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Abstract

Modern molecular mechanics force fields are widely used for modelling the dynam-

ics and interactions of small organic molecules using libraries of transferable force field

parameters. For molecules outside the training set, parameters may be missing or

inaccurate, and in these cases, it may be preferable to derive molecule-specific param-

eters. Here we present an intuitive parameter derivation toolkit, QUBEKit (QUantum

mechanical BEspoke Kit), which enables the automated generation of system-specific

small molecule force field parameters directly from quantum mechanics. QUBEKit is

written in python and combines the latest QM parameter derivation methodologies

with a novel method for deriving the positions and charges of off-center virtual sites.

As a proof of concept, we have re-derived a complete set of parameters for 109 small

organic molecules, and assessed the accuracy by comparing computed liquid properties

with experiment. QUBEKit gives highly competitive results when compared to stan-

dard transferable force fields, with mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol

and 1.17 kcal/mol for the liquid density, heat of vaporization and free energy of hydra-

tion respectively. This indicates that the derived parameters are suitable for molecular

modelling applications, including computer-aided drug design.
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Introduction

Complex biological processes such as protein-ligand binding,1,2 enzyme catalysis, and pro-

tein folding are often best understood when studied at the atomic scale which has driven

an increase in the popularity of molecular mechanics (MM) and computational experiments.

The ability of MM to model systems ranging in sizes from thousands to millions of atoms

makes it indispensable across a wide range of sciences from biology to materials physics. The

key to the general success of MM stems from the force field (FF) and its functional form,

which allow the approximate description of the potential energy surface of a system as a

simple function of its geometry.3 Ideally, we would like to study any atomic system at the

most rigorous level of theory possible using quantum mechanics (QM). The explicit inclusion

of electrons in QM is both a strength and a weakness. While QM does offer unprecedented

accuracy, it is computationally expensive on the system sizes typically studied in biology, for

example. Recent advances in linear-scaling density functional theory (DFT)4 and hardware

has seen QM calculations on entire proteins become feasible,5,6 while QM calculations on

small molecules have become routine,3 and offer a plethora of detailed information unob-

tainable through experiments such as electrostatic potentials and conformation-dependent

energy surfaces. The widespread availability of these calculations presents an opportunity to

develop new methods5,7–9 and tools10–14 which solely use QM data to derive FF parameters.

This is particularly useful in non-standard regions of chemical space, as commonly seen in

computer-aided drug design (CADD), which a state-of-the-art FF may struggle to accurately

represent using transferable parameters assigned by chemical similarity.10

Transferable FFs such as GAFF (general AMBER FF),15 CGENFF (CHARMM general

FF)16 and OPLS-AA17 are designed to be used in conjunction with their respective highly

optimized and benchmarked biological FF counterpart. They are primarily used in simu-

lating drug-like components of systems in CADD and give non-expert users the ability to

parametrize highly diverse expanses of chemical space with very little computational cost.

The requirement that a FF be transferable stems from two key points, 1) the parametriza-
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tion process is a complex and error-prone task that is daunting to the inexperienced user,

and 2) an attempt to parametrize all of chemical space would be inconceivable. It is there-

fore generally assumed that as long as a wide selection of chemical space is covered in the

parametrization set then these results can readily be applied to new molecules. Each of the

general FFs use libraries composed of thousands of pre-tabulated parameters,18 intensively

fit to experimental and QM data for a set of small molecules that make up their training set.

The parametrization goal of these particular FFs focusses on recreating experimental data

concerning the condensed phase thermodynamic properties of small organic molecules, such

as liquid densities, heats of vaporization and free energies of hydration.16 This parametriza-

tion philosophy follows sound logic as these properties describe the FF’s ability to accurately

characterize the non-bonded interactions that are also key in protein-ligand binding events.

While a great deal of thought is given to the constituents of the training set and the

similarity assignment methodologies, users do not have to explore chemical space for long

before they find missing parameters.10,19 This has led to the release of several software

packages that offer to fill in gaps in their respective FFs for a molecule with missing or

untested parameters. These methods often involve QM calculations that are used as reference

data in order to fit a specific selection of parameters for the molecule to complete or improve

the set. The wide range of methods developed now allows users to potentially re-parametrize

entire molecules, however this is rarely done. Instead, these methods are used just to plug

holes in the FF and replace as few parameters as possible. While this gap-filling technique

has become widely used and often results in accurate parameters, their compatibility with

the rest of the parameter set is questionable. This is mainly due to the highly interdependent

nature of transferable FF parameters. Thus users of these methods should try to take these

interdependencies into account whenever they modify a FF to ensure the overall accuracy of

the parameter set is not affected. It should also be noted that efforts like ForceBalance14 and

the Open Force Field Consortium20 aim to expand the areas of chemical space that can be

automatically parametrized via well-documented protocols, but ultimately there will always
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be gaps.

One way around this would be to derive a system-specific (or “bespoke”) FF for each

molecule studied, thereby removing any limitations associated with parameter transferability,

and instead adopting a transferable FF derivation methodology akin to the semi-empirical

models routinely used for charge derivation. As it is now becoming increasingly common for

users to call upon additional software packages to at least optimize their parameter set, it is

not unreasonable to suggest extending this to re-derive a new parameter set for the entire

molecule. For example, charges and torsion parameters are often targeted for re-derivation

and optimization from QM data,21 and these methods have thus become widely automated

and routine. On the other hand, the remaining FF components (bond stretching, angle

bending and Lennard-Jones (L-J) terms) are more difficult to automatically derive because

they traditionally involve some form of fitting to experimental data.

However, with several recent developments in parameter derivation methodologies, we

now have the means to derive all FF parameters directly from QM with minimal experimental

fitting. The first of these is the modified Seminario method,7,22 which allows the derivation of

bond stretching and angle bending force constants directly from the QM Hessian matrix and

optimized geometry. This method has been shown to give highly accurate parameters that

are able to reproduce QM vibrational frequencies with an average error of 6.3% for a test set

of 70 molecules, which is slightly lower than that achieved by OPLS-AA (7.4%). Secondly, the

atoms-in-molecule (AIM) method provides a means to partition the QM molecular electron

density amongst the constituent atoms, and hence assign atom-centered partial charges,

even for systems comprising many thousands of atoms.5,23 Furthermore, the partitioned

atomic electron densities can also be used in conjunction with the Tkatchenko-Scheffler (TS)

relations24 to calculate all of the L-J parameters for a molecule. This method of using

QM-derived non-bonded parameters has been shown to perform well in recreating liquid

densities and thermodynamic properties when applied to a test set of 40 organic molecules.5

Collectively these methods form the basis of the QUantum mechanical BEspoke (QUBE)
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FF.25

Here, we present QUBEKit, a software toolkit designed to help users derive QUBE

FF parameters in an intuitive and consistent way that minimizes parameter interdepen-

dency. This first iteration combines previously benchmarked QM derivation methods for

non-bonded, bond stretching, angle bending and torsion parameters, using the same func-

tional form as the OPLS-AA FF, and is freely available to the community via our Github

page (https://github.com/cole-group/QUBEKit). Continuing a previous study that bench-

marked the accuracy of the atoms-in-molecule non-bonded parameter derivation method, we

re-derive parameters for a larger test set comprising over 100 small organic molecules using

QUBEKit in a proof-of-concept workflow. We also expand upon the original non-bonded

parameter derivation process by adding new fitting parameters that allow the derivation of

FF terms for compounds containing bromine, as well as implementing a novel method for the

derivation of off-center virtual site positions and charges directly from the QM electron den-

sity to model anisotropic electron densities. Combining these techniques we show through

the use of the standard FF metrics described that the level of accuracy achievable with a

QUBE FF is comparable to that of widely-used general transferable FFs. In this way, we

provide the community with a tool for checking and refining parameter sets assigned through

chemical similarity, and a starting point for FF improvements through optimization of the

derivation protocols.

Theoretical background

FFs are traditionally described using bond-stretching, angle-bending, dihedral rotation, elec-

trostatic and L-J contributions, as exemplified by the OPLS functional form:

U =
∑
Bonds

kr
2

(r − ro)2 +
∑
Angles

kθ
2

(θ − θo)2 +
∑
Pairs

qiqj
rij

+

(
Aij
r12ij
− Bij

r6ij

)
+

∑
Dihedrals

[
V1
2

(1 + cos(φ)) +
V2
2

(1− cos(2φ)) +
V3
2

(1 + cos(3φ)) +
V4
2

(1− cos(4φ))

] (1)
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The bond-stretching and angle-bending contributions require estimates of the force constants

kr and kθ respectively as well as reference bond lengths (ro) and angles (θo). The dihedral

term is described as a four component cosine series with four corresponding parameters V1,

V2, V3, V4, where φ is the torsion angle of the dihedral being described. The final term

accounts for all non-bonded interactions between pairs of atoms seperated by a distance rij.

The standard Coulomb potential is used to calculate the interaction between two charges

qi and qj. Finally the short-range repulsion and longer-range attractive van der Waals

interactions are described using the L-J 12-6 potential. Here Aij = 4εijσ
12
ij and Bij = 4εijσ

6
ij

where the ε and σ values of the L-J potential govern the energy well depth and minimum

energy separation distance respectively. A complete set of parameters for any molecule

described by this FF form requires the derivation of all the parameters of eq 1.

Traditionally each term has its own parameter fitting protocol and order that varies

between FFs. Our derivation scheme follows this idea, breaking the problem down into in-

dividual tasks that have an order of best practice. In particular, we begin by calculating

the stretching and bending terms, followed by non-bonded, and finally the dihedral parame-

ters. Next, we shall discuss the motivation behind the derivation and optimization methods

combined in QUBEKit.

Bond and Angle Parameters

For each bond and angle in our molecule, we require a force constant and equilibrium value

in order to describe the internal energy contribution associated with the vibrational motion.

It has been noted that, to describe all of the basic atom type combinations in GAFF, some

20,000 angle parameters would be required.15 Such large parameter libraries are common-

place with OPLS3 containing 15,236 angle-bending parameters, with a continuing effort to

expand this list as new chemistries are encountered.18 To generate these parameters, general

FFs have to use a wide range of reference data combining experiment and QM. QM data

actually already play a role in the derivation of the majority of the transferable parameters

7



in these FFs due to the lack of experimental data available for unique chemical species and

the ease of generating accurate QM data on-the-fly. While many of the equilibrium terms

are collected from x-ray crystallography and NMR studies of small molecules, some have to

be determined from QM predicted minimum energy structures.15–18 Force constants are then

manually fit in an iterative process which aims to recreate the QM vibrational frequencies

using an initial guess for the other required parameters as described in the development of

CGENFF16 and AMBER.15 While this method is effective, it does create interdependencies

in the FF parameters as the force constants are dependent on the rest of the original parame-

ter set, meaning that ideally all parameters should be continually updated in a self-consistent

fashion until convergence is reached.16

Instead, we have adopted the modified Seminario method for deriving bond and angle

force field parameters. With this method, force constants are calculated directly from QM

data and interdependencies between different components of the FF are eliminated, while

maintaining low errors in the description of the frequencies of QM normal modes.7 The

standard Seminario method derives force constants directly from the QM Hessian matrix22

and has been incorporated into specialized FF fitting tools for metal complexes such as the

VFFDT plugin,26 or in the MCPB.py27 program which is part of AmberTools. This method

estimates force constants by projecting the decomposed forces felt by an atom due to the

displacement of a neighboring atom onto their mutual bond vector.22 However, this method

results in undesirably stiff force constants due to the double counting of angle bending

contributions in larger molecules, as outlined in ref 7. The modified method, however,

accounts for an atom’s chemical environment and has been shown to recreate QM vibrational

frequencies with a low average error of 6.3% across all vibrational modes for a wide range

of molecules.7 The ability to accurately derive the bonded parameters directly from the QM

Hessian matrix without the need for initial parameter guesses clearly simplifies the procedure

for non-expert users by removing sources of human error and also speeds up the process

making it suitable for automation. We shall also show that the derived force constants
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retain a low percentage error in recreating QM vibrational frequencies when combined with

the rest of the QUBE FF.

Non-Bonded Parameters

The non-bonded interactions incorporate multiple QM effects, such as electrostatics, induc-

tion, dispersion and exchange-repulsion, through effective non-bonded Coulombic and L-J

interactions. In fixed point charge models there are many methods to derive partial charges

from high-level QM calculations using a mixture of population analysis techniques, but ulti-

mately no unique solution. While ab initio calculations yield high-quality charges they are

often disregarded as being too computationally expensive and are substituted by a variety

of semi-empirical QM based methods. These methods allow the rapid assignment of charges

and are heavily parametrized in order to reproduce charges observed at higher levels of the-

ory. For example, GAFF employs Mulliken charges produced from semi-empirical Austin

Model 1 (AM1) calculations28 that are then subject to bond charge corrections (BCC) to

better recreate experimental hydration free energies.29,30 The resulting electrostatic potential

is then comparable to that calculated at the HF/6-31G∗ level which was used to parame-

terize the AMBER restrained electrostatic potential (RESP) charges.15 OPLS-AA, on the

other hand, uses Cramer-Truhlar CM1A31 charges, and recently also included an AM1-BCC

inspired localized BCC version of the OPLS-AA/CM1A FF that is available through the

LigParGen server.32–34 It should also be noted that as these semi-empirical QM calculations

are performed in vacuum they have to be modified to include polarization effects to make

them suitable for condensed phase modelling. This is often performed via the inclusion of

the BCC mentioned in the case of GAFF and OPLS, and/or in the form of charge scaling

factors all of which are only used on neutral molecules.

On the other hand, CGENFF relies heavily on ab initio calculations. CGENFF I charges

can be first assigned by a similarity search through a library of parametrized fragments or

can be derived using MP2/6-31G(d) Merz-Kollman charges.16 With either starting guess,
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the charges are subsequently optimized by fitting to QM-calculated scaled interaction ener-

gies at the HF/6-31G(d) level between the molecule and water in a variety of conformations.

Again we note the choice of low-level theory, this an artefact from the initial derivation of

the CHARMM additive FF, to ensure any new parameters are compatible with the biolog-

ical CHARMM terms. Importantly this means the overall charge description is compatible

between systems that require a mix of transferable and biological FFs.

Computational cost is also kept to a minimum in standard transferable FFs by assigning

the L-J parameters from a library of pre-fit parameters. This has become standard prac-

tice across transferable FFs, with OPLS3 containing 124 different atom types so far, and

many general FFs borrowing terms from their biological counterparts.15,18 The L-J potential

parameters are often tuned to accurately recreate experimental liquid properties.10,16,17,35

While this technique works very well for atoms covered in the original parameterization,

more atom types often have to be introduced to account for new chemical environments.

During the optimization of the GAMMP/GAFF-LJ* parameters, for example, it was found

that for a test set of 430 compounds the 41 standard atom types of GAFF were restricting

the maximum achievable accuracy of the FF. The performance was then substantially in-

creased with the addition of 11 new atom types, reducing the average unsigned relative error

in the heat of vaporization from 17.9% to 5.9%.10 Clearly increasing the number of atom

types will help increase the overall accuracy of a FF as new exceptions to current atom types

arise, logically this implies that system-specific FF parameters have the potential to lead to

an overall more accurate FF.

The QUBE FF follows this QM-based philosophy by deriving both L-J parameters and

AIM charges from a single ground state QM electron density. The AIM partitioning method

divides the total molecular electron density (n(r)) into approximately spherical, uniform

overlapping atomic densities (ni(r)) via:

ni(r) =
wi(r)∑
k wk(r)

n(r) (2)
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The weighting factor wi(r) is determined by the choice of AIM partitioning method, in our

case the density derived electrostatic and chemical charges (DDEC)36,37 scheme is employed.

This method iteratively optimizes the weighting factor to resemble the spherical average of

ni(r) and the density of a similar reference ion using a mixture of iterative Hirshfeld (IH)

and iterative Stockholder atoms (ISA).5,36 The charges are then found by integrating the

atomic electron density over all space:

qi = zi −Ni = zi −
∫
ni(r)d3r (3)

Where Ni is the number of electrons associated with atom i and zi is the nuclear charge. The

electron density, as outlined in Ref 5, is calculated as the direct solution of the inhomogeneous

Poisson equation in a medium with a dielectric constant ε = 4. It was found that “half-

polarizing” the molecule with a low dielectric constant resulted in non-bonded terms that

are suitable for condensed phase modelling. Including polarization in this manner allows

us to avoid parametrizing any BCC or charge scaling factors as employed by CGENFF,

OPLS/CM1A and OPLS/CM5.38

Additionally, the QUBE FF employs the TS method to derive the Aij and Bij terms of

the FF in equation 1 by rescaling reference free atom data, proportionally to AIM electron

densities.24 The dispersion coefficient Bi is estimated as:

Bi =

(
V AIM
i

V free
i

)2

Bfree
i (4)

The atomic volume is readily calculated from the same AIM partitioned electron density as

used in charge assignment via:

V AIM
i =

∫
r3ni(r)d3r (5)

TheBfree
i coefficients are computed using time-dependent density functional theory (TDDFT)
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calculations on free atoms in vaccum.39 V free
i is the reference volume of the atom calculated

using the MP4(SDQ)/aug-cc-pVQZ method in Gaussian 0940 and the chargemol code41 for

each of the elements in our model and these values can be found in Table S1 of the Supporting

Information. To ensure that the dispersion and repulsion coefficients result in a minimum

in the L-J potential close to the van der Waals radius of the atom, it can be shown that the

Ai coefficient can be approximated by:

Ai =
1

2
Bi(2R

AIM
i )6 (6)

Here we found the AIM effective radius RAIM of each atom by rescaling the reference free

atom radius using the TS method:

RAIM
i =

(
V AIM
i

V free
i

)1/3

Rfree
i (7)

The only fitting parameters in our model are the eight free atom radii (Rfree
i ), one for

each of the elements studied so far (H, C, N, O, F, S, Cl, Br). This version sees the addition

of a bromine parameter that was fit in the same spirit as the rest, that is empirically tuning

the free atom radii to recreate liquid properties of a selection of bromine-containing molecules

(Table S1). A full description of the non-bonded parameter derivation methods can be found

in Ref 5.

Anisotropy

While atom-centered point charges provide a good representation of the QM electrostatic po-

tential (ESP) if the partitioned atomic electron density is spherical, in many cases this simple

representation is inadequate.5 This situation occurs when there is significant anisotropy in

the underlying electron distribution, and is common in molecules containing nitrogen, sul-

fur or halogens.42 Here, to model electron anisotropy, we employ off-center, “virtual” sites,
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which have been shown to be competitive with the use of more computationally expensive

higher-order multipole electrostatics.45 Virtual sites are commonly used in water models,

such as TIP4P,43 and various force fields for modelling lone pairs and σ-holes.44 In contrast

to those studies and in keeping with our goal of avoiding fitting FF parameters to experi-

ment, in Ref. 5, we proposed a method that relied on the dipole and quadrupole moments of

the partitioned atomic electron density, to optimize the charges and locations of virtual sites.

However, the method employed did not consistently converge and resulted in a large number

of off-center point charges. Modifications were required to correct these issues and improve

the usability of the method in an automated high-throughput scenario. Here, we describe

a new method for the derivation of virtual site positions and charges directly from the QM

electron density. The virtual sites are positioned so as to reproduce as closely as possible

the QM ESP of the partitioned atomic electron density. In order to reduce the search space

we limit the virtual site positions to those dictated by the symmetry of the atom’s bonding

environment. Together these improvements allow us to define virtual sites that improve the

electrostatic properties of the simulated molecule in an automated manner.

The QM ESP (Φref
i ) is calculated from the partitioned atomic electron density (ni(r)).

This is advantageous as the method may be applied equally well to both surface and buried

atoms. The ESP is taken at a series of points on sets of spheres with radii between 1.4-2.0

times the van der Waals radius of the atom. The error F (Φ,Φref ) is given by:

F (Φ,Φref ) =
M∑
i=1

|Φi − Φref
i |

M
(8)

where M is the number of sampling points. The MM ESP (Φi) is calculated as:

Φi =
N∑
j=1

qj
4πε0rij

(9)

where N is the number of sites on an atom, rij is the distance from the site to the sampling

point and qj is the charge on site j. An additional threshold parameter (Fthresh) was required
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to distinguish between atoms that required extra sites and those that did not. Above this

threshold the anisotropy method is used, below the threshold, no off-center charges are

added. As well as this, extra charges are only added when there is a reduction in error which

is controlled by a second parameter (Fchange).

One Additional Off Center Charge

For atoms with ESP error above the threshold, we begin by attempting to model the

anisotropy using a single off-center charge. The vectors for one additional off-center point

charge that preserve symmetry are shown in Fig. 1. The vector direction is governed by the

number of atoms bonded to the atom exhibiting anisotropy:

1. One bond. The atom A (which exhibits anisotropy) has one neighbor, atom B. The

vector along which the extra charge is positioned is r1 = λ1rAB, where rAB is a vector

between atom A and atom B and λ1 is to be determined.

2. Two bond. The atom A has two neighbors, atoms B and C. The vector for the extra

charge is r1 = λ1(rAB + rAC), which is along the bisector of the two bond vectors.

3. Three bond. The atom A has three neighbors, atoms B, C and D. The vector for the

extra charge is r1 = λ1(rAB − rAC)× (rAD − rAC), which makes an equal angle with

all three bond vectors.

Figure 1: The directions along which off-center point charges are placed for an atom with
one, two or three bonds.
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After the vector is assigned, the optimal position along the vector and the charge of the

off-center point is determined. This is carried out using a grid search of parameters to find

the values which best recreate the QM ESP. Assigning a symmetry-derived search direction

reduces the number of variables that need to be optimized from four (the x, y, z coordinates

and the charge) to two (the distance along the vector and the charge). This simplification

is particularly important when multiple off-center point charges are added, as described in

the following section. The atom-centered point charge is assigned a value such that the net

charge of the atom is unchanged. The method is summarized with a flowchart in Figure S1.

Multiple-Off Center Charges

In Ref. 5, it was often necessary to add more than one off-center point charge to recreate

the anisotropy seen in the QM ESP. Therefore, our approach was extended to add multiple

charges. Again, the method depends on the number of atoms bonded to the atom exhibiting

anisotropy:

1. One bond. A second off-center charge is placed along the same vector, r2 = λ2rAB.

2. Two bonds. If two extra point charges are used, the original vector is a line of symmetry.

The two charges are then placed in the same plane as the vectors that point from the

atom to the neighboring atoms, r1,2 = λ‖(rAB + rAC)±λ⊥(rAB + rAC)× (rAB× rAC),

or perpendicular to this plane, r1,2 = λ‖(rAB + rAC) ± λ⊥(rAB × rAC). An example

is shown in Fig. 2. A third extra charge can also be added and is placed along the

bisector r3 = λ3(rAB + rAC).

3. Three bonds. A second off-center charge is placed along the same vector, r2 = λ2(rAB−

rAC)× (rAD− rAC). An exception is made for primary amine groups with the second

off-center charge placed along the bisector of the NH2 angle r2 = λ2(rNH1 + rNH2).

This is necessary as the regions between the nitrogen and hydrogen atoms exhibit

anisotropy in ESP.
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A disadvantage of using the partitioned electron density to calculate the QM ESP is that

it includes regions that are not accessible during MM simulations, such as between bonds.

This is the case for the amine group and results in other regions of the QM ESP not being

adequately reproduced. The addition of an off-center site between the nitrogen and hydrogen

atoms helps to overcome this issue.

Figure 2: An example of off-center charge placement for the case (left) perpendicular to the
plane of the bond vectors or (right) in the plane of the bond vectors.

Torsional Parameters

The final stage in the fitting procedure is the optimization of torsional parameters. Torsional

parameters are an important factor controlling the conformational preference of a molecule

due to their association with QM stereoelectronic effects, and are therefore often a target

for re-optimization.8,18,46–51 In this work, we follow the standard procedure of fitting the

parameters to minimize the difference between MM and QM constrained one dimensional

torsional scans. In particular, we aim to fit the four Vn parameters of the OPLS FF torsion

potential shown in equation 1 by automating the scheme outlined in Ref. 47 into QUBEKit

with some additional considerations. The steepest descent algorithm is employed to find the

torsional parameters that minimize the regularized Boltzmann weighted error function:

Ω =

√∑n
i=1(E

i
MM − Ei

QM)2e−E
i
QM/kBT

n
+ λ

∑
torsions

4∑
j=1

|V ref
j − Vj| (10)

Where EQM and EMM are the QM and MM optimized energies at each sampled torsional

angle, kB is the Boltzmann constant, T is a temperature weighting factor, n is the number of
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sampling points and V ref
j is a reference torsional parameter. Overfitting is often a concern

at this point in the fitting process. Here, we introduce a regularization function controlled

by a variable parameter λ, which constrains the fitted torsional parameters to be close to the

reference values, V ref
j . In this work, V ref

j were taken from the OPLS force field, but could

also be set to zero.52 It is also important to note that it is not possible to always perfectly

recreate the entire QM PES hence users should concentrate on relatively low energy regions

as these are most likely to be sampled during room temperature simulations. The weighting

temperature T can be adjusted to preferentially weight the low-energy regions of the QM

potential energy surface.

In molecules containing multiple flexible dihedral angles, it was found that torsional

parameters were best fit in an order that started with rotations that would involve the

movement of the fewest number of atoms. For example, a long chain molecule with no

repeated dihedral types would be best fit by starting at the ends and working inwards.

Larger molecules could also be fragmented during fitting to reduce the computational cost

of the fitting procedure. It also should be noted that we do not derive any improper torsion

terms in this workflow instead borrowing them from the OPLS-AA FF.

Computational Implementation

QUBEKit has been designed as a python command line toolkit with simple, intuitive com-

mands allowing the user to perform three main tasks: 1) writing QM input files for atoms-

in-molecule, Hessian matrix and torsional scan calculations, 2) derivation of MM parameters

from the results of the QM calculations, and 3) the output of the parameters in widely-used

MM topology and force field files. The only required inputs are the molecule’s structure and

some initial reference parameters, which are included in a BOSS style z-matrix, which is

freely available via the LigParGen web server (http://zarbi.chem.yale.edu/ligpargen/).32–34

The use of a z-matrix at this point makes defining and choosing the dihedral angle to be op-

timized conceptually straightforward. In this first version of QUBEKit, QM calculations are
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currently performed using the Gaussian0940 and ONETEP4 software packages. QUBEKit

interfaces with the BOSS53 molecular simulation package to perform all MM tasks, includ-

ing torsional fitting and vibrational mode analysis, and incorporates code from the modified

Seminario method7 to calculate the bond and angle parameters. Future support for addi-

tional open source MM and QM software packages is planned. The derived parameters can

be written in a variety of MM package formats such as BOSS/MCPRO style (z-matrices,

.sb and .par structural and force field files), OpenMM .xml files, and GROMACS .gro and

.top files. A full description of the workflow (Figure S3) used in this project with a list

of commands can be found on our Github page (https://github.com/cole-group/QUBEKit)

alongside a tutorial.

Computational Methods

Quantum Mechanical Calculations

All Gaussian09 input files were prepared using QUBEKit, which takes PDB files and the

corresponding BOSS/MCPRO style z-matrices generated using the LigParGen web server

as input. All optimization routines and frequency calculations used for the bond stretch-

ing and angle bending terms were performed with the ωB97X-D54 functional using the

6-311++G(d,p) basis set and vibrational scaling factor of 0.957.7 Torsional constrained op-

timizations were performed in Gaussian0940 with the same functional and basis set so as to

be consistent with the other bonded terms. The torsional scan optimizations were performed

in 15◦ increments from 0◦ to 360◦. The majority of the dihedral parameter fitting was done

using no Boltzmann weighting (corresponding to T=∞) and regularization against OPLS

reference values was applied with λ = 0.1. This was only changed in rare cases where it

was particularly difficult to recreate the QM energy landscape, in which case λ = 0 and

T = 2000K was used as previously suggested.47

Ground-state electron density calculations for non-bonded parameter derivation were

performed using the linear-scaling DFT code ONETEP.4 Four nonorthogonal generalized
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Wannier functions (NGWFs), with radii of 10 Bohr, were used for all atoms with the excep-

tion of hydrogen which used one. NGWFs were expanded in a periodic sine (psinc) basis,

with a grid size (0.45ao), corresponding to a plane wave cut-off energy of 1020 eV. The PBE

exchange-correlation functional was used with PBE OPIUM norm-conserving pseudopoten-

tials.55 The calculation was carried out in an implicit solvent using a dielectric of 4 to model

induction effects.5,56,57 The DDEC module implemented in ONETEP was used to partition

the electron density and assign atom-centered point charges and atomic volumes.23,58 The

charges were assigned with a IH to ISA ratio of 0.02. The ESP error threshold Fthresh, was

set to 0.9025 kcal/mol. The additional charges are only added if the decrease in ESP error

is larger than Fchange = 0.0625 kcal/mol. The locations of the virtual sites were restricted

using maximum distance cut-offs chosen by element, as virtual sites near the van der Waals

radius can be detrimental. The cut-offs were defined as follows: 0.8Å for N, 1Å for O, S and

F, and 1.5Å for Cl and Br.

Pure Liquid Simulations

Pure liquid simulations were performed using OpenMM59 with a custom non-bonded poten-

tial to describe the mixing rules and 1-4 interactions employed by the OPLS (and QUBE)

FF. The required XML files were generated using QUBEKit with extra sites included auto-

matically using the local coordinate site construction function in OpenMM. All extra sites

were modelled as individual particles with their own 1-4 interactions, with their only bond

being to the parent atom. A plot showing the agreement in single point energies calculated

using the correction implemented in OpenMM and the BOSS software can be found in Figure

S2. Instructions on how to perform the single point energy check for a new molecule using

QUBEKit can be found at the Github (https://github.com/cole-group/QUBEKit/wiki) wiki

page along with other examples and tutorials.

Simulations were performed in the isothermal-isobaric (NPT) ensemble at 1 atm and

comprised 267 molecules in a periodic cubic box. A non-bonded cut-off was used with inter-
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molecular interactions being truncated at distances based on molecular size and smoothed

over the last 0.5 Å.33 Long range non-bonded interactions were calculated using the Particle-

Mesh-Ewald (PME) method,60 with a 0.0005 tolerance error while also applying a long-range

correction to the system’s energy. Following minimization of the initial configuration, three

nanosecond simulations were run for each molecule using a 1 fs time step. The first nanosec-

ond was treated as equilibration. The liquid and corresponding gas-phase simulations were

run at 25◦C or the molecule’s boiling point if it was lower. The resulting densities and

heats of vaporization were averaged over 2000 data points collected in the production part

of the run. The heats of vaporization were computed using equation 8 in Ref. 61. Following

their recommended protocol, we employed Langevin dynamics temperature regulation with

a collision frequency of 5 ps−1. The pressure was regulated using a Monte Carlo barostat

as implemented in OpenMM. Examples of the scripts used for both the liquid and gas sim-

ulations along with input files for all molecules in the study can be found in the SI. The

uncertainties were found to be less than 0.003 g/cm3 and 0.02 kcal/mol for densities and

heats of vapourization respectively. Graphs showing the convergence of the properties with

simulation length can also be found in Figures S4 and S5.

Free Energies of Hydration

Free energies of hydration were calculated using GROMACS62 due to its ability to include

extra sites during alchemical perturbation. All input files were generated using QUBEKit

which writes OPLS FF style GROMACS .top and .gro files. The virtual sites were all

constructed by hand using the simplest method available for each molecule, with a connection

being added between the site and parent to again make the 1-4 interaction lists consistent

with OpenMM and BOSS. Each molecule of the test set was annihilated from a cubic box

containing approximately 1500 TIP4P water molecules using a two-step approach over 21

λ-windows, first turning of the charges followed by the L-J terms. The solute-solvent non-

bonded interactions were switched off via coupling to the λ reaction parameter using soft-core
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potentials with settings α = 0.5, p = 1 and σ = 0.3.63 The charges were decoupled using λ

values of (0.00 0.25 0.50 0.75 1.00) and van der Waals using λ values of (0.00 0.05 0.10 0.20

0.30 0.40 0.50 0.55 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00). The simulations were again run

in the NPT ensemble at 1 atm and 25◦C. All solvent-solute and solvent-solvent non-bonded

interactions were truncated at 10 Å and smoothed over the last 0.5 Å. PME was used with

a long-range correction applied to the total energy and pressure. Each λ-window was run

using Langevin dynamics and a two femtosecond time step with bonds involving hydrogen

constrained using the LINCS algorithm.64 The starting configurations at each λ-window were

first minimized before being equilibrated twice. The first was a 100 ps run in the canonical

ensemble (NVT) followed by a 200 ps run in the NPT ensemble. Finally, the production

stage ran for 1 nanosecond and the free energy of hydration was calculated using Bennett’s

acceptance ratio as implemented in the GROMACS BAR module.65 All uncertainties for the

calculations were found to be less than 0.3 kcal/mol.

Results and Discussion

Condensed Phase Properties

A common measure of the quality of FF parameters for use in biomolecular simulations

is a comparison of the predicted condensed phase properties of molecules simulated using

the FF with experiment. These properties, such as liquid density, the heat of vaporization

and free energy of hydration, can be calculated routinely due to low sampling requirements,

thus making FF inaccuracies the main contributor to any differences between the computed

data and experiment. In this study, we have chosen a benchmark dataset comprising 109

small organic molecules, which are representative of the key functional groups commonly

observed in biology and drug design. Importantly most of the molecules used in the set

are also part of the training data used during the parametrization of many of the general

transferable FFs mentioned, including the OPLS/1.14*CM1A-LBCC FF, which allows for
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direct comparison of the FFs. Figure 3 shows the results of the condensed phase property
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Figure 3: Force field liquid property metrics (a) liquid density, (b) heat of vaporization (c)
free energy of hydration. Calculated for the organic molecule test set using QUBE FF
parameters. MUE compared to experiment and r2 correlation are also included.

calculations for the test set where experimental data is available, along with the correlations

and mean unsigned errors (MUE), while Table 1 compares the latter with some examples of

widely-used transferable FFs.33 The average errors in the density and heat of vaporization

(0.024 g/cm3 and 0.79 kcal/mol, respectively) indicate that QUBE performs extremely well
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Table 1: Mean unsigned errors between calculated liquid properties and experiment for
various FF parameter sets.

Force field ρ (g/cm3) ∆Hvap (kcal/mol) ∆Ghyd (kcal/mol)

OPLS/1.14*CM1A33 0.024 1.40 1.26
GAFF/AM1-BCC33 0.039 1.31 0.94
OPLS/CM533 0.024 1.06 0.94
OPLS/1.14*CM1A-LBCC33 0.024 1.40 0.61
DDEC/OPLS5 0.014 0.65 1.03
QUBE (this work) 0.024 0.79 1.17

in the prediction of pure liquid properties, that is despite only using eight fitting parameters

in the derivation of non-bonded parameters (the van der Waals radii of the elements H,

C, N, O, S, F, Cl, Br used in this study). The general transferable force fields are of

similar accuracy, despite being extensively parametrized against data sets similar to these.

As we have found previously,5 hydration free energies are more difficult to predict (MUE

1.17 kcal/mol). This could be due to limitations in the functional form, particularly the

neglect of an explicit polarization term, in describing the transfer of a molecule between

low dielectric (vacuum) and high dielectric (water) media. However, the largest outliers in

Figure 3(c) are for apolar molecules with a low (less negative) free energy of hydration, for

which QUBE under-estimates their solubility. This is particularly problematic for molecules

containing benzene rings, and may indicate an imbalance between dispersive and electrostatic

contributions to hydration when QUBE is used in combination with a standard transferable

water model (TIP4P).

Another potentially problematic group of compounds are aliphatic alcohols as we found

the 10 in our test set to have a relatively high MUE (1.27 kcal/mol) in hydration free

energy. The poor description of alcohol groups was also previously found to be a trait of

the OPLS/CM1A FF.33,66 Ref 66 commented on the charges assigned to the head group

of 1-octanol by OPLS/CM1A as shown in table 2. They found that scaled CM1A charges

were too positive, resulting in the poor prediction of densities and heats of vaporization as

shown in table 3. To tackle problematic groups such as these, the OPLS/1.14*CM1A-LBCC
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parametrization was developed which adds a systematic bond charge correction to various

functional groups and was fit to better reproduce experimental free energies of hydration.33

In the case of the aliphatic alcohols, the correction transfers a 0.1e− charge to the oxygen of

the head group from the neighboring carbon atom as can be seen in table 2. Thus with the

same L-J parameters, we see the density, heat of vaporization and free energy of hydration

are subsequently improved for 1-octanol as shown in Table 3 along with the values obtained

by the QUBE FF. This same BCC was also found to reduce the MUE for the hydration free

energy from 1.95 to 0.43 kcal/mol for 32 aliphatic alcohols in the development of the LBCC

parameters.33 Importantly the fitted correction scheme gives roughly the same charge as our

AIM partitioning method which demonstrates the successful inclusion of polarization into

our charges at the point of derivation rather than via subsequent corrections. We also observe

similar σ values between our QUBE FF and OPLS which is reassuring considering OPLS

is extensively fit to reproduce liquid properties. While the ε values do differ noticeably, it

has been found that liquid property predictions can be greatly improved with the systematic

tuning of this parameter.61 However, this would not be compatible with the philosophy of a

QM derived FF and future work will instead investigate modifications to the FF functional

form.

Finally, it should be noted that there is an increase in the MUE of each of the properties

computed using the QUBE FF compared with our original benchmark study (Table 1), which

Table 2: The non-bonded parameters for the head group oxygen in 1-octanol are shown for
a variety of FF and charge combinations. The LigParGen server was used to parameterize
the OPLS variants, and Antechamber for GAFF with QUBE coming from this work.

Force field charge σ ε

OPLS/1.14*CM1A -0.588 3.120 0.170

OPLS/1.14*CM1A-LBCC -0.687 3.120 0.170

GAFF/AM1-BCC -0.598 1.721 0.210

QUBE -0.673 3.129 0.127
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used AIM-derived non-bonded parameters in combination with OPLS bonded parameters

(DDEC/OPLS).5 This is likely the result of the expanded test set used here as on further

inspection of the data concerning only the same molecules that were included in the original

benchmark we find the MUEs to be 0.017 g/cm3, 0.59 kcal/mol and 1.08 kcal/mol for the

density, heat of vaporization and free energy of hydration respectively, which are very similar

to the original values. We therefore, conclude that bonded parameters, while crucial to the

conformational preferences of larger molecules, are not too important in the description of

the liquid properties of small molecules.

With the inclusion of larger molecules and molecules that contain multiple functional

groups, the increase in overall error of the liquid properties is to be expected if we con-

sider the accuracy on a per functional group basis. This effect is exemplified by the case

of o-chloroaniline, which has unsigned errors in ∆Hvap of 2.61 kcal/mol and in ∆Ghyd of

3.49 kcal/mol. By way of comparison, the smaller molecules aniline and chlorobenzene

showed unsigned errors in ∆Hvap of 1.63 and 1.17 kcal/mol and in ∆Ghyd of 2.66 and

1.67 kcal/mol, respectively. This should be kept in mind when applying QUBE (and other

force fields) to the study of, for example, absolute protein-ligand binding free energies for

larger organic molecules containing multiple functional groups.

Table 3: The liquid properties of 1-octanol predicted using different FF and charge
parametrization methods are shown compared with experiment.

Force field ρ (g/cm3) ∆Hvap (kcal/mol) ∆Ghyd (kcal/mol)

OPLS/1.14*CM1A 0.807 15.201 -1.26

OPLS/1.14*CM1A-LBCC 0.809 16.038 -3.12

GAFF/AM1-BCC 0.834 20.354 -3.12

QUBE 0.793 16.206 -2.19

Experiment 0.822 17.208 -4.09
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Bond, Angle and Dihedral Parameters

As discussed in the previous section, it appears that the bonded parameters have little

effect on the accuracy of liquid properties. However, given the importance of torsional

parameters in determining conformational preferences of larger molecules, and bond and

angle parameters in modelling molecular vibrations, which are important for example in

photochemistry applications, we examine the properties of the derived parameters here in

more detail.

The first point to note is that by deriving bond and angle parameters directly from

the QM Hessian matrix, there is no possibility of missing parameters in the QUBE FF.

In contrast, even for this small test set, we found one missing bond parameter and six

missing angle parameters using a standard transferable FF. The QUBE predicted values for

these terms along with the OPLS atom types are shown in tables S2 and S3. In practice,

these parameters would be inferred from similar atom types or re-parameterized by the user,

which may introduce inaccuracy. QUBE allows the user to rapidly and automatically derive

all necessary parameters with no compromise in accuracy. In this study, the QUBE FF

maintains a low mean percentage error in MM vibrational frequencies of 6.5% (MUE of

54 cm−1), which is very similar to the values initially reported reaffirming the wide-scale

applicability of the method.7

Given the widespread use of transferable bond and angle parameters, it is worth analyzing

to what extent these parameters vary in our benchmark test set. Figure 4 plots the range

of QUBE bond lengths and force constants for all atoms defined with CT-CT bond types

in the test set, and compares them with the OPLS parameters. Further plots like this for

all bonds and angles that are present in at least ten of the molecules in the test set can

be found in Figures S7-S28. As reported previously,7 the modified Seminario method gives

bond-stretching force constants that are on average lower than their OPLS counterpart. The

QUBE parameters typically span a range of around 0.05 Å and 100 kcal/mol/Å2 for the bond

length and force constant respectively, indicating that use of a single average, transferable
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Figure 4: A common bond type is analyzed by comparing the QM predicted equilibrium
bond length to the associated derived force constant of each molecule they appear in for
the CT-CT bond type. The OPLS parameters are shown in red.

value should not introduce significant error. Interestingly, there is a negative correlation

between force constant and equilibrium bond length, supporting the use of bond length

to infer force constants in early studies.67 These results indicate that it may be possible

to derive more explicit algorithms for ‘learning’ force field parameters directly from the

molecular geometry. We also envisage QUBE parameters as providing a reasonable starting

point for optimization if further fitting to QM potential energy surfaces is desired.14

Torsional parameters, like the bond and angle parameters, were derived separately for

each molecule. Due to the use of virtual sites, we found that parameters were often not

transferable between similar molecules, and those that were such as methyl group rotations

remained close to the initial OPLS parameters. The overall accuracy of the torsional scan

fitting was very good when regularization was used and only a handful of molecules with

poor predicted energy surfaces required the setting to be switched off. A sample of torsion

fitting data taken directly from the QUBEKit output can be found in the Figures S29-S31

with the overall error and regularization error bias where appropriate. We have also included

the dihedral parameters for every molecule in the test set in the SI along with an analysis in
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which we have grouped the torsions together based on their OPLS atom types. We envisage

these as forming the basis of a community led library to be used to replace or speed up

future fitting efforts.

Extra sites

methanethiol chloromethane dimethyl sulfoxide dimethyl ether

triethylamine pyridine methylamine dimethyl sulfide

dimethyl amine anisole bromoethane 1,2-dibromoethane

Figure 5: A selection of 12 molecules from the benchmark test set with their extra sites
depicted as purple spheres. Charges and positions of the extra sites were derived from the
partitioned atomic electron density.

To test the effect of the additional off-center point charges, the liquid properties for

the benchmark test set were also calculated in the absence of extra sites. This led to a

general worsening of the results with the MUEs becoming 0.023 g/cm3, 0.85 kcal/mol and

1.51 kcal/mol in the density, the heat of vaporization and free energy of hydration respectively

(Figure S6). As expected, since it is governed mostly by Lennard-Jones interactions, the error

in the density remained approximately constant. However, the decline in accuracy of the

other properties indicates that modelling of anisotropy in electron density is required to

accurately describe intermolecular interactions. This is consistent with the increasing use of
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virtual sites in multiple FFs.18,68

While there is no unique way to derive virtual site parameters, it would seem that deriving

the parameters to minimize the error in ESP for an individual atom is effective. Figure 5

shows a selection of molecules from the test set that required virtual sites, the rest of the

derived site positions and corresponding charges can also be found in the SI. Here we can

see that the derived positions are chemically intuitive, with σ-holes and lone-pairs well-

represented. In total 50 of the 109 molecules in the test set required at least one virtual

site, and on average a molecule whose functional group ESP error is initially above the

chosen threshold requires 2.1 virtual sites. While this is more than is typical in molecular

mechanics simulations, the computational cost of virtual sites in an MD simulation is small.45

Furthermore, QUBEKit substantially simplifies the process for the user by deriving the

virtual site parameters from QM and writing them to simulation-ready input files.

Some molecules with large ESP errors were not assigned off-center virtual sites. Chloroben-

zene, for example, was found to have a large ESP error on the Cl atom just below the set

threshold of 0.90 kcal/mol. However, the resulting liquid property predictions were not sig-

nificantly affected, as shown in Table S4. Methanol was another example of a molecule that

was not assigned virtual sites despite having an ESP error of 1.50 kcal/mol, which is above

the threshold. After performing the grid search it was found that the addition of virtual

sites did not substantially reduce the ESP error of the oxygen atom by the required amount

Fchange. This was the case for all aliphatic and aromatic alcohols in the test set which could

also contribute to the poor performance of alcohols overall.

Test case: 3-hydroxypropionic acid

While the molecules in the test set represent many of the functional groups often used

in CADD, they contain many fewer rotatable dihedral bonds and functional groups than a

typical drug-like molecule. Thus following previous work investigating the use of QM derived

FF parameters we have used QUBEKit to derive a QUBE FF for 3-hydroxypropionic acid (3-
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HA).8 The molecule shown in figure 7 incorporates carboxyl and hydroxyl functional groups,

has been identified as a potentially useful agent for organic synthesis and is also a surrogate

for a typical fragment scaffold. Chen et al. used QM-based fitting techniques to derive the

bonded parameters for the molecule from a series of single point energy calculations, with

the L-J terms being taken from AMBER and the partial charges assigned according to the

CHelpG scheme54 in the GAMESS QM software.
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Figure 6: Comparison of the calculated relative single point energies using QM, OPLS and
QUBE for C-OH bond-stretching and C-OH-HO angle-bending motions in 3-HA.

Here we compare the QUBE FF to OPLS for 3-HA, giving a performance overview of the

derivation versus transferable techniques. Figure 6 compares the two force fields with QM

single point calculations. Since we compute the bond and angle force constants in a one-off

calculation directly from the QM Hessian matrix, with no iterative fitting, it is not obvious

how accurate they will be in reproducing QM conformational energetics when combined

with the rest of the QUBE FF parameters. However, Figure 6 reveals that the QUBE

FF reproduces extremely well, not only the QM minimum energy conformations, but also

describes small changes in these same bond lengths and angles. This is also well replicated

across all calculated vibrational modes for the molecule with an average percentage error of

6.7% compared to the QM vibrational frequencies.
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Figure 7: Comparison between the relative QM and MM energies using the QUBE FF and
OPLS for 500 conformations extracted from a MD simulation of 3-HA which is shown as
an inset.

Finally, with the goal of evaluating the ability of QUBE to recreate intramolecular ener-

getics including torsional rotations, a liquid simulation of 3-HA solvated in a box containing

1000 TIP4P water molecules was performed. We then extracted 500 conformations from

the simulation and computed the relative single point energies of each snapshot of the 3-HA

molecule using OPLS, QUBE and QM (with the same functional and basis sets as used for

the parameter derivation). Figure 7 shows the correlation between the relative MM and

QM energies for 3-HA. Compared to OPLS, the correlation is improved from 0.667 to 0.808.

Thus, despite the high flexibility of 3-HA, QUBE is not only able to reproduce the mini-

mum energy structure, but also sample physically reasonable structures in liquid simulations,

which is encouraging for future use in computer-aided drug design.

Conclusions

With the spread of low-cost computing and access to automated software,10–12,14 it is becom-

ing increasingly common for users to perform parameter set optimization prior to running

molecular mechanics simulations. However, this optimization is typically limited to the

charge and torsional parameters, for which well-established protocols for fitting to QM data
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exist. In this paper, we present the QUBEKit software for automated derivation of virtually

all force field parameters required to model the dynamics of small organic molecules. Namely,

we bring together methods for charge and Lennard-Jones parameter derivation from atoms-

in-molecule analysis of the QM electron density, and a method for deriving bond and angle

force constants directly from the QM Hessian matrix. We also include a novel method for

off-center virtual site derivation along with an implementation of a standard one-dimensional

torsion fitting scheme.

Overall, we achieve mean unsigned errors of 0.024 g/cm3, 0.79 kcal/mol and 1.17 kcal/-

mol in the prediction of liquid densities, heats of vaporization and free energies of hydration

for a benchmark set of 109 molecules, compared to experiment. Hence, we achieve compa-

rable accuracy to standard, transferable force fields. Importantly, however, to describe all

molecules in the benchmark data set, we have only fit 8 parameters to experimental data

(the van der Waals radii of eight elements in vacuum). This reduction in empiricism has

two key advantages. Firstly, it has the potential to substantially simplify the FF fitting

process, since the parameters come directly from QM and do not rely on the collection of

experimental fitting data, which is time-consuming for small molecules, and is rarely done

for larger molecules. Secondly, the ease of FF design presents the opportunity to derive

new protocols and even move beyond the standard functional form of the FF. Opportunities

for FF improvement include i) update of the atoms-in-molecule partitioning scheme,69–73 ii)

the introduction of more rigorous descriptions of van der Waals interactions,74–76 iii) inclu-

sion of explicit polarization, and iv) a more accurate functional form for the short-range

repulsion.74,77 Such efforts would typically require significant re-parameterization of the FF

libraries, but could potentially require only a few lines of code in QUBEKit.

One example of the iterative improvement of FF design protocols, is the addition in this

paper of a new method for off-center virtual site parameter derivation for the modelling of

anisotropic electron density. Compared to our previous method,5 the parameter derivation

process is faster and more user-friendly. By deriving the virtual site charges and positions
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from the molecular symmetry and partitioned atomic electron density, we do not require

any experimental data for fitting. Furthermore, since the bond, angle and Lennard-Jones

parameter derivation methods are independent of the charge derivation, we can trivially add

extra sites without substantially altering the force field. Notably, the mean unsigned error in

the free energies of hydration of our benchmark set increases to 1.51 kcal/mol if virtual sites

are not included. QUBEKit writes the virtual site positions in OpenMM .xml file format for

ease-of-use.

In contrast to our previous work,5 we have supplemented the atoms-in-molecule non-

bonded parameters with molecule-specific bonded parameters derived from the QM Hessian

matrix and torsional scans. In agreement with our previous study,7 we showed that the

so-called modified Seminario method is able to reproduce QM normal mode vibrational

frequencies to high accuracy (6.5% here). Closer examination of bond and angle force field

parameters for widely used atom types reveals that bond and angle parameters are reasonably

transferable between closely-related molecules. Such analyses of more complex molecules

could be used to identify problems with standard force fields where bonded parameters may

require re-fitting or the inclusion of more atom types. In addition, we have shown that for the

molecule 3-HA, QM relative energies of an ensemble of structures are modelled well with the

QUBE FF when combined with torsional fitting. It should be noted that torsional fitting is

the major computational expense in QUBE (since it requires a constrained QM optimization

at each torsion angle), and methods to reduce this expense are under investigation. In this

regard, we have provided a library of all of the torsional parameters derived in this study,

and these could be used as initial estimates for approximate dynamics, or as an initial guess

in the fitting process. Improper torsional parameters are not derived in this study, and we

have used those from the OPLS FF here.

We have provided with this paper the QUBEKit software toolkit, tutorials and data sets

(https://github.com/cole-group/QUBEKit). This first version utilizes the BOSS molecular

mechanics software,53 and Gaussian0940 and ONETEP4 QM packages for parameter deriva-
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tion. Simulation-ready files are output in OpenMM, Gromacs or BOSS format. Future

work will widen the choice of available software, particularly for parameter derivation. In

parallel, we are also releasing the QUBE protein force field,25 which employs the same pa-

rameter derivation techniques, alongside a torsion library for the twenty naturally-occurring

amino acids. Together these tools will allow users to derive compatible and accurate QUBE

force fields for both proteins and small molecules for use in computer-aided drug design

applications.

Acknowledgement

This research made use of the Rocket High Performance Computing service at Newcastle

University. The authors acknowledge financial support from EPSRC grant EP/R010153/1

(DJC) and the EPSRC Centre for Doctoral Training in Computational Methods for Materials

Science under grant EP/L015552/1 (AEAA).

Supporting Information Available

QUBEKit can be downloaded and installed from our Github page (https://github.com/cole-
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Graphical TOC Entry

def QUBEKit(QM, Seminario, AIM(DDEC), torsions):
    with open('PDB', ‘r’) as molecule:
        molecule.parametrize()
    return MM_parameters
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