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Abstract

Solution pH plays an important role in structure and dynamics of biomolecular systems; however, 

pH effects cannot be accurately accounted for in conventional molecular dynamics simulations 

based on fixed protonation states. Continuous constant pH molecular dynamics (CpHMD) based 

on the λ-dynamics framework calculates protonation states on the fly during dynamical simulation 

at a specified pH condition. Here we report the CPU-based implementation of the CpHMD 

method based on the GBNeck2 generalized Born (GB) implicit-solvent model in the pmemd 
engine of the Amber molecular dynamics package. The performance of the method was tested 

using pH replica-exchange titration simulations of Asp, Glu and His sidechains in 4 miniproteins 

and 7 enzymes with experimentally known pKa’s, some of which are significantly shifted from the 

model values. The added computational cost due to CpHMD titration ranges from 11 to 33% for 

the data set and scales roughly linearly as the ratio between the titrable sites and number of solute 

atoms. Comparison of the experimental and calculated pKa’s using 2 ns per replica sampling 

yielded a mean unsigned error of 0.65, a root-mean-squared error of 0.90, and a linear correlation 

coefficient of 0.78. While this level of accuracy is similar to the GBSW-based CpHMD in 

CHARMM, in contrast to the latter, the current implementation was able to reproduce the 

experimental orders of the pKa’s of the coupled carboxylic dyads. We quantified the sampling 

errors, which revealed that prolonged simulation is needed to converge pKa’s of several titratable 

groups involved in salt-bridge-like interactions or deeply buried in the protein interior. Our 

benchmark data demonstrate that GBNeck2-CpHMD is an attractive tool for protein pKa 

predictions.
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INTRODUCTION

Solution pH is an important environmental factor that modulates the energetics and 

conformational dynamics of biomolecular systems. Many biological processes, such as 

protein folding,1 enzyme catalysis2 and ion/substrate transport3 are controlled by pH. 

However, pH effects are largely overlooked in the molecular dynamics (MD) community, 

and MD simulations are performed with titratable sites fixed in the protonated or the 

deprotonated state based on the solution or model pKa values. Over the past decade, two 

types of techniques have been developed to control solution pH in MD simulations. In the 

discrete constant pH molecular dynamics (CpHMD) technique, which is also known as the 

stochastic titration method,4 molecular dynamics is periodically interrupted by Monte-Carlo 

sampling of protonation states. This technique, using implicit-, explicit- or mixed-solvent 

schemes, has been implemented in widely used MD packages, such as Amber,5,6 

CHARMM7,8 and Gromacs.4 In the continuous CpHMD technique, which has roots in the 

λ-dynamics method for free energy calculations,9 a set of fictitious λ coordinates, whose 

end points represent the protonated and deprotonated states, are propagated at the same time 

as the spatial coordinates.10 The continuous CpHMD technique, with the aforementioned 

three solvent schemes, has been implemented in CHARMM10–15 and recently in Gromacs.16 

The development and application of both discrete and continuous CpHMD techniques have 

been recently reviewed.17 Here we focus on continuous CpHMD and for convenience, we 

will drop the word continuous in the remainder of the paper.

The original CpHMD method, which was implemented in CHARMM, utilizes the 

generalized Born (GB) implicit-solvent model, Generalized Born using molecular volume 

(GBMV)18 or Generalized Born with simple switching (GBSW),19 to sample 

conformational and protonation states.10,11 Making use of the temperature replica-exchange 

protocol to enhance sampling and ensure convergence,20 the GBSW-based CpHMD method 

was applied to understand protein folding mechanisms1,21,22 and blind prediction of protein 

pKa values.23 The latter study, which used 500 ps per replica sampling at a single pH 

condition to blindly predict the abnormally shifted pKa’s of 87 titratable sites, showed that 

GBSW-CpHMD was one of the most accurate and robust pKa calculation tools.24 

Nevertheless, in the post-prediction analysis23 and other studies12,25 two issues that affect 

the accuracy of pKa calculations were identified. First, the effective Born radii of buried 

atoms given by the GBSW model19 are relatively insensitive to the degree of burial, which 

resulted in a systematic underestimation of the desolvation energies and consequently 
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absolute pKa shifts for deeply buried sites.23 Second, small errors in describing the 

conformational environment and dynamics by the GBSW model, for example, partial loss of 

native structure,12 overcompaction22 and reduced mobility of hydrophobic cluster,12,25 and 

inability to represent solvent-mediated ion-pair interactions due to the lack of solvent 

granularity,12 can lead to pKa shifts in either directions.12 These GBSW-related errors are 

sometimes compounded by the force field bias, for example, overstabilization of α helix in 

the folded state.21,22 Thus, it appears that the accuracy of GB-based CpHMD methods may 

significantly benefit from the improved GB models and force fields. Further development of 

GB-based CpHMD is particularly desirable for pKa predictions, as it has an unmatched 

convergence speed among all constant pH methods.12

Over the past decade, the GB models in Amber molecular dynamics package26 have 

undergone considerable development. In the GBNeck model by Mongan et al., a so-called 

neck correction was introduced to account for the finite size of water molecules.27 In the 

most recent GBNeck2 model by Nguyen et al., the parameter set of GBNeck was 

significantly improved to better reproduce Poisson-Boltzmann solvation free energies and 

more importantly, the experimental structure, stability, and salt-bridge profiles of model 

peptides.28 Excitingly, the GBNeck2 model, when used with the newest ff14SB force field 

(sidechain only version)29 folded 16 proteins of various sizes and topologies to the native 

structures.30 These GB simulations also took advantage of GPU acceleration,31 which 

provided trajectories of 1 μs per day per GPU.

Motivated by the above developments and the desire to offer the community an accurate and 

fast pKa prediction tool, we implemented the GBNeck2-based CpHMD method in Amber 

(abbreviated as GBNeck2-CpHMD henceforth). To accelerate the convergence of pKa 

estimates,12 the existing pH replica-exchange (pH-REX) method in Amber32 was adapted. 

Following a brief description of methods and implementation details, we report pKa 

calculations for 4 mini-proteins and 7 enzymes that exhibit large pKa shifts and have been 

previously used to benchmark the CHARMM CpHMD methods.12,20 The method scales 

with the number of CPUs and has low computational cost. The accuracy of the calculated 

pKa’s will be compared to the GBSW-CpHMD in CHARMM.12,20 A detailed analysis of the 

deviations between calculated and experimental pKa’s will be presented, with a special 

emphasis on residues deeply buried in the protein interior and those involved in salt-bridge-

like interactions, as they are the most challenging sites for accurate pKa predictions and 

showed the largest errors in the CHARMM CpHMD methods.12,20 We will also quantify 

sampling errors and compare results obtained with different force fields and solvent models 

before drawing conclusions.

METHODS AND IMPLEMENTATION

Continuous constant pH molecular dynamics

Based on the λ dynamics method for free energy calculations,9 the continuous CpHMD 

method makes use of an extended Hamiltonian to simultaneously propagate the atomic 

positions and the coordinates of the fictitious λ particles representing protonation/

deprotonation of titratable sites.10 Expressing λ as sin2θ, the λ coordinate is continuous and 
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bound between 0 and 1. Thus, the discretized version of λ can be used to represent the 

protonation state.

λ =
1 (deprotonated), ifλ > cut1
0 (protonated), ifλ < cut0

(1)

where cut1 and cut0 are the two cutoffs chosen to be 0.8 and 0.2, respectively. The total 

Hamiltionian that accounts for a set of deprotonation equilibria of ionizable sidechains in 

proteins, HAj Aj
−, becomes

H ra , λ j = ∑
a

Natom 1
2maṙa

2 + Ubond ra +

Unbond ra , λ j + ∑
j

Ntitr 1
2m jλ̇ j

2 + U* λ j .

(2)

In the above equation, the first and forth terms express the kinetic energies of the real atoms 

and fictitious λ particles, respectively. The second term represents the λ-independent 

bonded energies. The third term represents the λ-dependent electrostatic and van der Waals 

energies. For electrostatics, the atomic partial charges on a titratable site are linearly 

interpolated between the protonated (λ=0) and deprotonated (λ=1) states,

qa, j = λ jqa, j
deprot + 1 − λ j qa, j

prot (3)

which enables the λ-dependent modulation of electrostatic energies, including the Coulomb 

energy as well as the GB solvation free energy,

UGB = − 1
2 ∑

a, b
( 1
ϵp

− e
−κrab

ϵw
)

qaqb

rab
2 + αaαbe

−rab
2 /4αaαb

. (4)

Here rab is the distance between atom a and atom b, qa, qb are the respective partial charges, 

αa, αb are the respective effective Born radii, ϵp (1), ϵw (80) are the dielectric constants for 

the protein and water, respectively. κ is the inverse Debye length, κ2 = 8πq2I/ekBT, where I 
is the ionic strength, q is the charge of the salt ion, e is the elementary charge unit, and kB is 

the Boltzmann constant. Similarly, the van der Waals interactions involving titratable 

hydrogens are linearly scaled by λ.

The final term in Eq. 2 contains three biasing potential energies dependent on λ only,

Huang et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2019 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



U* λ j = ∑
j

Ntitr
−Umod λ j + UpH λ j + Ubarr λ j . (5)

Here Umod is a potential of mean force (PMF) function for titrating a model compound in 

solution, typically a blocked single amino acid. Subtraction of Umod from the total 

Hamiltonian allows the calculation of the relative deprotonation free energy of a titratable 

site in the protein environment (ΔGprotein) with respect to solution (ΔGmod). Umod is a 

quadratic function of λ

U j
mod = A j λ j − B j

2, (6)

where Aj and Bj are the two parameters which can be determined using a fitting procedure 

(see Simulation Protocol).

The next biasing potential UpH allows the calculation of the deprotonation free energy 

change due to a change in solution pH,

UpH(λ j) = ln(10)kBT(pKa
mod − pH)λ j, (7)

where kB is Boltzmann constant, T is temperature, and pKa
mod is the model pKa, which can 

be taken from experiment. UpH(λj) is zero in the CpHMD simulation of a model compound 

at a solution pH identical to the model pKa, i.e., the protonated and deprotonated states are 

sampled with equal probability.

The last biasing potential Ubarr is a harmonic potential designed to decrease the probability 

of λ in the unphysical intermediate state.

U j
barr = 4β λ j − 0.5 2, (8)

where β is the height of the energy barrier. Finally, we note that the equations presented are 

used for single-site titration, e.g., Lys or Cys. The formalism for double-site titration, e.g., 

carboxyl and histidine residues can be found in ref.11

Implementation details

A new module (phmd) that implements the GB-based continuous CpHMD method10,11 was 

added in the pmemd molecular dynamics engine in Amber.26 Currently, the GBNeck2 model 

is used for the propagation of both spatial and titration coordinates, but other GB models can 

be readily adopted. The pH replica-exchange method implemented for the Monte Carlo 

based discrete constant pH method32 was adapted to work with CpHMD.
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To mimic protonation/deprotonation events, CpHMD methods adopt a single topology 

approach, i.e., dummy hydrogens attached to the titration sites lose their partial charges and 

van der Waals interactions upon deprotonation. Additionally, a protonation state change is 

represented by the switch between two sets of sidechain atomic charges. With the 

CHARMM force fields, the implementation is straightforward, as only the sidechain charges 

are affected by the change in protonation state. However, with the Amber force fields, the 

backbone charges are dependent on the sidechain protonation state, which coupled with the 

fact that the backbone atoms can interact with sidechain atoms of neighboring residues due 

to 1–4 electrostatic interactions, presents a problem for CpHMD methods (both discrete and 

continuous) that rely on a single reference state.5 To circumvent this problem, a pragmatic 

approach similar to that used by Mongan et al.5 was adopted: the partial charges on the 

backbone are fixed to the values of a single protonation state (charged Asp/Glu and neutral 

His), and the residual charge (ranging from 0.10 to 0.14 e for Asp, Glu, and His) is absorbed 

onto the C-β atom. In order to avoid introducing potential artifacts to conformational 

dynamics, such a scheme is only deployed for titration dynamics. For conformational 

dynamics, the partial charges are unmodified and the charge interpolation between the 

protonated and deprotonated states is made to both backbone and sidechain atoms.

The dummy hydrogens on Asp and Glu require special attention. The dummy hydrogen can 

be on the same (syn) or opposite (anti) sides of the second carboxyl oxygen. Previous work 

showed that once an uncharged dummy hydrogen rotates to the latter position, it can no 

longer gain charge, i.e., titrate.5,10 Thus, following the CHARMM implementation,11 the 

dummy hydrogens were placed in the syn position at the beginning of the simulation, and 

the rotation barrier around the C-O bond was raised to 6 kcal/mol, to prevent the transition to 

the anti position. Although fixing the dummy hydrogens to the syn position is justified by its 

stability over the anti position based on the NMR experiment and quantum calculations of 

carboxylic acids,11 it is a topic that deserves further examination in the future.

In contrast to the CHARMM GB models (e.g., GBSW), hydrogen atoms have nonzero 

intrinsic Born radii in the Amber GB models. In contrast to the CHARMM GB models (e.g., 

GBSW), hydrogen atoms have nonzero intrinsic Born radii in the Amber GB models. As 

such, the intrinsic Born radius of the titratable hydrogen on a carboxylic group contributes to 

the solvation free energy of the protonated state. Consequently, the derivative of UGB (Eq. 4) 

with respect to λ should contain a term to account for the change in the effective Born radii 

due to protonation. The contribution of such a term is expected to be much smaller than that 

due to the λ-dependent charge perturbation. Additionally, the implementation would be 

computationally inefficient, given the complexity of how the implicit Born radii enter into 

the GB solvation free energy. Thus, we made the following approximation. The 

contributions of the titratable hydrogens of carboxylic residues (e.g., Asp and Glu) to the 

Born radii were excluded from the calculation in both the spatial and titration dynamics, and 

the intrinsic Born radii of the carboxyl oxygens were set to 1.4 Å regardless of the 

protonation state. For histidines, the intrinsic Born radius of the imidazole hydrogens was set 

to 1.17 Å regardless of the protonation state. Note, the default radius for the imidazole 

hydrogens is 1.3 Å. We reduced it to compensate for the overstabilized salt-bridge-like 

interactions, following the radius reduction of the guanodinium hydrogens on arginines by 
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Nguyen, Roe, and Simmerling.28 Further details on the implementation and usage are 

available in Amber18 Reference Manual (http://ambermd.org/).

SIMULATION PROTOCOL

Structure preparation.

Blocked Asp, Glu and His (ACE-X-NH2) were built using the LEaP facility in Amber.26 The 

crystal structures or NMR models of the following proteins were retrieved from Protein Data 

Bank: the 36-residue villin headpiece subdomain (HP36, pdbid 1VII),33 45-residue binding 

domain of 2-oxoglutarate dehydrogenase multienzyme complex (BBL, pdbid 1W4H),34 56-

residue N-terminal domain of ribosomal protein L9 (NTL9, pdbid 1CQU),35 56-residue 

turkey ovomucoid third domain (OMTKY, pdbid 1OMU),36 105-residue reduced form of 

human thioredoxin (pdbid 1ERT),37 129-residue hen egg-white lysozyme (HEWL, pdbid 

2LZT),38 143-residue hyperstable Δ+PHS variant of staphylococcal nuclease (SNase, pdbid 

3BDC),39 124-residue ribonuclease A (RNase A, pdbid 7RSA),40 155-residue E. coli 
ribonuclease H (RNase HI, pdbid 2RN2),41 185-residue oxidized form of Bacillus circulans 
xylanase (xylanase, pdbid 1BCX),42 and 389-residue unbound β-secretase 1 catalytic 

domain (BACE1, pdbid 1SGZ). If applicable, the first chain in the crystal structure or the 

first entry in the NMR models was used; the hydrogen atoms as well as crystal waters were 

removed.

The following steps were performed with CHARMM (version c42a1).43 The PDB structures 

were acetylated at N terminus and amidated at C terminus. Disulfide bonds were added as 

needed. Missing hydrogens were added with protonated His/Lys/Arg/Cys/Tyr and 

deprotonated Asp/Glu sidechains. The hydrogen positions were relaxed using 50 steps of 

steepest descent energy minimization in GBSW implicit solvent19 (default setting, see 

CHARMM documentation) where a harmonic force constant of 50 kcal/mol/Å2 was placed 

on the heavy atoms. Next, dummy hydrogens in syn orientation were added to Asp/Glu 

sidechains, followed by 10 steps of steepest descent and 10 steps of adopted basis Newton 

Raphson minimization in GB solvent. The resulting pdb files were converted into Amber 

parameter and coordinate files in LEaP.

Derivation of model parameters.—Following previous work,11 the average forces ⟨∂U/
∂θ⟩ at fixed θx and ⟨∂U/∂θx⟩ at fixed θ were obtained for blocked model compounds, Ace-

X-NH2, where X=Asp, Glu and His, using GB simulations of 5 ns per window. The ionic 

strength was 0.1 M in accordance with the experimental model pKa determination.44 For 

Asp/Glu, θ/θx values of 0.2, 0.4, 0.7854, 1.0, 1.2 and 1.4 were used, corresponding to λ/x 
values of 0.04, 0.15, 0.5, 0.71, 0.87 and 0.97, respectively. ⟨∂U/∂θ⟩ and ⟨dU/dθx⟩ values 

were fit to the model potential of mean force (PMF) function, Umodel(λ, x) = (a1λ2+a2λ+a3)

(x+a4)2+a5λ2+a6λ, where a1, ...a6 are the fitting parameters. For His, fewer data points were 

needed.11 ⟨∂U/∂θ⟩ was determined with θx fixed at 0 and 1.57 (x = 0 or 1), and ⟨∂U/∂θx⟩ 
was determined with θ fixed at 1.57 (λ = 1). The force values were then fit to the following 

PMF function with five parameters: Umodel(λ, x) = λ2(a1×2 + a2x + a3) + λ(a4x + a5).

Molecular dynamics protocol.—Molecular dynamics was performed using the 

modified version of the pmemd molecular dynamics engine in Amber.26 Proteins were 
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represented by the ff14SB Amber force field.29 Solvent was represented by the GBNeck2 

implicit-solvent model (igb=8) with mbondi3 intrinsic Born radii.28 A 2-fs time step was 

used with bonds involving hydrogen atoms constrained with the SHAKE algorithm.45 In the 

GB calculations, a 0.15 M ionic strength was used.

pH replica-exchange CpHMD titration of blocked amino acids and pentapeptides

Five sets of titration simulations were run for each model compound and pentapeptide. Each 

REX simulation contained six pH replicas, placed in the pH range encompassing 1.5 pH unit 

below and 1 pH unit above the model pKa, with 0.5-pH unit interval. Exchanges were 

attempted every 1000 MD steps (2 ps), and each replica was run for 1 ns. The model pKa’s 

from Thurlkill et al. were used (Table 1).

pH replica-exchange CpHMD titration of proteins.—One set of pH REX simulation 

was run for each protein. For proteins containing only acidic residues (HP36 and NTL9), the 

replicas were placed in the pH range 0–7.5 with 0.5-pH unit intervals. For other proteins, the 

replicas were placed in the pH range 0–9.5, with the same pH interval. Exchanges were 

attempted every 250 steps (0.5 ps), and each replica was run for 2 ns (unless otherwise 

stated).

pKa calculations and error analysis

We first calculated the unprotonated fractions (S) using the following definition: λ < 0.2 for 

the protonated, and λ > 0.8 for the deprotonated state. The residue-specific pKa’s were 

calculated by fitting S at the simulation pH conditions to the Hill equation,

S = 1

1 + 10
n pKa − pH

, (9)

where n is the Hill coefficient. Note, the pKa’s are insensitive to the cutoffs used to defined 

the protonation states. Tests using λ < 0.1 for the protonated and λ > 0.9 for the 

deprotonated state resulted in the same pKa’s.

There are a number of ways to estimate the errors in the calculated pKa’s. Here we present 

the one based on error propagation from the errors in the unprotonated fractions at different 

pH, δSi.

δpKa
2 = ∑

i
δSi

∂pKa
∂Si

2
(10)

where index i refers to a pH condition. The derivation for ∂pKa/∂Si is presented in SI. δSi 

can be calculated using the block standard error formula
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δSi =
σn
N /n , (11)

where σn is the standard deviation of Si, N is the total number of data points in the time 

series of λ, and n is the number of data points in each block. We chose the minimum block 

length to be the correlation time τ, which can be estimated using the autocorrelation function 

(ACF),

c(Δt) =
[λ(t) − Si][λ(t + Δt) − Si]

σ2 (12)

where ⟨. . . ⟩ indicates an average over all Δt intervals considered, Δt is the lag time, λ is the 

discretized version of λ for representing the protonation state (Eq. 1). The ACF tends toward 

zero, as Δt increases and λ t′  looses memory. τ was estimated as the value of t for which the 

ACF first crosses zero. We note, this definition worked well for most residues, but not so for 

residues that have S values that are not converged (see later discussion).

RESULTS AND DISCUSSION

Titration of model compounds and alanine pentapeptides

To verify the accuracy of the model PMF parameters, titration simulations were performed 

on two sets of model systems, the blocked amino acids (model compounds), Ac-X-NH2, and 

alanine pentapeptides, Ac-Ala-Ala-X-Ala-Ala-NH2, in solution. If the model PMF 

parameters were accurate, the input model pKa’s would be reproduced exactly. We also 

expect identical pKa’s for the blocked amino acid and pentapeptide containing the same 

titratable group, as it is completely exposed to solvent. Table 1 lists the calculated pKa’s of 

Asp, Glu, and His in the two model systems and the experimental values reported by 

Thurlkill et al. (pentapeptides44), which were used as the input model values in the current 

work. Table 1 also gives the old reference set reported by Nozaki and Tanford,46 which were 

used in the CpHMD implementations in CHARMM,12,15,20 and the pKa’s measured by 

Castañeda et al. for Asp and Glu in alanine tripeptides Ac-Ala-X-Ala-NH2.39 The calculated 

pKa’s, based on five independent sets of pH-REX CpHMD titration simulations (1 ns per 

replica), show a standard deviation of about 0.05. The deviation between the pKa’s in the 

model compound and pentapeptide is below 0.1 pH units. Thus, in addition to the 

convergence of the unprotonated fractions and individual pKa’s (Fig. S1–S3), these data 

offer assurance that the sampling for the model systems is complete. The calculated pKa’s 

are within 0.1 pH units from the intended model values (from Thurlkill et al.44), indicating 

that the model PMF functions are accurate. We note that the deviations are smaller than the 

differences (up to 0.2–0.3 pH units) among the experimental values by Nozaki, Thurlkill, 

and Castañeda.
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Overall convergence and CPU scaling for protein titration

To benchmark the performance of the current implementation, we carried out titration 

simulations on 4 small proteins and 7 enzymes which show large pKa’s shifts relative to the 

model values (Fig. 1), making them ideal test systems for evaluating the accuracy of pKa 

calculations.48 Except for BACE1, these proteins have been previously used to benchmark 

the GBSW-CpHMD method in CHARMM.12,20 We titrated BACE1, which is a much larger 

enzyme and contains a hydrogen-bonded catalytic aspartic dyad, for which the pKa’s are 

experimentally known but very challenging to predict.2,49

We first examine the convergence behavior. Insufficient sampling and poor convergence of 

pKa’s could lead to poor fitting (of fraction of deprotonation vs. pH) to the generalized 

Henderson-Hasselbalch (or Hill) equation.5,20,32,50 No obviously bad fitting could be 

spotted in the titration plots (Fig. S4–S13). We then compared the pKa’s from the 2-ns and 

1-ns simulation times (Table 3). The differences are all within 0.1 pH units, except for five 

residues showing pKa changes around 0.3 units (see later discussion). We also examined the 

time trace of the fraction of deprotonation S at all pH conditions. Except for the 

aforementioned five residues showing continued drift in the S values, all S curves converge 

within 1 ns (Fig. S14–S24). These data demonstrate that, for most residues, the pKa’s 

converge with 1 ns sampling per replica, which is on par with the GBSW-based CpHMD in 

CHARMM (note, the early data were obtained using the temperature-based replica 

exchange).12,20 We will come back to the pKa’s that are not converged.

For CpHMD to become a practical tool, it must scale well with number of processors and 

not have high computational overhead. Since the major CPU time for CpHMD titration is 

spent on evaluating the forces on λ particles, which involves calculations of the interactions 

between the real atoms and λ particles, it should increase with the number of atoms 

multiplied by the number of titratable sites, Natm × Ntitr. This is indeed the case for the 11 

proteins that were titrated here, which span a range of 35–389 residues with 4–50 titration 

sites (Fig. 2a). Thus, CpHMD titration scales linearly with the system size, with a prefactor 

which is the number of titration sites.

Now we come to the added CPU cost due to CpHMD titration. Given the above scaling 

behavior and the fact that the current GB calculation scales approximately as Natm
1.8  (slightly 

better than the expected quadratic scaling), we reasoned that the percentage CPU time used 

by CpHMD titration relative to the GB calculations should increase linearly as the ratio 

between Ntitr and Natm
0.8 . Regression of the actual CPU usage data returned a correlation 

coefficient of 0.88, thus confirming this conjecture (Fig. 2b). Thus, the percentage CPU 

usage for CpHMD titration scales approximately linearly as the fraction of titratable atoms. 

For the current data set, the CPU cost is 11– 33% of the GB calculations.

Overall accuracy of the protein pKa calculations

To assess the accuracy of the pKa calculations, we compare the calculated and experimental 

pKa’s as well as their pKa shifts with respect to Thurlkill’s model values. The pKa 

comparison returns a mean unsigned error (mue) of 0.70, a root-mean-square error (rmse) of 

0.91, and a linear correlation coefficient R of 0.78 (Fig. 3a). Comparing the calculated and 
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experimental pKa shifts yields an R of 0.56 (Fig. 3b). The worse correlation for the latter 

confirms that predicting pKa shifts is a more stringent test of pKa prediction techniques, as 

pointed out by Warshel and coworkers two decades ago.48

Examining the calculation errors for carboxylic groups and histidines separately is 

instructive. For the carboxylic groups, the mue, rmse, and R are 0.65, 0.92, and 0.62 

respectively, while for His, they are 0.67, 0.81, and 0.16, respectively (Table 2). Although 

the rmse for histidines is only slightly lower than that for the carboxylic groups, the 

correlation is much worse, which may be related to the smaller range of the pKa values 

(about 3 for His vs. over 7 for carboxylic groups). We plotted the histograms of the pKa 

errors (Fig. 3c). For carboxylic groups, the highest peak is at zero, and the histogram is 

slightly skewed to the right, indicating a slight systematic overestimation of Asp/Glu pKa’s. 

For histidines, the peak is at zero; the error has a slightly broader range but no obvious 

skewness; however, no reliable conclusion can be drawn here due to the very limited data 

set.

The overall rmse and correlation with respect to the experimental pKa’s and pKa shifts of the 

current implementation are similar to that of the GBSW-based CpHMD in CHARMM (Fig. 

3b and e). For carboxylic groups, GBSW-CpHMD gives a slightly better correlation (R of 

0.68 vs. 0.62) and slightly smaller error (rmse of 0.86 vs. 0.92, see Table 2). The histograms 

of the pKa errors for carboxylic groups are clearly left skewed (Fig. 3c and f). For histidines, 

GBSW-CpHMD gives much larger errors (rmse of 1.3 vs. 0.81, Table 2), and there is no 

correlation between calculation and experiment (R of 0.0 vs. 0.16, Table 2), although the 

latter conclusion may not be reliable due to the small number of histidine pKa’s.

A useful application of a pKa calculation tool is to predict the acid and nucleophile 

components in catalytic dyads.49 For this purpose, the pKa order is the quantity of interest. 

The current GBNeck2-CpHMD correctly predicted the pKa order for Glu35/Asp52 in 

HEWL, Asp19/Asp21 in SNase, and Asp32/Asp228 in BACE1, although the pKa splitting is 

consistently smaller than experiment. In contrast, the GBSW-CpHMD in CHARMM cannot 

distinguish the pKa’s of coupled dyads.12 The latter was attributed to the distortion of the 

conformational environment of the buried dyad residues.12 Our previous work showed that 

the hybrid-solvent CpHMD in CHARMM, which uses explicit solvent for conformational 

sampling, can accurately predict the pKa splitting of the dyad residues because it more 

faithfully captures the protein conformational dynamics.12 Specifically, these simulations 

demonstrated that the nucleophile forms more hydrogen bonds than the proton donor (acid), 

while having similar or slightly higher solvent exposure.49 Remarkably, these local 

conformational features are reproduced in the GBNeck2-CpHMD simulations (Fig. S26), 

allowing better predictions than the GBSW-CpHMD in CHARMM.

Correlating the pKa errors with the degree of solvent exposure

The pKa’s of buried residues are the most challenging to predict.24 Previous work showed 

that pKa shifts due to desolvation penalty are insufficiently reproduced in the GBSW-based 

CpHMD.11,20,23 As a result, the pKa’s of buried carboxylic groups and histidines are 

systematically under- and overestimated, respectively.23 To determine whether desolvation is 

also underestimated in GBNeck2 and if so, whether it is a major source of pKa errors in 
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GBNeck2-CpHMD titration, we plotted the pKa errors against fSASA, the ratio between the 

solvent accessible surface area of the titratable site in the protein and in solution. To isolate 

the error in estimating the desolvation penalty, we excluded the residues that have the 

carboxylic oxygen or histidine nitrogen within a 5 Å distance from the carboxylic oxygen in 

Asp/Glu or nitrogen in His/Lys/Arg in the crystal structure; the pKa’s of these residues may 

be subject to another source of error, namely, inaccurate representation of strong 

electrostatic interactions.12,23

Fig. 4a shows that the pKa errors of carboxylic groups not involved in strong electrostatic 

interactions are mostly negative. As fSASA decreases, there is a tendency for the error to 

become larger in magnitude (linear correlation coefficient of 0.54). The two largest errors 

(−3.7 for Asp26 of thioredoxin and −1.9 for Glu48 of RNase H) are associated with fSASA 

of 8% and 28%, respectively. These data suggest that the desolvation penalties of buried, and 

particularly deeply buried carboxylic groups are underestimated in the GBNeck2 model, 

consistent with the fact that the effective Born radii for these buried sites are too small as 

compared to the Poisson-Boltzmann radii.27 Performing the same analysis for histidines, we 

found no clear correlation between fSASA and pKa error, although the data set may be too 

small to draw a reliable conclusion (Fig. 4b).

Residues involved in strong attractive electrostatic interactions

Overstabilization of salt-bridge interactions, a known limitation of the GB models,67 was a 

major source of error for GBSW-CpHMD in CHARMM.11,12,20 Thus, we examined the pKa 

errors of residues involved in strong electrostatic interactions, which, for simplicity, were 

defined as those with a distance below 5 Å between a carboxylic oxygen and nitrogen in 

His/Lys/Arg in the crystal structure. We divide the residues into two groups based on their 

fSASA values. For those with fSASA≥50%, the pKa errors are more or less symmetrically 

distributed around zero (Fig. 4c), suggesting no systematic error. Since the desolvation effect 

is small for these groups, it indicates that solvent-exposed salt bridges involving carboxylic 

groups are not overly strong, which is not surprising, as in GBNeck2, the intrinsic Born radii 

for Asp/Glu and Lys/Arg were optimized to closely match the explicit-solvent salt-bridge 

profiles.28

We next examine the carboxylic groups with fSASA less than 50%, for which the pKa’s are 

subject to both desolvation and salt-bridge-like interactions. Both factors, desolvation, which 

shifts the pKa up, and salt-bridge-like interactions, which shift the pKa down, may be 

underestimated, leading to error compensation, although the extent of the compensation is 

unclear. We note the latter, underestimation of salt-bridge interactions (“too wet”), which 

was observed in the GBSW-based CpHMD simulations,12,49 may be reduced here, as the 

Neck model approximately accounts for the interstitial water.27 Indeed, Fig. 4c shows that 

most of the pKa errors are small, except for Asp21 of SNase and Asp10 of RNase H, for 

which the pKa’s are underestimated by about 2.7 units (Table 3). Both residues are deeply 

buried (about 20% solvent exposure) and hydrogen bonded to another Asp in the enzyme 

active site.39,62 Considering our previous discussion regarding desolvation errors (Fig. 4a), 

we suggest that the underestimation of desolvation is much larger than the underestimation 

of attractive electrostatic interactions, leading to the negative pKa errors.
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We turn to the histidines involved in strong electrostatic interactions. Due to the small 

number of data points, a general trend is hard to deduce. Therefore, we focus our attention 

on two extreme cases: the fully exposed His127 of RNase H, which has a calculated pKa of 

6.6 (1.3 units lower than experiment), and the fully buried His48 of RNase A, which has a 

calculated pKa of 7.2 (1.1 units higher than experiment). In RNase H, the crystal structure 

shows a salt bridge between His127 and Glu119, which justifies the large experimental pKa 

shift of His127 (1.4 units). However, the salt bridge contradicts the small experimental pKa 

shift of Glu119 (−0.2 units). In the simulation, the salt bridge is formed for a small fraction 

of time (11 % at pH 5, see SI), consistent with the small pKa shifts for both His127 (0.1 

units) and Glu119 (−0.4 units). Interestingly, the current results are consistent with the 

previous GBSW-CpHMD simulation.20 Thus, we could not find an explanation for the 

discrepancy between the calculated and experimental pKa of His127 in RNase H. We will 

defer further discussion to future studies using titration in explicit solvent.

His48 of RNase A is nearly completely buried (3% solvent exposure) and forms a salt bridge 

with Asp14. Thus, we believe the positive pKa error of 1.1 can be understood similarly as for 

Asp21 of SNase and Asp10 of RNase H. That is, the underestimation of desolvation (which 

shifts the histidine pKa down) overwhelms the underestimation of buried salt-bridge 

interaction (which shifts the histidine pKa up), leading to a positive pKa error for His48.

Analysis of sampling errors and convergence

To quantify sampling noise, we performed error analysis for the calculated pKa’s based on 

error propagation from the block standard error of the fraction of deprotonation (S) at 

different pH (see Methods). Most of the pKa’s have “sampling” errors below 0.1; however, 

six of them have errors in the range 0.2–0.3, as indicated by asterisks in Table 3 (actual data 

not shown). Not surprisingly, the large errors correspond to the aforementioned titratable 

groups with significant drift in the time trace of S values and 0.3–0.4 units changes in the 

pKa’s based on the first and second ns of the simulations. Thus, while the sampling noise is 

small for converged pKa’s, large errors are flags for incomplete protonation state sampling.

We examine the correlation time to better understand the convergence behavior. Fig. 5a 

shows that for Glu7, the autocorrelation function (ACF) of λ (Eq. 1) decays to zero after 

about 15 ps and oscillates around zero for the remainder of the simulation. This behavior is 

typical for pKa’s with small sampling errors, and can be attributed to fast convergence of the 

S value (Fig. 5b). In contrast, for Asp87 of HEWL, the ACF does not reach zero until about 

350 ps and keeps decreasing for the remainder of the simulation (Fig. 5c). This behavior is 

typical for pKa’s with large sampling errors, and can be attributed to the incomplete 

convergence of the S value, which shows a decreasing trend toward the end of the simulation 

(Fig. 5d), indicating that the pKa would be higher and closer to the experimental value 

(Table 3) if the simulation was to continue. A closer look at the trajectory showed that the 

Asp87 forms a persistent salt-bridge-like interaction with His15 in the first half of the 

simulation, while in the second half of the simulation, the interaction is largely disrupted 

(data not shown). Persistent attractive interaction leads to prolonged correlation time, and is 

also the underlying reason for the large sampling errors in the pKa’s of Asp145 in BBL and 

Glu6 in RNaseH. The other two pKa’s with large sampling errors are from buried residues, 
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His12 in RNase A and Glu79 in Xylanase. Consistently, the time trace of S shows a trend 

that decreases the deviation from the experimental pKa. The above analysis shows that the 

large “sampling” errors are due to insufficient convergence of the protonation-state 

sampling. Indeed, extending the simulations to 4 ns per replica improved the convergence of 

the unprotonated fractions S (Fig. S25) and reduced the errors for all pKa’s (Table 4), 

although Asp87 of HEWL and Glu79 of HEWL require even more sampling, as the errors 

are around 0.2, and the unprotonated fractions have not fully plateaued (Fig. S25). 

Encouragingly, however, with the prolonged sampling the changes of the pKa’s are mostly in 

the direction of the experimental values (Table 4).

Dependence on the force field and solvent model

To test the dependence on the force field, we performed an additional titration simulation for 

HEWL using GBNeck2 and the CHARMM c22 force field in Amber (Table 5). Since 

GBNeck2 is optimized for the Amber and not CHARMM force field, we avoid comparing to 

experimental values and instead focus on the pKa differences. The largest pKa differences 

are for the catalytic residues Glu35 and Asp52. With the ff14sb force field, the experimental 

pKa order is reproduced; however, with the c22 force field, the two pKa’s are nearly 

identical and higher than the ff14sb results by 1.6 and 3 units, respectively. Considering the 

desolvation penalty may be similar given the same Neck2 model, we suggest the large 

difference may come from the vacuum hydrogen bond strength in the two force fields.

Next, we considered results with the c22 force field and the published GBSW-CpHMD data. 

The largest pKa differences are again Glu35 and Asp52 in addition to His15. The two pKa’s 

are nearly identical but lower than the Neck2-c22 results by 1.8 and 1.7 units, respectively. 

The lowered pKa values demonstrates that the desolvation induced pKa upshift is much 

smaller with the GBSW model, consistent with the previous observation that the GBSW 

model significantly underestimates the pKa’s of buried carboxylic groups.11,20,23

CONCLUDING REMARKS

We presented the implementation of the generalized Born (GB) implicit-solvent based 

continuous constant pH MD (CpHMD) method in Amber. The implementation was tested 

using pH replica-exchange titration of 2 ns per replica on 11 proteins, ranging from the 36-

residue mini-protein HP36 to the 389-residue BACE1 enzyme. The simulations utilized the 

most recent GBNeck2 model28 and ff14sb force field.29 The CPU cost relative to the fixed-

protonation-state GB calculations scales linearly as the ratio of titratable and total number of 

residues. For the present test set, where all carboxylic groups and histidines were allowed to 

titrate, the added computational cost was 11–33 %. Comparison of the calculated and 

experimental pKa’s of 96 carboxylic groups and 15 histidines gave a mean unsigned error of 

0.65, a root-mean-squared error of 0.90, and a linear correlation coefficient of 0.78. 

Comparison of the calculated and experimental pKa’s shifts relative to the model values 

gave a linear correlation coefficient of 0.56. This level of accuracy is similar to the GBSW-

based19 CpHMD implementation11,20 with the c22 force field51 in CHARMM.43 We found 

that the accuracy is slightly worse for carboxylic groups (a total of 97) but much better for 

histidines compared to the GBSW-CpHMD in CHARMM, although the number of 
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histidines (15) is rather small. However, surprisingly, the current implementation correctly 

predicted the experimental orders of the pKa’s of the buried carboxylic dyads in hen egg 

white lysozyme, staphylococcal nuclease, and β-secretase 1, while GBSW-CpHMD could 

not distinguish them. Our analysis showed that the GBNeck2 simulations preserved the local 

hydrogen bonding environment and solvent exposure of the titratable sidechain, which are 

the molecular determinants for the pKa order. A systematic error in the GBNeck2-CpHMD 

titration is the underestimation of pKa shifts for deeply buried carboxylic groups, which can 

be largely attributed to the underestimation of the desolvation penalties, as was observed for 

the GBSW model. As to the pKa calculations for histidines, no definitive conclusions could 

be drawn due to the small range of pKa values and too few data points. We note that buried 

residues can become kinetically trapped in a conformational substate more readily than 

solvent-exposed residues. Thus, lack of conformational sampling is likely another 

contributor to the pKa errors. In principle, one can probe the extent of such errors by 

extensive conformational sampling to uncover all substates, as demonstrated in the 

CHARMM hybridsolvent CpHMD titration of a deeply buried lysine, for which both closed 

(crystal structure) and open states needed to be sampled to reproduce the experimental 

macroscopic pKa.69 This type of study was not pursued here, because prolonged 

conformational sampling in GB solvent likely leads to larger deviations from the native state 

and consequently larger pKa errors.6

We also conducted analysis of random sampling errors in the calculated pKa’s. With the 

simulation time of 2 ns per replica, the errors are below 0.1 pH units for all but 6 pKa’s 

which were not converged due to incomplete sampling of salt-bridge-like interactions and/or 

hydrophobic burial. Prolonging the simulations to 4 ns per replica demonstrated significant 

improvement in convergence and agreement with experimental data. Finally, we tested the 

dependence on the force field and solvent model using HEWL. The pKa’s of the catalytic 

dyad are most sensitive, which could be attributed to the differences in the hydrogen bond 

strength between the ff14sb and c22 force fields and the more severe underestimation of 

desolvation penalty by the GBSW model.

The current work points toward several directions of future improvement. The GB models in 

the Amber package are under active development,70 and improved GB models could be 

easily incorporated in CpHMD to potentially improve accuracy. The present method uses 

GB solvent for the propagation of both conformational and protonation degrees of freedom; 

however, the hybrid-solvent and all-atom CpHMD in CHARMM have demonstrated 

significantly improved accuracy relative to the GB-based version. Currently, extensions to 

use a hybrid-solvent scheme12 or fully explicit solvent12 are underway. To accelerate the 

computational speed, a GPU implementation will be pursued in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Proteins used in the current benchmark set.
aa/titr refers to the number of amino acids/number of titratable groups. Titratable groups 

include Asp, Glu and His sidechains shown in the stick model. mue refers to the mean 

unsigned error with respect to the experimental pKa’s. For BACE1, mue calculation includes 

only the pKa’s of the catalytic dyad (highlighted in the van der Waals representation), as 

they were the only ones with experimental data.
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Figure 2: Timing statistics of the current GBNeck2-CpHMD implementation.
a) CPU time for CpHMD titration scales linearly as the product of number of atoms (Natm) 

and number of titratable sites (Ntitr). The regression line is shown in green. For clarity, the 

data point for BACE1 is hidden. b) Percentage CPU time for the CpHMD titration relative to 

the GB calculation scales approximately linearly as the ratio between Ntitr and Natm
0.8 . Timing 

was based on the 5-ps single pH CpHMD runs using 2 cores on a workstation.
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Figure 3: Comparison of the pKa calculations using the current GBNeck2-CpHMD in Amber 
and GBSW-CpHMD in CHARMM.
Left panel. Correlation between the experimental and calculated pKa’s from the Amber (a) 

and previously published CHARMM (d) CpHMD simulations. Middle panel. Correlation 

between the experimental and calculated pKa shifts from the Amber (b) and CHARMM (e) 

CpHMD simulations. Model pKa’s obtained by Thulkill et al. were used for the Amber 

CpHMD and those reported by Nozaki and Tanford were used for the CHARMM CpHMD 

simulations (Table 1). Data for Asp/Glu are shown in red while those for His are shown in 

blue. For clarity, the data points for Asp99 in thioredoxin are hidden in a, b, d, and e. The 

linear correlation coefficients R for the entire data set are given. The best fit lines are shown 

in green. The black lines indicate y = x. Right panel. (c) and (f): Histograms for the 

deviations between the calculated and experimental pKa’s for Asp/Glu (red) and His (blue). 

Bin size is 0.2 pH units. The histograms for His are inverted for better viewing. The 

CHARMM data were generated using the c22 force field51 and 1 ns per replica. For the 

CHARMM data, pH replica-exchange was used for HP36, BBL, NLT9, HEWL and SNase,
12 and temperature replica-exchange was used for OMTKY, RNase A, RNase H, xylanase 

and thioredoxin.20
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Figure 4: Correlating the pKa errors with the degree of solvent exposure.
Upper panel. pKa errors vs. fSASA for carboxylic groups (a) and histidines (b) not involved 

in strong electrostatic interactions. fSASA refers to the ratio between the solvent accessible 

surface area (SASA) of the sidechain in protein and in the model. The average fSASA over 

all pH conditions are used. To guide the eye, a green regression line is drawn for the data in 

a). The correlation coefficient R is given. For Asp/Glu, SASA includes the carboxylic group 

(COO) and dummy hydrogens. For His, SASA includes all imidazole ring atoms. Lower 
panel. pKa errors vs. fSASA for carboxylic groups (c) and histidines (d) involved in strong 

electrostatic interactions. In all plots, data for carboxylic groups are colored red, and those 

for histidines are colored blue.
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Figure 5: Analysis of correlation time and protonation state sampling.
(a) and (c): Autocorrelation functions of λ (defined in Eq. 1) for Glu7 and Asp87 in HEWL, 

respectively. (b) and (d): λ (black) and S (green) values as functions of simulation time. The 

pH 3.5 replica for Glu7 and pH 2 replica for Asp87 were used.
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Table 1:

Calculated pKa’s of blocked model compounds and alanine pentapeptides in solution

Residue Compound
a

Peptide
a

Thurlkill
b

Nozaki
c

Castanẽda
d

Asp 3.7±0.07 3.8±0.05 3.67±0.04 4.0 3.90±0.01

Glu 4.2±0.11 4.1±0.05 4.25±0.05 4.4 4.36±0.01

His 6.4±0.03 6.4±0.03 6.54±0.04 6.3 n/d

HID 7.0±0.04 7.0±0.05 n/d
6.92

e n/d

HIE 6.5±0.05 6.5 0.02 n/d
6.53

e n/d

a
Error bars of the calculated pKa’s are the standard deviations based on five independent sets of REX titration runs, each lasting 1 ns per replica. 

Blocked model compound refers to Ac- X-NH2, while pentapeptide refers to Ac-Ala-Ala-X-Ala-Ala-NH2, where X is the titratable residue Asp, 

Glu or His.

b
pKa’s of pentapeptides in 0.1 M salt solution determined by Thurlkill et al. using NMR.44 These pKa’s were used as the model pKa’s in our 

simulations.

c
pKa’s of blocked amino acids given by Nozaki and Tanford46 using potentiometric titration. Ionic strength is unclear.

d
pKa’s of tripeptides Ac-Ala-X-Ala-NH2 in 0.1 M salt solution determined by Castañeda et al. using NMR.39

e
HID refers to the titration HID ⇌ HIP. HIE refers to the titration HIP ⇌ HIE.

e
pKa’s of model compounds measured by Tanokura using NMR titration.47
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Table 2:

Comparison of the pKa calculations for carboxylic groups and histidines with GBNeck2-CpHMD in Amber 

and GBSW-CpHMD in CHARMM
a

Amber CHARMM

residue N mue rmse R mue rmse R

Asp/Glu 98 0.65 0.92 0.62 0.59 0.86 0.68

His 15 0.67 0.81 0.16 1.1 1.3 0.00

a
Listed are the total number of residues (N), the mean unsigned error (mue), root-mean- square error (rmse), and linear correlation coefficient (R) 

from comparing the calculated and experimental pKa’s.
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Table 3:

Calculated and experimental pKa’s for 4 small proteins and 7 enzymes

Residue Expt Calc Residue Expt Calc Residue Expt Calc Residue Expt Calc

BBL HP36 OMTKY HEWL

Asp129 3.9 2.8 (2.8) Asp44 3.1 2.1 (2.1) Asp8 2.7 2.5 (2.3) Glu7 2.6 3.5 (3.5)

Glu141 4.5 4.1 (4.1) Glu45 4.0 3.7 (3.7) Glu11 4.1 3.9 (3.9) His15 5.5 6.5 (6.6)

His142 6.5 6.9 (7.0) Asp46 3.5 3.6 (3.5) Glu20 3.2 3.7 (3.7) Asp18 2.8 1.1 (1.1)

Asp145 3.7 2.6*(2.2) Glu72 4.4 4.1 (4.2) Asp28 2.3 3.6 (3.6) Glu35 6.1 4.6 (4.7)

Glu161 3.7 3.3 (3.3) Glu44 4.8 4.6 (4.6) Asp48 1.4 1.8 (1.6)

Asp162 3.2 3.2 (3.2) RNase A His53 7.5 6.6 (6.7) Asp52 3.6 3.3 (3.2)

Glu164 4.5 4.0 (4.1) Glu2 2.8 3.2 (3.2) Asp66 1.2 2.1 (2.2)

His166 5.4 6.0 (6.0) Glu9 4.0 3.4 (3.3) RNase H Asp87 2.2 1.8*(1.4)

His12 6.2 6.4*(6.8) Glu6 4.5 4.3*(4.1) Asp101 4.5 4.8 (4.9)

NTL9 Asp14 2.0 2.4 (2.3) Asp10 6.1 3.4 (3.4) Asp119 3.5 2.4 (2.2)

Asp8 3.0 2.1 (2.1) Asp38 3.5 2.8 (2.9) Glu32 3.6 3.2 (3.2)

Glu17 3.6 3.4 (3.5) His48 6.0 7.2 (7.1) Glu48 4.4 2.5 (2.5) SNase

Asp23 3.1 2.9 (3.0) Glu49 4.7 2.6 (2.4) Glu57 3.2 4.1 (4.0) His8 6.5 6.5 (6.5)

Glu38 4.0 3.6 (3.5) Asp53 3.9 4.3 (4.2) Glu61 3.9 2.8 (2.8) Glu10 2.8 3.7 (3.7)

Glu48 4.2 3.8 (3.8) Asp83 3.5 2.9 (2.9) His62 7.0 6.9 (6.9) Asp19 2.2 2.3 (2.0)

Glu54 4.2 3.8 (3.8) Glu86 4.1 3.5 (3.4) Glu64 4.4 3.1 (2.9) Asp21 6.5 3.7 (4.0)

His105 6.7 6.3 (6.3) Asp70 2.6 4.1 (4.1) Asp40 3.9 2.8 (2.8)

Thioredoxin Glu111 3.5 3.5 (3.5) His83 5.5 6.2 (6.0) Glu43 4.3 3.7 (3.9)

Glu6 4.8 3.9 (4.0) His119 6.1 6.1 (6.0) Asp94 3.2 3.2 (3.1) Glu52 3.9 3.9 (3.9)

Glu13 4.4 4.4 (4.4) Asp121 3.1 3.5 (3.5) Asp102 <2.0 3.4 (3.2) Glu57 3.5 3.4 (3.4)

Asp16 4.0 4.0 (4.0) Asp108 3.2 3.1 (3.0) Glu67 3.8 4.5 (4.6)

Asp20 3.8 2.9 (2.9) Xylanase His114 <5.0 7.0 (6.9) Glu63 3.3 3.9 (3.9)

Asp26 9.9 6.2 (6.3) Asp5 3.0 3.3 (3.1) Glu119 4.1 3.9 (3.8) Glu75 3.3 2.6 (2.5)

His43 n/d 6.1 (6.1) Asp12 2.5 2.5 (2.4) His124 7.1 6.2 (6.2) Asp77 <2.2 1.9 (1.6)

Glu47 4.1 4.3 (4.5) Glu79 4.6 5.1*(5.4) His127 7.9 6.6 (6.8) Asp83 <2.2 2.1*(1.8)

Glu56 3.3 4.5 (4.6) Asp84 <2.0 3.4 (3.3) Glu129 3.6 4.6 (4.6) Asp95 2.2 4.3 (4.3)

Asp58 5.3 3.8 (3.6) Asp102 <2.0 3.3 (3.4) Glu131 4.3 4.3 (4.4) Glu101 3.8 3.5 (3.8)

Asp60 2.8 3.6 (3.6) Asp107 2.7 3.1 (3.2) Asp134 4.1 4.3 (4.2) His121 5.2 6.8 (6.9)

Asp61 4.2 4.6 (4.5) Asp120 3.2 4.0 (4.0) Glu135 4.3 4.2 (4.3) Glu122 3.9 3.0 (2.9)

Asp64 3.2 3.1 (3.3) Asp122 3.6 3.4 (3.6) Glu147 4.2 3.9 (3.8) Glu129 3.8 4.5 (4.5)

Glu68 4.9 4.3 (4.3) His150 <2.3 4.8 (4.8) Asp148 <2.0 2.4 (2.1) Glu135 3.8 4.2 (4.1)

Glu70 4.6 5.0 (5.0) His157 6.5 7.3 (7.3) Glu154 4.4 3.8 (3.8)

Glu88 3.7 3.8 (3.8) Glu173 6.7 7.0 (6.8)

Glu95 4.1 3.5 (3.5) BACE1 max 3.7

Glu98 3.9 3.9 (3.8) Asp32 5.2 3.9 (3.9) mue 0.65

Glu103 4.4 4.7 (4.6) Asp228 3.5 2.7 (2.8) rmse 0.90

In parentheses are the pKa’s calculated from the first half of the simulations (1 ns per replica). pKa’s with large uncertainties are indicated by an 

asterisk. Experimental data were obtained from the NMR titration of HP36,52 BBL,53,54 NTL9,55 OMTKY,56,57 thioredoxin,58 HEWL,59 
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SNase39,60 RNase A,61 RNase H,62,63 xylanase,64,65 and BACE1.66 The maximum unsigned error (max), mean unsigned error (mue), and 
root-mean-square error (rmse) are listed. BACE1 pKa’s are excluded to facilitate comparison with CHARMM (see Fig. 3 and Table 2).
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Table 4:

Prolonged simulations improve slowly converging pKa’s.

Protein Residue Expt 2 ns 4 ns

BBL Asp145 3.7 2.6 (0.3) 2.8 (0.1)

HEWL Asp87 2.2 1.8 (0.2) 1.9 (0.2)

RNase A His12 6.2 6.4 (0.3) 6.4 (0.1)

SNase Asp83 <2.2 2.1 (0.3) 1.8 (0.1)

RNase H Glu6 4.5 4.3 (0.2) 4.3 (0.1)

Xylanase Glu79 4.6 5.1 (0.3) 4.4 (0.2)

In parentheses are the sampling errors calculated using error propagation (Eq. 10).
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Table 5:

Calculated pKa’s of HEWL using different force fields and solvent models

Residue Expt
a

Neck2-ff14s
b

Neck2-c22
c

SW-c22
d

Glu7 2.6 3.5 3.5 2.6

His15 5.5 6.5 7.6 5.3

Asp18 2.8 1.1 3.2 2.9

Glu35 6.1 4.6 6.2 4.4

Asp48 1.4 1.8 1.3 2.8

Asp52 3.6 3.3 6.3 4.6

Asp66 1.2 2.1 2.3 1.2

Asp87 2.2 1.8 2.2 2.0

Asp101 4.5 4.8 3.9 3.3

Asp119 3.5 2.4 2.6 2.5

a
Experimental data taken from Webb et al.59

b
Neck2-ff14sb denotes the GBNeck2-CpHMD simulation with the Amber ff14sb force field.

c
Neck2-c22 denotes the GBNeck2-CpHMD simulation with the CHARMM c22 force field51 in Amber.

d
SW-c22 denotes the previously published GBSW-CpHMD simulation with the GBSW model and CHARMM c22 force field.68
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