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Abstract

Accurate protein structure in the ligand-bound state is a prerequisite for successful structure-based 

virtual screening (SBVS). Therefore, applications of SBVS against targets for which only an apo 
structure is available may be severely limited. To address this constraint, we developed a 

computational strategy to explore the ligand-bound state of target protein, by combined use of 

molecular dynamics simulation, MM/GBSA binding energy calculation as well as fragment-

centric topographical mapping. Our computational strategy is validated against low-molecular 

weight protein tyrosine phosphatase (LMW-PTP) and then successfully employed in the SBVS 

against protein tyrosine phosphatase receptor type O (PTPRO), a potential therapeutic target for 

various diseases. The most potent hit compound GP03 showed IC50 value of 2.89μM for PTPRO 

and possessed a certain degree of selectivity towards other protein phosphatases. Importantly, we 

also found that the neglection of ligand energy penalty upon binding partially account for the false 

positive SBVS hits. Preliminary structure-activity relationship of GP03 analogs is also reported.
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1. Introduction

Because of the increasing availability of three-dimensional structures of biological targets, 

structure-based ligand design is becoming more pervasive in current drug discovery1–3. 

Specifically, structure-based virtual screening (SBVS), which relies on molecular docking, is 

widely used in the early-stage of drug discovery to search a compound library for novel 

bioactive molecules against a certain drug target4–6. Although SBVS has successfully 

contributed to the discovery of many novel inhibitors, the method faces some limitations in 

its general applicability for diverse proteins targets. A significant complicating factor in 

SBVS is protein rearrangement upon ligand binding (induced-fit)7–9. Previous cross-docking 

studies have shown that docking a ligand to the non-native structure of a target protein leads 

to failure of docking in pose and affinity prediction10–12. These results imply that the use of 

apo crystal protein structures might lead to poor enrichment in virtual screening 

experiments. Thus, for cases in which only an unbound (apo) structure is available for the 

specific target protein, the SBVS method can be severely limited9, 13.

Protein tyrosine phosphatases (PTPs) play essential roles in cell signaling and have been 

recognized as underexploited targets for potential therapeutic intervention in many diseases, 

including cancer, diabetes, autoimmune disorders, and infectious diseases14–16. Although 

many structures have been determined for diverse members of the PTP family, often only the 

apo structure is available, especially for proteins that belong to receptor-type protein tyrosine 

phosphatases (RPTPs) and VH1-like PTPs (Figure 1A and Supporting Information Table 

S1). Furthermore, we compared the binding pockets between apo and holo crystal structures 

for three PTP family members (PTP1B, PTPgamma, SHP2 and LMW-PTP) and found 

ligand-induced conformation changes to be widely observable (Figure 2 and Figure 3A–C). 

Thus, the lack of bound state (holo) structures for many PTPs is likely to be a critical 

challenge to their reliable SBVS.

Considering that experimental structure determination of protein-ligand complexes at atomic 

resolution can be time-consuming and costly, molecular dynamics (MD) simulation can 

serve as an alternative computational tool to generate multiple protein conformations23–25. 

In fact, previous studies suggest that certain snapshots from MD simulation can be more 

predictive in SBVS than experimental structures26–28. However, MD trajectories can include 

many poorly predictive structures as well, and how to select the most suitable structure(s) for 

SBVS remains elusive.

As a member of RPTPs, the protein tyrosine phosphatase receptor type O (PTPRO) has 

attracted significant attention for its essential roles in many diseases. For example, PTPRO 

has been recognized as a tumor suppressor, and hypermethylation and reduced expression of 
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PTPRO has been observed in many kinds of cancer29–31. A recent study further suggested 

that PTPRO-mediated autophagy could prevent tumorigenesis32. PTPRO may also play roles 

in axon growth, vertebrate limb development, and regeneration33–35. In addition, inhibition 

of PTPRO using small molecules has reduced thioglycolate-induced peritoneal chemotaxis 

and improved ulcerative colitis in murine disease models36. Heretofore, few PTPRO 

inhibitors have been reported (Supporting Information Figure S1), thus there is a need to 

develop novel PTPRO inhibitors and to evaluate their therapeutic potential. Currently only 

two apo crystal structures (2G5937 and 2GJT20) are determined for PTPRO (Last visit of 

RCSB Protein Data Bank17: June 2018).

Herein, we designed an inexpensive computational workflow to search for a reliable bound 

state structure of PTPRO, starting from the apo structure (Figure 1B). First, a known ligand 

was used as a probe to induce conformational changes in the target protein during MD 

simulation. Second, an evaluation of MD snapshots was carried out on the basis of MM/

GBSA binding energy calculation, structure clustering, and fragment-centric pocket analysis 

using AlphaSpace38, 39. As a new alpha sphere-based pocket detection tool, AlphaSpace is 

able to identify high-quality pockets at protein-ligand interfaces and has been successfully 

employed in the design of KIX/MLL inhibitor38. Finally, an MD snapshot exhibiting good 

ligand binding affinity as well as well-characterized, high-scoring binding pockets was 

selected as a favorable bound state structure and used in SBVS to identify novel PTPRO 

inhibitors. Our computational strategy was first validated using LMW-PTP, in which both 

apo and holo crystal structures are available, and then successfully employed in the SBVS of 

new inhibitors targeting PTPRO, where only apo crystal structure is available. Our 

prediction of a viable bound state structure to assist SBVS serves as a proof-of-concept 

study for our computational strategy, as well as for future in silico discovery of PTP 

inhibitors.

2. Results and Discussion

We began by validating our computational strategy (Figure 1B) using both apo (5KQP40) 

and holo (5KQG40) crystal structures of LMW-PTP. Pocket analysis of LMW-PTP crystal 

structures using AlphaSpace38, 39 revealed that the apo structure lacks proper binding pocket 

for benzene group of LMW-PTP inhibitor (Figure 3B). To test whether we could capture 

bound state structure of LMW-PTP using apo protein structure, the LMW-PTP inhibitor was 

docked to apo LMW-PTP structure and serve as a probe in MD simulation to induce 

conformation changes in LMW-PTP. As shown in Supporting Information Figure S2A, the 

binding of inhibitor in apo structure is very stable during 200-ns MD simulation (RMSD to 

crystal ligand structure = 0.71 ± 0.25 Å). Although it is very difficult to capture the same 

holo crystal structure during our MD simulation, the protein-ligand complex become closer 

to holo crystal structure than apo crystal structure in respect of binding site residues (Figure 

3D). Then, clustering analysis was performed on the basis of RMSD values of ligand during 

MD simulation. Five clusters were generated with the cluster-1 represent 46% of all MD 

snapshots and the representative MD snapshot of cluster-1 exhibit the highest pocket space 

as well as pocket score among five representative MD snapshots (Supporting Information 

Figure S2B and S2C). Interestingly, the representative MD snapshot of cluster-1 possesses 

better binding pockets for LMW-PTP inhibitor than apo crystal structure and its pocket 
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space and pocket score values are even higher than holo crystal structure (Figure 3E). As 

shown in Figure 3F, our MD simulation explored a large range of pocket spaces upon 

inhibitor binding and more than 95% MD snapshots possess a higher pocket space than apo 
crystal structure. Additionally, the Vina scores of LMW-PTP inhibitor in MD representative 

structure (−8.6 kcal/mol) is higher than that in apo crystal structure (−6.3 kcal/mol), 

indicating that the predicted bound state structure is more suitable for SBVS than apo crystal 

structure. Results above validated the feasibility of our computational strategy in predicting 

suitable bound state protein structure for SBVS using apo state structure.

We then compared two available apo crystal structures of PTPRO (PDB: 2G5937 and 

2GJT20) and identified variation in their WPD-loop structure, which causes variation in the 

active site binding pockets (Supporting Information Figure S3). We docked the known 

PTPRO inhibitor (compound 1) into both PTPRO crystal structures, but only 2GJT was able 

to accommodate ligand binding, possibly due to the larger pockets observed in 2GJT. Figure 

4A and 4C illustrates the initial binding mode of compound 1 predicted from molecular 

docking: (1) the 2-hydroxybenzoic acid group interacts with catalytic site residues in the P-

loop, mimicking the cognate interaction between the phosphorylated PTP substrate and the 

P-loop; (2) the 1,2-diphenylethyne group occupies pockets located between the WPD-loop 

and the Q-loop; (3) the hexane group occupies a pocket beside the pTyr-loop.

The docked model of PTPRO-inhibitor was then subjected to a 200ns MD simulation, 

during which we observed significant changes in the binding mode of compound 1. As 

shown in Figure 4A, the 2-hydroxybenzoic acid group remains in the catalytic P-loop, 

however, the 1,2-diphenylethyne group shifted gradually to the pTyr-loop (10–50ns) and 

finally binds to pockets in the Second-site loop (60–200ns). According to the ligand binding 

energies calculated using MM/GBSA, the binding mode of compound 1 during the MD 

simulation can be divided into three stages (Figure 4B). Calculated binding energies during 

Stage III (150–200ns) are approximately 5 kcal/mol lower than Stage I (0–50ns). Although 

the binding mode of compound 1 in Stage II is similar to that in Stage III, the calculated 

binding energies in Stage II are less stable, exhibiting greater fluctuation. Stage III 

represents the most stable binding model of the PTPRO-inhibitor complex.

In order to identify a representative bound state structure of PTPRO for SBVS, we 

performed clustering analysis using MD snapshots extracted from the last 50ns of the MD 

simulation (Stage III) and a representative structure from the most populated cluster, which 

possessed the highest pocket score as well as occupied space for compound 1 (Supporting 

Information Figure S4), was selected. Using AlphaSpace, we further analyzed the active site 

pockets from the apo crystal structure and the MD representative structure. Results indicated 

that both pocket space and pocket score of Site 1 (P-loop) and Site 2 (WPD-loop and Q-

loop) are increased due to conformation changes induced by the ligand (Figure 5). Pockets 

located in Site 3 (Q-loop, pTyr-loop and Secondary-site loop), the initial binding site of the 

1,2-diphenylethyne group from the docked compound 1, remain unchanged, but their 

interaction with the ligand has been lost (Figure 4A and Figure 5). The 2-hydroxybenzoic 

acid group in compound 1 translates from Site 3 to Site 2 during the MD simulation (Figure 

4A and Figure 5). Interestingly, the induced-fit conformation changes are mainly observed in 

side-chain rearrangement, with the backbone remaining relatively fixed (Supporting 
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Information Figure S5). These results highlight that AlphaSpace is able to reveal 

underutilized subpocket space and is sensitive to subtle conformation changes in the target 

protein. In comparison with the initial docking result using the crystal structure, both Vina 

score and occupied pocket space of compound 1 are increased in the representative MD 

snapshot (Figure 4E), which is in line with MM/GBSA results (Figure 4B). Moreover, the 

structural quality of our predicted bound state structure was verified using ProSA-web41. As 

shown in Figure S6 in Supporting Information, the Z-score of our predicted bound state 

structure is −6.99, which is comparable with crystal structure 2G59 (−7.54). The ProSA 

energy plot of our predicted bound state structure is also similar with crystal structure 2G59. 

This result supports the good quality of our predicted bound state structure for PTPRO. 

Taken together, we predicted a stable bound state complex for PTPRO using our 

computational strategy and the representative MD snapshot was carefully evaluated and 

finally selected as the most favorable bound state structure for PTPRO (Figure 4D). The 

workflow for MD snapshot selection is summarized in Supporting Information Figure S7.

In order to further verify the reliability of our predicted bound state structure of PTPRO for 

SBVS (Figure 4D) and to identify new inhibitors, we performed docking-based virtual 

screening using the representative protein-ligand complex protein structure. According to 

results described above, the known PTPRO inhibitor mainly occupied pockets in Site 1 and 

Site 2 (Figure 6), so these two regions were targeted in our virtual screening. Although the 

limited number of known PTPRO inhibitors makes it impossible to reliably compare the 

performance of different docking programs, our previous study indicated that Gold and 

GoldScore achieve high accuracy in the virtual screening of another PTP family protein. 

Thus, in the current study, Gold and GoldScore were utilized in the virtual screening of 

PTPRO inhibitors.

A commercial database containing more than 200,000 compounds was docked to PTPRO 

using Gold and ranked according to their GoldScore values. Autodock Vina was used to 

rescore the top 2,000 compounds. Then, 500 compounds with high GoldScore and Vina 

score were extracted for cluster analysis and visual inspection (Figure 6A). In each cluster, 

compounds that formed favorable interactions (e.g. multiple hydrogen-bonds) with PTPRO 

were prioritized. Using visualization, we also prioritized compounds binding Site 1 because 

(1) Site 1 is the major binding site for pTyr substrate; (2) AlphaSpace analysis revealed high-

scoring, underutilized subpocket space in Site 1. At last, a total of 20 compounds were 

selected to purchase for biological evaluation (Supporting Information Table S2).

The initial screenings were conducted at a concentration of 100 μM, and compounds that 

exhibited more than 50% inhibition were further tested at different concentrations to 

calculate their IC50 values. Finally, three compounds were identified as novel PTPRO 

inhibitors with IC50 < 100 μM (Figure 6B). Specially, compound GP03 and GP07 possessed 

low micromolar IC50 values (2.89 μM and 6.08 μM, respectively) (Supporting Information 

Figure S8). Chemical structures of these new inhibitors were compared with the list of pan 

assay interference compounds (PAINs), and all of them passed the PAINs filter42. In 

addition, compound GP03 and GP07 showed structural novelty with respect to known 

PTPRO inhibitor compound 1, with ROCS Tanimoto score 0.53 and 0.48, respectively. The 

Lineweaver-Burk plots of the most potent inhibitors, shown in Figure 7, indicate that these 
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compounds are competitive inhibitors for PTPRO with low micromolar Ki values (2.64 

± 0.24 μM for GP03 and 6.65 ± 0.44 μM for GP07).

As shown in Figure 6B, compound GP03 and GP07 bind only to pockets in Site 1 and their 

occupancy of Site 1 is increased compared to compound 1 (Figure 6A). Compound GP17 
binds mainly to Site 1 pockets, but partially occupies a pocket in Site 2. However, the total 

pocket occupancy of compound GP17 is lower than that of GP03 and GP07, which might 

explain its weaker inhibitory activity (Figure 6B). Furthermore, we analyzed the pocket 

occupancy of GP03 throughout MD simulation of the complex (Supporting Information 

Figure S9) and detected significant unoccupied pocket space within Site 1 as well. Thus, the 

unoccupied pocket space, especially in Site 2, provides opportunities for structure-based 

optimization of these new PTPRO inhibitors. We further compared the docking scores of 

these new inhibitors between the crystal structure or the predicted bound state structure and 

found that the latter possesses a higher discriminatory power (Supporting Information Figure 

S10). Results above not only support the utility of our computational strategy (Figure 1B 

and Supporting Information Figure S7) in predicting a bound state structure for SBVS, but 

also provide several new chemotypes for PTPRO inhibition.

Although we have successfully identified three new PTPRO inhibitors from 20 virtual 

screening hits, docking scores failed to accurately distinguish three active hits (binders) from 

17 inactive hits, including five weak binders (IC50 > 100μM) and 12 non-binders (no 

inhibition at 100μM) (Figure 8 and Supporting Information Table S2). In addition, the 

occupied pocket space values showed good correlation with the inhibitory activities of the 

three new PTPRO inhibitors, however, inactive hits also possess high occupied pocket space 

values, making it difficult to distinguish between active and inactive hits (Supporting 

Information Table S2).

In order to further understand the underlying reasons for false positive results in the current 

SBVS study and improve our ability to discriminate between active and inactive PTPRO 

inhibitors, we performed MD simulations as well as MM/GBSA binding energy calculations 

using the docking results of the 20 experimentally evaluated virtual screening hits. Results 

showed that general binding poses of the 20 hit compounds remained stable during MD 

simulations (Supporting Information Figure S11). Unfortunately, the MM/GBSA results still 

failed to discriminate between active and inactive PTPRO inhibitors (Supporting Information 

Figure S12). It should be mentioned that consideration of the ligand conformational energy 

penalty can be critical for accurate estimation of free energy of binding of inhibitors43, 44. 

However, due to the expensive computational cost and low predictive accuracy45–48, the 

energetics of the binding-induced conformation changes in the ligand are usually neglected 

in current docking scores and in the MM/GBSA method49–52. Thus, we sought to 

qualitatively evaluate the energy penalty for the binding-induced ligand conformation using 

an inexpensive computational approach.

Ligand strain energy, which can be defined as the potential energy difference between the 

bound state ligand conformation and the unbound ligand conformation, can serve as an 

approximation of the energy penalty associated with ligand binding53. However, positions of 

ligand atoms in the protein-ligand complex predicted by molecular docking contain 
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significant uncertainties in bond lengths and angles. Small variations of bond lengths and 

angles in a ligand structure may result in an artificially large calculated energy penalty53. 

Taking these factors into consideration, we finally calculated ligand strain energy (ΔEstrain) 

using the following equation:

ΔEstrain = Elocal − Eglobal (eq. 1)

where Elocal is calculated by minimizing the docked ligand conformation to its closest local 

minimum (in the absence of the protein) and Eglobal is calculated using the global minimum 

ligand conformation. All ligand conformation energies were calculated using a fast and 

widely used force field, MMFF (Supporting Information Table S3). In addition, the 

structural differences (RMSD) between the local minimum and global minimum ligand 

conformations, which may also reflect the energetic penalty for the bound conformation, 

were measured (Figure 8B).

As expected, we found that inactive hits often possess higher energy barriers than active hits 

when adopting the bound conformer from the global minimum conformer (Figure 8B and 

8C). The ligand strain energies of the three active PTPRO inhibitors (ΔEstrain < 1.5 kcal/mol) 

are lower than four weak binders and six non-binders (ΔEstrain > 5 kcal/mol) (Figure 8B). By 

considering the structural differences (RMSD < 2 Å), we could further distinguish the three 

active hits from one additional weak binder and three additional non-binders. Finally, we 

could qualitatively discriminate between the three active hits and 14 false positive inactive 

hits by combining the above criteria (ΔEstrain < 1.5 kcal/mol and RMSD < 2 Å). This 

treatment to approximate the conformational energy penalty of ligand binding, which is 

usually neglected in docking scores (and MM/GBSA calculation), may partially account for 

false positive results from the SBVS.

Because all classical PTPs possess conserved residues in the active site, the selectivity of 

current PTP inhibitors represents the major hurdle for their further development. To evaluate 

the selectivity of the three newly identified PTPRO inhibitors, we first tested their inhibition 

selectivity against PTP1B, VHR and STEP. As results show in Table 1, compound GP03 
possessed 1.5–7 fold selectivity for PTP1B, VHR and STEP. Compound GP07 possessed 

good selectivity (8–12 fold) for VHR and STEP; however, it lacks selectivity for PTP1B. 

Compound GP17 exhibited the lowest selectivity with nearly equal inhibition activities for 

PTPTO, PTP1B, VHR, and STEP. We further tested the selectivity profile of compound 

GP03 against other protein phosphatases and observed 3–30 fold selectivity for PEST, LYP, 

PTPN18, Slingshot2, PPM1A, PPM1G and PP1 (Supporting Information Table S4). So, 

compound GP03 not only exhibits the highest potency from our SBVS study, but also 

exhibits varying degrees of selectivity over a panel of protein phosphatases.

To further provide insight into the structure-activity relationship of compound GP03, we 

performed a hit-based substructure search using the Specs database. A total of eight 

analogues of GP03 were selected for biological evaluation. As shown in Table 2, analogues 

exhibited substitutions in the R2 position as well as in the R1 position. Introducing the 

ethoxy substituent in the benzyloxybenzene group gave a compound (GP03–1) with reduced 
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potency (IC50 = 13.99 μM). On the other hand, moving the hydantoin scaffold to ortho-

position of benzyloxybenzene led to an inactive compound GP03–2. Although moving the 

para-substituted carboxylic acid group in R2 position to the meta-position also led to inactive 

compounds (GP03–3 and GP03–5), the introduction of an amide group in R1 position 

slightly restored the inhibitory activity (GP03–4). This result suggests the importance of 

modifying positioning for the substituent in R1, at least for a compound that possesses 3-

(phenoxymethyl) benzoic acid group in R2 position. Also, exchanging the carboxylic acid 

group for fluorine atom gave the inactive compound GP03–6. Thus, the benzoic acid group 

of GP03 is essential for its high inhibitory activity, possibly because of the benzoic acid 

forming hydrogen bonds with residues in the active site of PTPRO. Interestingly, exchanging 

the benzyloxybenzene group for the 2-phenylfuran group in R2 position gave compounds 

(GP03–7 and GP03–8) with reduced potencies (IC50= 26.09 and 50.06 μM, respectively). 

Although the 2-phenylfuran derivatives displayed lower inhibitory activity than compound 

GP03, these compounds still provide a new scaffold for PTPRO inhibition.

3. Conclusion

In summary, we predicted a favorable ligand-bound state for PTPRO by combined use of 

molecular dynamics simulation, MM/GBSA binding energy calculation, and AlphaSpace 
pocket analysis. By utilizing a selected representative bound state structure, docking-based 

virtual screening was performed and successfully identified several novel PTPRO inhibitors. 

Calculations of ligand strain energies revealed a potential underlying factor of false positive 

SBVS results. Moreover, the most potent new PTPRO inhibitor, compound GP03, also 

displayed certain degrees of selectivity over other protein phosphatases. Preliminary 

structure-activity relationships of analogs of GP03 were also explored. These newly 

identified inhibitors not only support that our predicted bound state structure (holo) of 

PTPRO is more robust as a predictive tool than the available crystal structures (apo), but also 

provide good starting points for the further development of PTPRO selective inhibitors.

4. Experimental Section

Materials.

The selected virtual screening hits were purchased from Specs database with purities 

confirmed by LC-MS and 1H-NMR (data available at http://www.specs.net/). The para-

nitrophenyl phosphate (pNPP, CAS: 4264-83-9) was purchased from Sangon Biotech Co., 

Ltd. All other chemicals and reagents were purchased from Sigma.

Molecular Dynamics Simulation.

Molecular dynamics (MD) simulations were performed using Amber 14 package using 

AMBER14SB force field54 for protein and TIP3P model for water55. The starting 

conformation of each protein-inhibitor complex was taken from the molecular docking result 

of AutoDock Vina. The topology file for each ligand was generated using Antechamber56 

with general AMBER force field (GAFF)57 and AM1-BCC charges58, 59. The Particle Mesh 

Ewald (PME)60 method with 12.0 Å cutoff was used to deal with all non-bonded 

interactions. The SHAKE algorithm61 was applied to constrain all bonds involving hydrogen 
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atoms. After a series of minimizations and equilibrations, MD simulations were performed 

on GPUs using the CUDA version of PMEMD62 with periodic boundary condition. 

Berendsen thermostat method63 has been used to control the system temperature at 300 K. 

Other parameters were default values.

MM/GBSA Calculations.

Relative binding energies of ligands were calculated using molecular mechanics/generalized 

born solvent accessibility (MM/GBSA) methodology47, 49, 50. MM-GBSA calculations were 

performed by MM-PBSA.py module of Amber14. The binding energies (ΔGbind) are 

calculated as the sum of molecular mechanical and solvation energies as described by 

following equations:

ΔGbind = ΔH + TΔS ≈ ΔEMM + ΔGsol − TΔS (eq. 2)

where ΔEMM is the gas phase molecular mechanical energy; ΔGsol is the desolvation free 

energy; −TΔS represent the conformational entropy upon association of substrata at 

temperature T. Due to the expensive computational cost and low prediction accuracy45–48, 

entropies were not considered in current study.

For compound 1, all frames taken from the 200ns MD simulations were used in MM/GBSA 

calculation. The binding energy of each virtual screening hit was calculated using the 

snapshots taken from 2–20ns of each MD simulation.

Snapshot Selection.

All MD snapshots were analyzed using cpptraj module in AmberTools 15. Clustering 

analysis of LWM-PTP-inhibitor system and PTPRO-compound 1 system were performed 

using the hierarchical agglomerative approach as implemented in the AmberTools package. 

Protein-ligand interaction energies were calculated using MM/GBSA method. Binding 

pocket analysis was performed using AlphaSpace38, 39, a computational tool for fragment-

centric topographical mapping of intermolecular interfaces.

AlphaSpace Pocket Analysis.

AlphaSpace38, 39 (www.nyu.edu/projects/yzhang/AlphaSpace/)) employs a geometric model 

based on Voronoi tessellation to identify and represent all concave interaction space across 

the protein surface as a set of alpha-atom/alpha-space pairs, which are then clustered into 

discrete fragment-centric pockets. The occupation status of each individual alpha-space 

within each pocket is evaluated based on the distance between its associated alpha-atom and 

the nearest atom from the ligand, using a 1.6 Å cutoff. The total pocket occupation by ligand 

is calculated by taking the sum of all occupied alpha-space volumes associated with ligand 

atoms. All detected pockets are classified as core (green sphere), auxiliary (blue sphere), or 

minor pockets (rosy brown sphere) by employing AlphaSpace pocket score as described 

before39.
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Structure-based Virtual Screening.

Crystal structures of PTPRO were retrieved from the Protein Data Bank (PDB code: 2G59 

and 2GJT) and prepared using the protein preparation workflow in Sybyl-x 1.1 (Tripos, 

Inc.). The protonation states of specific residues were calculated using the PDB2PQR 

server64. Molecular docking studies were carried out using the standard setting of Autodock 

Vina65 and Gold66. All ligands in the Specs database (www.specs.net) were prepared using 

Ligand Preparation module in Sybyl-x 1.1 with 3D structures generated by Concord. The 

predicted bound structure of PTPRO was used in virtual screening. Firstly, the database was 

screened using Gold program and top 2000 docking hits were selected according to the Gold 

Scores and then rescored using AutoDock Vina with local minimization. Then, the top 

ranking 500 compounds were clustered based on the FCFP_6 fingerprints calculation and 

then selected manually. Other parameters that are not mentioned were set at default values.

Enzyme Catalytic Assay.

The expression and purification of the PTPRO catalytic domain as well as other protein 

phosphatases were performed as described previously67–72. The effect of small molecule 

inhibitors on the PTP-catalyzed pNPP hydrolysis were determined at 25°C in 50 mM 3,3-

dimethylglutarate buffer, and the ionic strength was adjusted to 0.15 M with NaCl (buffer 

A). The reaction was quenched at set time points using 1 M NaOH, and the ageneration of 

products was detected by monitoring the absorbance of pNP at 405 nm. The IC50 values 

were calculated by GraphPd Prism according to following equation:

v = Vmax*IC50/ IC50 + S

Calculation of Ligand Strain Energy.

Ligand strain energy was defined as the energy difference between local minimum 

conformation of bound ligand and global minimum conformation of the unbound ligand. 

Docked conformations of each virtual screening hit was minimized to its closest local 

minimum using Sybyl-x 1.1 and MMFF force field. To identify the lowest energy 

conformation (global minimum), conformational analysis was performed for each ligand 

using the Random Search module in Sybyl-x 1.1. An energy cutoff of 3.0 kcal/mol and a 

RMS threshold of 0.2 Å above the global minimum were used, and the maximum number of 

conformations was set to 1000.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Analysis of apo and holo structures for different classes of PTPs in the RCSB Protein 

Data Bank17 (version June 2018). (B) Computational strategy to predict protein bound state 

from apo state.
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Figure 2. 
Comparison of the ligand binding pockets in apo (PDB: 1SUG18, 3QCB19 and 3B7O20) and 

holo (PDB: 1PH021, 3QCJ19 and 3O5X22) crystal structures of PTP1B (A), PTPgama (B) 

and SHP2 (C).
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Figure 3. 
Computational strategy validation using LMW-PTP. The binding pockets of LMW-PTP 

inhibitor in holo crystal structure (A), apo crystal structure (B) and representative MD 

snapshot (C) are calculated using AlphaSpace38, 39. (D) RMSD of binding site residues 

(within 5Å of LMW-PTP inhibitor) from apo and holo crystal structures. (E) Comparison of 

ligand binding pocket space and score in holo crystal structure, apo crystal structure and 

representative MD snapshot. (F) Probability of ligand binding pocket space during MD 

simulation.
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Figure 4. 
Prediction of the most favorable bound state structure of PTPRO. (A) Selected snapshots of 

compound 1 during 200ns MD simulation. (B) The RMSD values and calculated binding 

energies of compound 1 during MD simulation. (C) Binding pockets of compound 1 from 

initial docking result using crystal structure. (D) Binding pockets of compound 1 from 

representative MD snapshot. (E) Vina scores and occupied pocket space values of 

compound 1 in crystal structure and representative MD structure. Fragment-centric pocket 

analysis was performed using AlphaSpace38, 39. Pockets are represented by spheres, which 

are colored by pocket classification: core pockets (green), auxiliary pockets (blue), and 

minor pockets (rosy brown).
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Figure 5. 
Comparison of the inhibitor binding sites in PTPRO. Panel A and B illustrate the pockets of 

three inhibitor binding sites (Site 1, Site 2 and Site 3) in crystal structure and MD 

representative structure. Pockets are represented by spheres, which are colored by pocket 

classification: core pockets (green), auxiliary pockets (blue), and minor pockets (rosy 

brown). Panel C and D present the total pocket score and pocket space for three inhibitor 

binding sites, comparing crystal structure and MD representative structure.
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Figure 6. 
(A) Predicted bound state of PTPRO is illustrated with two major inhibitor binding sites on 

the left and the workflow for virtual screening on the right. (B) Chemical structures and 

predicted binding modes of compound GP03, GP07 and GP17. The inhibitory activities 

against PTPRO as well as occupied pocket space values are illustrated for each compound.
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Figure 7. 
Kinetic analysis of PTPRO inhibition by GP03 (A)and GP07 (B). The Lineweaver-Burk 

plot displays a characteristic pattern of intersecting lines that indicates competitive 

inhibition.
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Figure 8. 
The ability to discriminate between binders and non-binders. (A) Docking scores of 20 

virtual screening hits using Autodock Vina and Gold. (B) Energy difference and structure 

difference of each virtual screening hit between local minimum and global minimum. (C) 

Active and inactive hits are schematically represented by different energy wells on the ligand 

energy landscape, illustrating the magnitude of the conformational energy penalty upon 

binding.
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Table 1.

Selectivity of compound GP03, GP07 and GP17 against PTP1B, VHR and STEP.

PTP
PTP inhibition IC50 (μM)

GP03 GP07 GP17

PTPRO 2.89 6.08 67.94

PTP1B 4.44 5.75 60.86

VHR 6.58 49.27 83.51

STEP 21.08 75.16 54.42
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Table 2.

Structure-activity relationship of compound GP03 and derivatives.

Compound R1 R2 IC50 (μM)

GP03 2.89

GP03–1 13.99

GP03–2 >100
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Compound R1 R2 IC50 (μM)

GP03–3 >100

GP03–4 81.74

GP03–5 >100

GP03–6 >100

GP03–7 26.09

GP03–8 50.06
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