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Abstract 

Several recent reports have shown that long short-term memory generative neural networks (LSTM) 

of the type used for grammar learning efficiently learn to write SMILES of drug-like compounds 

when trained with SMILES from a database of bioactive compounds such as ChEMBL and can 

later produce focused sets upon transfer learning with compounds of specific bioactivity profiles. 

Here we trained an LSTM using molecules taken either from ChEMBL, DrugBank, commercially 

available fragments, or from FDB-17 (a database of fragments up to 17 atoms) and performed 

transfer learning to a single known drug to obtain new analogs of this drug. We found that this 

approach readily generates hundreds of relevant and diverse new drug analogs and works best with 

training sets of around 40,000 compounds as simple as commercial fragments. These data suggest 

that fragment-based LSTM offer a promising method for new molecule generation. 
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Introduction 

New drug-like small molecules are constantly needed to feed the drug discovery pipeline.1, 2 While 

the number of possible molecules is extremely large,3, 4 one can narrow the search for such new 

small molecules by exploiting the accumulated knowledge on drug-target interactions.5 In one such 

approach it was recently discovered that long short-term memory generative neural networks 

(LSTM) of the type used for grammar learning,6, 7 trained with SMILES (Simplified Molecular 

Input Line Entry System)8 representing organic compounds from ChEMBL,9 a large annotated 

database of bioactive molecules, can generate new drug-like molecular structures, which can even 

be tailored to specific targets upon transfer learning with focused subsets of bioactive compounds.10-

14 The molecules generated by LSTM retain structural features from the parent molecules, which 

focuses the generation process on analogs with a higher probability of shared bioactivity, and 

provides an advantage in terms of synthesis planning because such close analogs may be easier to 

synthesize using routes known for the parent molecules.  

 Here we performed transfer learning with a single drug molecule to generate new analogs of 

this drug, an implementation of LSTM towards analog generation that is simpler than previously 

reported implementations towards this goal (Figure 1).13 We studied the influence of the primary 

training set of molecules on the outcome of LSTM for 10 drugs covering a broad range of size and 

complexity from small molecule drugs to macrocyclic natural products (Figure 2). We were 

specifically interested to compare the effect of training with bioactive molecules such as those from  

ChEMBL9 or DrugBank15 with small fragment-sized compounds. We selected fragments either 

from commercial catalogs or from FDB17,16 a database of theoretically possible fragments covering 

the entire chemical space up to 17 atoms.17 Our data shows that LSTM training with fragment-sized 

molecules leads to new analogs as efficiently as if training is done with drug type molecules from 

ChEMBL or DrugBank. Excellent results are obtained by LSTM training with a relatively small set 

of approximately 40,000 molecules, which allows to cover a relevant portion of chemical diversity 
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at the scale of fragments. Our data suggest that fragment-based LSTM offers a promising method 

for new molecule generation. 

  

 

Figure 1. Principle of LSTM neural networks for generating drug analogs.  

 

 

 

Figure 2. Structure of the 10 drugs used for transfer learning. 
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Results and Discussion 

We trained six LSTMs corresponding to six different primary training sets, namely: 1) 344,319 

compounds from ChEMBL containing only molecules reported with high quality datapoints for 

single protein targets;18 2) a random subset of 40,000 molecules from set 1; 3) all compounds up to 

a size of 50 heavy (non-hydrogen) atoms from DrugBank,15 which were 5,104 compounds; 4) 

40,986 fragments up to 17 atoms collected from various catalogs; 5) 500,000 molecules randomly 

selected from the fragment database FDB17; 6) sets 1, 3, 4 and 5 combined. As case studies for 

transfer learning we selected 10 different drug molecules covering a broad range of size and 

complexity from very small molecules such as nicotine or aminophenazone, to typical drug 

molecules such as nilotinib and lovastatin, and up to macrocyclic natural products such as 

epothilone D and erythromycin (Figure 2). 

For each of the six LSTMs we performed primary training for 50 epochs using the default 

learning rate of 0.01 (LSTM6 was trained for 100 epochs considering large training set size, see 

method for details). We then performed transfer learning for each LSTM using each drug for 20 

epochs, using learning rates ranging from 0.0001 to 0.01, generating new molecules after 5, 10, 15 

and 20 epochs. We collected all generated SMILES, removed invalid SMILES and duplicates, and 

applied structural filters to eliminate problematic functional groups. Finally, we selected high-

similarity analogs to the drug used for transfer learning using  a combined filter considering an 

Avalon fingerprint19 Tanimoto cut-off value to constrain substructures, as well as an Xfp20 city-

block-distance cut-off value to constrain overall molecular size, shape, and pharmacophore.  

Each LSTM performed differently with each test molecule and learning rate. Analyzing the 

overall data across all 10 drugs showed that increasing the learning rate of transfer learning led to a 

strong reduction of the overall number of generated molecules at the level of correct, unique and 

functionally filtered SMILES. On the other hand, the number of high similarity analogs produced 

strongly increased with increasing learning rates, such that an optimum was reached at a learning 
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rate of 0.001 (Figure 3). Training with the large set of ChEMBL molecules produced almost no high 

similarity analogs (LSTM1, black line), while training all other datasets including the combined set 

(LSTM2-6) produced comparable numbers of high similarity analogs. It should be noted that the 

performance of LSTM1 can be tuned by training it for a longer time and tweaking the learning rate. 

 
Figure 3. Number of SMILES generated by LSTM1-6 upon transfer learning across all 10 drugs in Figure 2 as a 

function of learning rates (x-axis). (black line): LSTM1, 344,319 ChEMBL compounds, (grey line): LSTM2, a random 

subset of 40,000 of the ChEMBL compounds, (red line): LSTM3, 5,104 drugs from DrugBank, (green line): LSTM4, 

40,986 commercially available fragments, (blue line): LSTM5, 500,000 fragments from FDB17, (cyan line): LSTM6, 

datasets 1, 3, 4 and 5 combined. Valid = total number of valid SMILES found across all drugs. For each of the 10 drugs, 

200,000 characters were sampled using the respective fine-tuned LSTM model after 5, 10, 15, and 20 epochs. Unique = 

number of valid SMILES remaining after removing duplicates. Filtered: number of SMILES remaining after removing 

undesirable functional groups. Highsim: number of SMILES for molecules with Avalon Tanimoto similarity > 0.7 and 

Xfp city block distance less than Xfp cutoff distance (Xfp cutoff distance = heavy atom count of a drug × 30). 

Analyzing the production of analogs for each drug separately showed that LSTM4 and LSTM5, 

which were trained with relatively small, fragment sized molecules, produced the largest number of 

analogs among all six LSTMs tested for the large natural product target molecules lovastatin, 

epothilone D and erythromycin (Figure 4). In these cases, we observed a drift towards the size of 

the target molecule as the learning rate increased, showing that transfer learning partly consisted in 

learning how to make these large molecules from fragments. 

Commercial fragments (LSTM4) All databases (LSTM6)

FDB17 (LSTM5)

ChEMBLs (LSTM2)

ChEMBL (LSTM1) DrugBank (LSTM3)
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Figure 4. Molecular size (heavy atom count) histogram of generated molecules as a function of learning rate for 

lovastatin, epothilone D and erythromycin. The vertical dashed line indicates the size of the drug.   

 

To gain a closer insight into the generated molecules, we grouped all compounds generated for each 

drug by each LSTM across the different learning rates. All LSTMs produced molecules covering 

the entire Avalon similarity range, spanning from a vast majority of extremely low similarity 

compounds, to a small fraction of molecules in the high similarity range (Figure 5). A large fraction 

of these molecules was unique to each LSTM, indicating that the primary training set strongly 

influenced the molecule generation process (Table 1). Interestingly LSTM6 trained with all sets 

combined also produced a majority of molecules not generated by any of the other LSTMs. Note 

that LSTM5 trained with FDB17 did not produce any analogs with halogen containing drugs 

because FDB17 fragments do not contain any halogens.   
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Figure 5. Avalon fingerprint similarity histogram (logarithmmic scale) for all molecules produced by the LSTMs upon 

transfer learning with the indicated drugs and passing functional group filters. 
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Table 1. Number of unique/overall filtered compounds produced by the different LSTM neural networks. a) 

Neural Network LSTM1 LSTM2 LSTM3 LSTM4 LSTM5 LSTM6  

Source database ChEMBL ChEMBLs DrugBank Commercial 

Fragments 

FDB17 All 

databases 

Unique 

across 

LSTMs training cpds. 344,319 40,000 5,104 40,986 500,000 890,409 

Nicotine 3008/4389 21K/24K 10K/12K 31K/35K 56K/59K 50K/53K 179K 

Fencamfamine 3377/4302 22K/24K 15K/16K 40K/43K 54K/55K 47K/48K 187K 

Aminophenazone 2953/3968 19K/20K 10K/11K 35K/38K 64K/65K 42K/44K 179K 

Sulfadiazine 11K/12K 14K/15K 5614/6791 26K/28K 42K/43K 20K/21K 123K 

Miconazole 1292/1449 10K/11K 6320/6851 25K/25K 0/0 38K/39K 83K 

Roflumilast 4036/4268 13K/14K 7550/8183 31K/32K 0/0 39K/40K 97K 

Lovastatin 1304/1422 10K/11K 8032/8631 32K/33K 38K/38K 31K/32K 124K 

Epothilone D 868/962 11K/11K 7768/8264 29K/30K 45K/45K 46K/46K 142K 

Nilotinib 806/862 6941/7216 3384/3636 16K/16K 0/0 27K/28K 55K 

Erythromycin 180/219 9235/9535 6764/7116 29K/29K 40K/40K 40K/41K 127K 

 

The pooled set of all filtered molecules for each LSTM had a size distribution close to that of the 

primary training set, while high similarity analogs covered the range of target molecules (Figure 

6a/c). The synthetic accessibility scores21 of the generated molecules was as expected from the 

training set, with LSTMs trained with experimental molecules (ChEMBL, DrugBank, commercial 

fragments) producing molecules with favorable low-value scores, while FDB17 consisting of 

possible but not synthesized molecules gave less favorable, high-value score, for both filtered and 

high-similarity analogs (Figure 6c/d). 

 Most of these high similarity analogs were produced by more than one LSTM, with often 

less than half of the generated molecules being unique to the LSTM (Table 2). Some of the analogs 

shared by more than one LSTM were in fact already documented in ChEMBL (Table 3). These 

known analogs often featured one atom insertions, deletions, substitutions, or inversions (Figure 7). 

Despite their high similarity to the targets, these analogs were structurally diverse, as shown by the 

large number of different Bemis-Murcko scaffolds22 present among these high similarity analogs 

(Table 4). Note that performing additional molecule generation runs on a single LSTM produced 

new analogs at each run throughout the Avalon similarity range except for values above 0.9 where 

only a limited number of compounds are possible. This is illustrated here for the case of nicotine, 

miconazole and erythromycin analogs produced by LSTM4 trained with commercial fragments, 
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considering only compounds passing the shape and pharmacophore similarity (Xfp) cut-off (Figure 

8 a-c). The range of molecules produced is illustrated here for miconazole by an interactive 

substructure fingerprint similarity map (Figure 8d).23 This suggests that many additional such 

analogs of each drugs can potentially be produced by running LSTMs for longer periods.  

 

Figure 6. Molecular size histograms and synthetic accessibility score for all filtered (a-b) and Highsim (c-d) molecules 

produced by LSTMs summed over the ten different drugs.  

 

Table 2. Number of unique/total high similarity drug analogs produced by the different LSTM neural networks.  

Neural Network LSTM1 LSTM2 LSTM3 LSTM4 LSTM5 LSTM6  

Source database ChEMBL ChEMBLs DrugBank Commercial 

Fragments 

FDB17 All 

databases 

Unique 

across 

LSTMs training cpds. 344,319 40,000 5,104 40,986 500,000 890,409 

Nicotine 0/23 32/82 1/32 32/93 9/47 16/67 166 

Fencamfamine 15/42 126/218 40/96 130/231 92/164 41/114 580 

Aminophenazone 5/26 34/96 23/71 38/99 22/66 19/65 223 

Sulfadiazine 6/27 19/59 11/37 28/74 8/30 2/25 124 

Miconazole 2/10 301/500 268/438 174/336 0/0 153/256 1134 

Roflumilast 8/15 319/557 117/283 351/585 0/0 45/166 1126 

Lovastatin 0/1 631/986 460/757 352/625 487/728 289/530 2729 

Epothilone D 0/1 911/1301 561/831 807/1160 1595/2039 1163/1511 5707 

Nilotinib 0/1 506/666 180/321 218/381 0/0 243/355 1362 

Erythromycin 0/2 832/1042 174/243 524/709 1243/1444 1105/1288 4190 

 

 

 

a) b)

c) d)

Heavy atom count Synthetic accessibility score 

Heavy atom count Synthetic accessibility score 
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Table 3. Known bioactive from ChEMBL produced by LSTMs.a) 

 Known LSTM1 LSTM2 LSTM3 LSTM4 LSTM5 LSTM6 Unique 

Nicotine 41 4 10 5 7 5 6 12 

Fencamfamine 12 0 0 0 0 0 0 0 

Aminophenazone 134 2 4 3 4 3 4 5 

Sulfadiazine 24 0 0 0 2 0 0 2 

Miconazole 150 1 17 12 8 0 9 19 

Roflumilast 19 1 1 0 0 0 2 2 

Lovastatin 49 0 11 12 10 6 11 16 

Epothilone D 75 0 5 4 6 4 7 9 

Nilotinib 41 0 3 2 1 0 3 4 

Erythromycin 201 0 4 1 2 2 1 5 

a) Number of known bioactive analogs of each drug found by similarity search in ChEMBL and numbers found in high 

similarity analogs for each LSTM. Nearest neighbors of each drug were extracted by performing similarity search for a 

given drug on the ChEMBL website.   

 

Figure 7. Examples of high similarity drug analogs produced by LSTM and documented in ChEMBL. None of the 

analogs shown were included in the training sets. The chirality is shown in part of the drugs for clarity of the drawing, 

however LSTM is run on achiral SMILES and produce analogs without defined stereochemistry.  
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Table 4. Number of unique/total Bemis-Murcko scaffolds among high similarity drug analogs produced by the different 

LSTM neural networks. 

Neural Network LSTM1 LSTM2 LSTM3 LSTM4 LSTM5 LSTM6  

Source database ChEMBL ChEMBLs DrugBank Commercial 

Fragments 

FDB17 All 

databases 

Total 

Unique 

Scaffolds training cpds. 344,319 40,000 5,104 40,986 500,000 890,409 

Nicotine 0/11 4/20 0/16 4/29 0/16 1/23 35 

Fencamfamine 7/14 55/92 17/39 41/82 54/90 18/44 247 

Aminophenazone 0/7 3/19 3/18 12/30 5/20 3/15 51 

Sulfadiazine 1/13 6/21 1/12 5/20 3/15 1/12 32 

Miconazole 0/4 65/115 34/78 23/68 0/0 40/76 225 

Roflumilast 0/6 75/152 12/75 101/186 0/0 9/49 288 

Lovastatin 0/1 143/276 66/175 71/189 113/223 38/108 613 

Epothilone D 0/1 491/807 280/538 410/675 781/1145 481/756 2960 

Nilotinib 0/1 270/387 109/215 146/278 0/0 91/161 773 

Erythromycin 0/1 372/546 87/145 263/413 611/806 510/705 2123 

 

 

Figure 8. Production of analogs with LSTM4 at 0.001 learning rate upon additional LSTM runs, as function of Avalon 

Tanimoto similarity to the drug. Only analogs passing the Xfp similarity cut-off were retained. (a) cumulative number 

of unique nicotine analogs upon additional runs as function of Avalon similarity, (b) same as (a) for miconazole, (c) 

same as (a) for erythromycin. (d) Substructure fingerprint similarity map of miconazole analog produced in (b), color-

coded by the Avalon Tanimoto similarity from highest (red) to lowest (blue). The interactive 3D-map is available at the 

following link: http://gdbtools.unibe.ch:8080/webMolCS/yourSIM.html?jobID=1537890147494&fp=Sfp    
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Conclusion 

Here we trained LSTM generative neural networks with SMILES of drug-like molecules from 

ChEMBL and DrugBank, or of fragments from commercial catalogs or from FDB17, and 

performed transfer learning with single drug compounds to generate new analogs of these drugs. 

We found that LSTMs trained with fragments produced drug analogs as efficiently as LSTMs 

trained with full size drug-like molecules from ChEMBL or DrugBank. In the case of large natural 

products such as lovastatin, epothilone D or erythromycin, LSTMs trained with fragments readily 

learned to assemble large molecules and produced more high similarity analogs of these drugs than 

LSTMs trained with full-sized molecules, showing that transfer learning informs rules to assemble 

small fragments into drug-like molecules. Several of the high similarity analogs produced by 

LSTMs were already documented in ChEMBL and featured one atom changes, however the overall 

structural diversity of these analogs was high, as attested by a large number of scaffolds. Neural 

networks trained with approximately 40,000 molecules as simple as a set of commercially available 

fragments performed excellently in this application, suggesting that fragment-based LSTM neural 

networks offer a promising method for new molecule generation. 

 

Methods 

Compound Databases for LSTM Training. 1) ChEMBL: The ChEMBL22 database was 

downloaded from http://www.ebi.ac.uk/chembl. Thereafter, the database was filtered to retain only 

the compounds reported against a “single protein” target where the source organism was either 

human or rat, having an activity value (IC50, EC50, EC50, Ki or KD) of ≤10 µM and heavy atom 

count of ≤50.18 2) ChEMBLs: this set was created by randomly selecting 40,000 compounds from 

the ChEMBL set mentioned above. 3) DrugBank: DrugBank database version 5.0.11 was 

downloaded from http://www.drugbank.ca and filtered to retain only the compounds having ≤50 

http://www.ebi.ac.uk/chembl
http://www.drugbank.ca/
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heavy atoms. 4) Commercial fragments: fragment like molecules were collected from various 

suppliers, after which molecules obeying Congreve’s rule of three criteria and having heavy atom 

count of ≤17 were retained in the set. 5) FDB17: this set was created by randomly sampling 

500,000 compounds from entire FDB17 database. 6) All databases: this set was created by 

combining the databases 1, 3, 4 and 5. All molecules were process using the JChem Chemaxon 

package. Molecules were parsed in non-isomeric unique SMILES format, counter ions were 

removed from molecules, valence errors were checked, molecules were protonated at pH 7.4, and 

duplicate molecules were removed in the context of each database. For each database, the plain text 

file containing the unique SMILES notation of molecules was used as input to train the LSTM 

model.   

LSTM model and Primary Training. All the LSTM models reported herein were constructed using 

Keras version 2.0.9, a Python based high-level neural network learning library with a TensorFlow-

gpu backend. For primary training, we trained six different LSTM models using six different 

databases namely ChEMBL, ChEMBLs, DrugBank, Commercial fragments, FDB17 and All 

databases. The architecture of each of these LSTM models contains three LSTM layers (each of size 

512), each followed by a Dropout layer of size 512, with dropout-rate of 0.2 to avoid model-

overfitting. The output of hidden layer is then processed through the TimeDistributed Layer and 

Output layer with the softmax as an activation function. All LSTM models were trained using 

“adagrad” as an optimizer with a learning rate of 0.01 and categorical cross entropy as the loss 

function. The number of epochs, batch size, sequence length, and vocabulary size for each of these 

models were: ChEMBL (50, 64, 64, 35), ChEMBLs (50, 32, 64, 35), DrugBank (50, 16, 64, 27), 

Commercial fragments (50, 32, 54, 34), FDB17 (50, 64, 64, 21) and All databases (100, 64, 64, 40) 

respectively. 

Transfer Learning.  Each of the six primary LSTM models were fine-tuned (transfer learning) 

with respect to each of the 10 drugs mentioned in this paper. For each drug, five independent fine-

tuned LSTM models were generated using five different learning rates: 0.0001, 0.0005, 0.001, 
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0.005 and 0.01. For each model, the plain text file containing the unique SMILES notation of the 

drug repeated for 20 times was used as the input. Each model was fine-tuned for 20 epochs using a 

batch size of 4 and a sequence length of 64. 

Sampling and Processing of SMILES. For each drug 200,000 characters were sampled using the 

respective fine-tuned LSTM model after 5, 10, 15, and 20 epochs. The Numpy random.choice 

method was used to select the character given the predicted probabilities over the vocabulary. After 

sampling, the generated SMILES (newline character was used as delimiter to separate the SMILES 

of different molecules) were processed using the RDkit library. Molecules which were successfully 

processed by RDkit were considered as valid molecules. Thereafter, molecules were protonated at 

pH 7.4 using the JChem Chemaxon library; duplicate molecules and molecules containing unstable 

functional groups were also removed from the list. 

Avalon and Xfp Fingerprints. An Avalon substructure fingerprint containing 1,024 bits was 

computed using RDkit and the Avalon toolkit. The Xfp topological pharmacophore and shape 

fingerprint was computed using in-housed written Java-program using the Jchem Chemaxon library 

as a starting point. Similarities between molecules were quantified using the Tanimoto coefficient 

and the City block distance, respectively for Avalon and Xfp fingerprints.  
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