectively (Table 2).

For each CV complication, single classifiers were firstly built using four algorithms (RF, 

kNN, SVM and LR) and the selected molecular descriptors. Subsequently, four types of 

fingerprints were introduced to enhance the predictive accuracy. For each algorithm and 

specific CV complication, the best single classifiers were constructed using the selected 

molecular descriptors combined with molecular fingerprints. Then the training sets were 

predicted with the four best single classifiers to obtain positive and negative output 

probabilities ( Pi
+1 and Pi

−1 i = 1,2,3,4). After that, the eight output probabilities were chosen 

as new descriptors to develop the NN classifiers, generating probabilities ( PC
+1 and PC

−1) for 

each drug as final predictions.

Model validation

All classification models were assessed by true positives (TP, drugs with known CV 

complication were predicted as cardiotoxic drugs), true negatives (TN, drugs with non-CV 

complication were predicted as non-cardiotoxic drugs), false positives (FP, drugs with non-

CV complication were predicted as cardiotoxic drugs), and false negatives (FN, drugs with 

known CV complication were predicted as non-cardiotoxic drugs). In addition, four metrics 

(sensitivity [SE], specificity [SP], overall predictive accuracy [Q], and precision [P]) were 

calculated using equations (11–13) for further evaluation of model performance.

SE = TP
TP+FN (11)

SP = TN
TN+FP (12)
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Q = TP+TN
TP+FN + FP + TN (13)

P = TP
TP+FP (14)

Moreover, receiver operating characteristic (ROC) curves were used to evaluate the 

performance of the classifiers.45 An ROC curve exhibits the behavior of a model by 

measuring the relationship between true positive rate and false positive rate. The area under 

ROC curve (AUC) was computed for each of the classifiers. A perfect classifier yields an 

AUC of 1, whereas a random model has an expected AUC of 0.5.

RESULTS

GPCRs are the most common target family in training sets

To explore target distribution of drugs in the training sets, we extracted the drug-target 

interactions for drugs in the training sets from DrugBank23 and examined the drug target 

family distribution according to the IUPHAR/BPS Guide to PHARMACOLOGY in 2018.46 

Here, targets are divided into five categories: kinases, G-protein-coupled receptors (GPCRs), 

nuclear receptors, ion channels, or others (Figure S1). We found that GPCRs were most 

highly represented among the four types of target families across five types of CV 

complications, following by ion channels, kinases, and nuclear receptors.

Molecular descriptors together with molecular fingerprint were the best single classifiers

We built 36 single classifiers for each CV complication: a. 4 classifiers built by 4 machine-

learning algorithms (kNN, LR, RF and SVM) with the selected molecular descriptors, b. 16 

classifiers built by combining 4 machine-learning algorithms with 4 different types of 

fingerprints (EState, MACCS, Pubchem and SubFP), and c. 16 classifiers built by 4 

machine-learning algorithms with 4 types of integrated features by the selected molecular 

descriptors and fingerprints. In total, we built 180 single classifiers across 5 types of drug-

induced CV complications. The performance of each classifier was assessed by both 5-fold 

cross validation and external validation. The performances of the 180 single classifiers are 

provided in Supporting Information, Table S3.

To make a more intuitive comparison between the single classifiers, the average AUC scores 

of the single classifiers developed using the selected molecular descriptors (MD) only, 

molecular fingerprint (FP) only, and combination of MD and FP (MD & FP) respectively are 

shown in Figure 2. The average AUC scores ranged from 0.687 to 0.793 on the 5-fold cross 

validations and ranged from 0.613 to 0.710 on the external validation sets. The MD&FP 

classifiers showed better performance on both 5-fold cross validations and the external 

validation sets compared to classifiers built by the MD or FP alone (Supporting Information, 

Figure S2). Hence, single classifiers built on MD & FP together were selected as the best 
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single classifiers for further studies. Table 3 illustrates the performance of all single 

classifiers based on MD & FP across four machine-learning algorithms.

Combined classifiers outperform single classifiers

For each type of CV complications, we selected the best single classifiers built by MD & FP 

and generated by the 4 machine-learning algorithms in order to construct the combined 

classifiers. From the comparison of AUC values as shown in Figure 3, the combined 

classifiers outperformed single classifiers in cross validation. For example, the AUC of the 

combined classifier (AUC = 0.842) is higher than all four single classifiers (kNN AUC = 

0.809, LR AUC = 0.755, RF AUC = 0.802, SVM AUC = 0.808) for prediction of drug-

induced heart block. Building on this observation, Figure 4 further shows that the combined 

classifiers outperform the corresponding four best single classifiers for all 5 types of CV 

complications on both cross validations and external validation sets. Table 4 provides 

detailed performance of the five combined classifiers. Overall, most of the combined 

classifiers achieved a satisfactory performance in both cross validation and external 

validation sets. For example, the AUC values of the combined classifiers for prediction of 

drug-induced hypertension are 0.800 in the 5-fold cross validation and 0.756 in the external 

validation set. High cross validation AUC values are also achieved by the combined 

classifiers on other CV complications including heart block (AUC = 0.842), arrhythmia 

(AUC = 0.784), myocardial infarction (AUC = 0.790), and cardiac failure (AUC = 0.785). 

Taken together, the combined classifiers offer potential tools for computational risk 

assessment of drug-induced CV complications with high accuracy compared to the single 

classifiers. We hence examined the predicted drug-induced CV complications for anticancer 

agents via combined classifiers.

Clinical studies and human pluripotent stem cell-derived cardiomyocyte assays validate 
combined classifiers

Despite advances in cancer treatments, the frequency of CV complications induced by 

anticancer agents (i.e., chemotherapy and targeted therapy) has been substantially 

increasing.47 We applied the four best single classifiers as well as the combined classifiers to 

predict 5 types of CV complications for 63 anticancer small molecular agents, including 26 

targeted therapeutic agents (kinase inhibitors in Figure 5A) and 37 chemotherapeutic agents 

(non-kinase inhibitors in Supporting Information, Figure S3). According to the known drug-

induced CV complications labeled by Drugs@FDA database48, we found a higher success 

rate of 87% (108/124) for the combined classifiers compared to the four best single 

classifiers (79%=392/496, Supporting Information, Table S4). For instance, pazopanib-

induced cardiac failure and myocardial infarction are severe adverse reactions listed in the 

Drugs@FDA database and have been reported by several double-blind placebo-controlled 

trials in patients49,50 and a variety of clinical reports.51–54 Our combined classifiers 

successfully identified pazopanib-induced cardiac failure and myocardial infarction, while 

only one of the best single classifiers offered true prediction in this case. An additional 

example includes Arsenic trioxide (As2O3), which is approved for treating acute 

promyelocytic leukemia. Here itwas predicted to have potential cardiac failure by the 

combined classifiers, while only half of the best single classifiers generated the toxicity 

consistent prediction. Arsenic trioxide was reported to lead to dysfunction of myocardium 
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and reduction of contractility,55 suggesting 100% accuracy of the combined classifiers 

compared to 50% accuracy of the best single classifiers.

Human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) are an effective way to 

assess drug cardiotoxicity in vitro.56 We computationally evaluated CV complications using 

the combined classifiers for 16 tyrosine kinase inhibitors (TKIs) with known cardiotoxic 

profiles identified by PSC-CMs assays56 and literature evidence. We calculated cardiac 

safety indexes (CSI) to provide a relative metric for cardiotoxicity by normalizing 4 

contractility and viability parameters (cessation of beating, effective concentration, 

amplitude of effect, and median lethal dose) as described previously6 (See the details in 

Supporting Method S1). Then we compared CSI values with the corresponding true 

probabilities of having CV complications predicted by the combined classifiers. The 

combined classifiers successfully predicted the reported CV complications for all reported 

TKIs except vemurafenib (Figure 5B). Altogether, the combined classifiers show high 

accuracy for identification of drug-induced CV complications.

Combined classifiers predict oncology molecularly targeted therapeutic agent-induced 
cardiovascular complications

We next used our model to predict several novel CV complications in cancer molecularly 

targeted therapeutic agents. Figure 5A shows the predicted CV complications for 26 FDA 

approved kinase inhibitors covering multiple biological pathways, including epidermal 

growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), 

platelet-derived growth factor receptor (PDGFR), cyclin-dependent kinases (CDKs), BRAF 

V600E kinases, mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase 

(MAPK), janus kinase (JAK), Abelson murine leukemia viral oncogene homolog (Abl), and 

breakpoint cluster region-Abelson leukemia virus (Bcr-Abl). Erlotinib was predicted to have 

a high probability of inducing arrhythmia and myocardial infarction by the combined 

classifiers. In support of our model, recent studies reported that erlotinib induced QTc 

interval in patients57 and CV damage in rat model.58 In addition, an increasing number of 

clinical case reports of acute myocardial infarction following treatment by erlotinib in cancer 

patients also were reported.59–61 Gefitinib, a multi-targeted tyrosine kinase inhibitor, was 

approved for treating lung cancer. Our combined classifiers predicted that gefitinib induced 

all five CV complications (hypertension, heart block, arrhythmia, cardiac failure and 

myocardial infarction), consistent with recent clinical and preclinical studies.62,63 Sunitinib, 

a FDA-approved tyrosine kinase inhibitor for treatment of renal cell carcinoma and imatinib-

resistant gastrointestinal stromal tumor in 2006, was predicted to induce all five CV 

complications by the combined classifiers. Among them, myocardial infarction and heart 

block have not yet been listed on its FDA label. Interestingly, a multicenter and randomized 

phase 3 trial reported that 1.33% (5/375) of sunitinib-treated patients had myocardial 

infarction, the most common reported CV complication (NCT00098657).64 A multi-

parameter in vitro toxicity screening approach based on a human cardiac cell model also 

reported that sunitinib significantly altered the cardiac beat pattern and selectively blocked 

the human Ether-a-go-go Related Gene (hERG) channel,65 consistent with our predicted 

heart block by the combined classifiers. Tandutinib (MLN-518), a novel and selective 

inhibitor of PDGFR, has no reported cardiotoxic profiles in Drugs@FDA database.48 In 
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stark contrast, tandutinib was predicted to have a high likelihood of cardiotoxicity via the 

combined classifiers. An in vitro experiment reported that tandutinib potentially caused a 

progressive increase in rats’ ventricular myocyte damage,66 confirming our prediction.

Integration of five machine-learning algorithms uncover cardiovascular complications 
induced across a diversity of anticancer drugs

It is plausible to hypothesize that drugs in the same class may have similar pharmacological 

characteristics, of which adverse reactions can be inferred.67,68 Figure 6 presents the 

relationships among anticancer agents, their target families, and the predicted CV 

complications. Interestingly, anticancer agents covering Bcr-Abl, DNA topoisomerase, and 

microtubule inhibitors are clustered together (Figure 6 and Figure S4). Bcr-Abl inhibitors 

are the first-line treatment for chronic myelogenous leukemia. Recently, cardiovascular 

safety has been an emerging challenge in patients treated with second-generation Bcr-Abl 

inhibitors.70 For example, dasatinib reportedly may induce potentially fatal pulmonary 

hypertension,70 and ponatinib and nilotinib may induce CV disease.71,72 Topoisomerases are 

ubiquitous enzymes involving in regulating the over- or underwinding of DNA strands.73 

Anthracyclines, typical topoisomerase II inhibitors, have demonstrated cardiotoxicity.73 

Microtubule inhibitors are anti-mitotic agents and known anticancer agents by inhibiting 

tubulin polymerization.74 The CV complications induced by several known drugs in this 

category have been successfully identified by our combined classifiers. For example, 

paclitaxel and docetaxel, as members of taxanes, lead to dysfunctional microtubules and 

release massive histamine, resulting in arrhythmias, myocardial ischemia, and conduction 

disturbances.75 In addition, cabazitaxel, as the fourth taxane, has the potential to induce 

cardiac-related deaths, including ventricular fibrillation, sudden cardiac death, and cardiac 

arrest.76,77 Put together, the combined classifiers successfully identified multiple CV 

complications across multiple pathways targeted by various anticancer agents. Hence, our 

combined classifiers offer powerful tools for identifying potential cardiotoxicity across drug 

families

DISCUSSION

In this study, we developed combined classifiers for the systematic identification of 5 types 

of drug-induced CV complications. We demonstrated that the combined classifiers 

outperformed the single classifiers in both cross validation and the external validation sets. 

Moreover, the newly predicted CV complications by the combined classifiers were validated 

by clinical study experimental data, cardiomyocyte assays and literature. Building on 

previous studies,15,16 this study adds to the field by: (1) collecting comprehensive CV 

complications for over 1,000 FDA-approved drugs by integrating clinically reported data 

from 4 databases, which are reliable and sufficient; (2) improving on the efficiency and 

accuracy of single classifier algorithms by leveraging a combined classifier infrastructure; 

(3) demonstrating that our combined classifiers outperformed several traditional ensemble 

approaches: maximum, minimum, and majority vote (Supporting Information, Method S2 

and Table S5); (4) Utilizing our combined classifiers on 63 anticancer agents with high 

validated accuracy (especially for the top-10 predicted agents, Supporting Information, 

Table S6).
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Several shortcomings should be recognized in the presented current study. First, high quality 

negative samples is quietly crucial for the accuracy of the machine-learning models. In this 

work, the decoy sets were randomly extracted from the rest drugs of DrugBank database23 

without the known cardiotoxicity, which may bring in potential noise and data bias. Second, 

data quality of the validation sets may affect the model performance evaluation.78 In this 

study, the external validation sets were derived from Offsides, which contains 

computationally inferred adverse drug events from FDA's Adverse Event Reporting System 

(FAERS).20 This may explain the lower AUC range (0.693 to 0.756) of the combined 

classifiers on the external validation sets compared to high AUC range in the 5-fold cross 

validations (0.784 to 0.842). Third, current models were built based on integration of 

molecular descriptors and fingerprints of drugs. Recent studies have shown that integration 

of biological descriptors from drug-target networks may further improve model 

performance.79 In addition, an ideal drug target would be expressed only in disease tissue 

and sparsely anywhere else.80 In the future, we plan to integrate more relevant biological 

descriptors and tissue-specific expression profiles of drug targets to further improve the 

model performance. Furthermore, replacement of the currently used NN algorithm by deep 

learning algorithms81,82 could further improve accuracy. Finally, the predicted CV 

complications by the combined classifiers should be further validated by experimental 

assays or pharmacoepidemiologic analyses from the real-world data (e.g., electronic medical 

records or health insurance claims databases)83 in the future.

CONCLUSIONS

In this study, four different classification algorithms were applied to develop 180 single 

classifiers for evaluation of 5 types of drug-induced cardiovascular complications. The best 

four single classifiers of each cardiovascular complications were used to together construct 

the combined classifiers with a neural network algorithm. The combined classifiers 

outperformed the single classifiers not only in 5-fold cross validation but also external 

validation. Lastly, the combined classifiers were employed to pinpoint anticancer agents 

with cardiovascular complications. We report novel drug-induced cardiovascular 

complications which have been discovered and further validated by reported experimental 

data from clinical studies, in vitro assays, and literature. In summary, the combined 

classifiers presented here offer powerful in silico tools for systematic evaluation of drug-

induced cardiovascular complications throughout the life cycle of a drug.
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Figure 1. Diagram illustrating a combined classifier framework for prediction of drug-induced 
cardiovascular (CV) complications
Five types of drug-induced CV complications are collected from three public databases 

(CTD, SIDER and MetaADEDB). The single classifiers are built on the basis of molecular 

fingerprints and the selected physical descriptors using four machine-learning algorithms 

(logistic regression, random forest, k-nearest neighbors, and support vector machine). The 

four best single highest performance classifiers were picked for building the combined 

classifiers using a neural network algorithm. The performance of all models was evaluated 

by both 5-fold cross-validation and the external validation sets collected from Offsides 

database 20. kNN: k-nearest neighbors; SVM: support vector machine; RF: random forest; 

LR: logistic regression.
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Figure 2. 
Comparison of the average area under the receiver operating characteristic curves (AUC) 

scores across the single classifiers built using three types of descriptors: (i) molecular 

descriptors only, (ii) molecular fingerprint only, and (iii) molecular descriptors combined 

with molecular fingerprints, for 5-fold cross validations (A) and the external validation sets 

(B). Note: MD: molecular descriptors; SubFP: Substructure fingerprint.
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Figure 3. 
Receiver operating characteristic (ROC) curves of combined classifiers and the four best 

MD & FP classifiers built by combining the selected molecular descriptors and molecular 

fingerprints across five types of drug-induced cardiovascular complications on 5-fold cross 

validation. Note: AUC: the area under the receiver operating characteristic curves; MD: 

molecular descriptors; SubFP: Substructure fingerprint; kNN: k-nearest neighbors; SVM: 

support vector machine; RF: random forest; LR: logistic regression.
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Figure 4. 
Comparison of area under the receiver operating characteristic curves (AUC) of the 

combined classifiers with the average AUC for four best single classifiers and on 5-fold 

cross validation (A) and external validation sets (B).
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Figure 5. 
Validation of the combined classifiers using reported experimental data from human 

pluripotent stem cell-derived cardiomyocyte assays and literature data. (A) Predicted 

cardiovascular complications for molecularly targeted cancer therapeutic agents (kinase 

inhibitors) by four best single classifiers and the combined classifiers respectively. Drugs 

existing in the training sets are underlined. (B) Comparison of cardiotoxic profiles from 

human pluripotent stem cell-derived cardiomyocyte assays (cardiac safety indexes described 

in Supporting Method S1) and the predicted probabilities from the combined classifiers for 

16 kinase inhibitors. A lower cardiac safety index represents higher risk of cardiotoxicity. A 

predicted probability of more than 0.5 denotes an identified probable cardiovascular 

complication. A higher probability (e.g., 1.0) shows increased likelihood of cardiotoxicity. 

Red color indicates higher relative likelihood of drug-induced CV complications, while 

green or blue color indicates a lower relative likelihood of drug-induced CV complications. 

Note: HTN: hypertension; HB: heart block; Arrhy: arrhythmia; MI: myocardial infarction; 

CF: cardiac failure; MD: molecular descriptors; SubFP: Substructure fingerprint; kNN: k-

nearest neighbors; SVM: support vector machine; RF: random forest; LR: logistic 

regression.
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Figure 6. 
Circos plot representing the predicted associations between 63 anticancer drugs and the five 

types of cardiovascular complications. The predicted associations with positively predicted 

probabilities higher than 0.8 from the combined classifiers are connected lines. Drugs are 

grouped based on their target families using annotation from DrugBank database.23 Kinase 

inhibitors are highlighted in bold font. Circos plot was drawn using Circos (v0.69).69
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