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ABSTRACT  

Multi-task prediction of bioactivities is often faced with challenges relating to the sparsity of data 

and imbalance between different labels. We propose class conditional (Mondrian) conformal 

predictors using underlying Macau models as a novel approach for large scale bioactivity 

prediction. This approach handles both high degrees of missing data and label imbalances while 

still producing high quality predictive models. When applied to ten assay endpoints from 

PubChem, the models generated valid models with an efficiency of 74.0 - 80.1 % at the 80 % 

confidence level with similar performance both for the minority and majority class. Also when 

deleting progressively larger portions of the available data (0 - 80 %) the performance of the 

models remained robust with only minor deterioration (reduction in efficiency between 5-10 %). 

Compared to using Macau without conformal prediction the method presented here significantly 

improves the performance on imbalanced datasets. 

Introduction 

Multi-task learning methods have recently attracted considerable attention for modelling large 

scale bioactivity data.1,2 Probabilistic Matrix Factorization is one approach that can be used in this 

setting since it allows for the modelling of sparse data with multiple possible outcomes.3 A recently 

published development in this area is Macau, a Scalable Bayesian Multi-relational Factorization 

with Side Information using MCMC.4 This new method incorporates several highly desirable 

features in a unified Bayesian framework and has been shown to give good performance on 

bioactivity data5 while also handling large portions of missing data.6In contrast to most other 

methods with similar capabilities, like deep neural networks, matrix factorization provides models 

that are readily interpretable while providing similar predictive performance.6 
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Multi-task prediction of large scale bioactivity data is usually associated with two significant 

challenges. The available data is often incomplete and highly imbalanced, something that is 

challenging for many machine learning approaches. 

Conformal predictors are examples of confidence predictors operating at a user-defined 

confidence level.7 Data imbalance has been shown to be gracefully handled by class conditional 

(often called Mondrian) conformal predictors.8–11 This is achieved by generating calibration sets 

for each of the classes separately, tuning the predictor to the observed distributions for the specific 

class. Similarly, a Mondrian conformal predictor that is calibrated on each class separately will 

not only handle imbalance between active and inactive compounds but in a multi-target prediction 

setting also handle different distributions between target labels.12 These features have recently 

been shown to be valuable additions to bioactivity prediction.13  

Previous studies applying Macau to large scale bioactivity data presented by de la Vega de León 

and co-workers6 have shown less satisfactory performance when modeling imbalanced data sets. 

This is particularly notable for the minority class with respect to the retrieval of these compounds. 

Conformal prediction (CP) is designed as a flexible framework allowing the use of any 

underlying predictor. Combining Macau with conformal prediction should yield a robust multi-

task predictor capable of handling sparse data and highly imbalanced datasets.  

In this study we report on the combination of Macau with conformal prediction to generate a 

multi-task confidence predictor. The predictor was evaluated on ten high-throughput screening 

datasets (endpoints) originating from PubChem14 compiled by de la Vega de León and co-workers6 

and the amount of information provided in order to generate the model was varied to evaluate how 

well the proposed procedure handles missing data. 
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MATERIALS AND METHODS 

Dataset 

We used the same HTSFP10 dataset as reported by de la Vega de León, Chen and Gillet in the 

form submitted under “Availability of data and materials” including all descriptors (Morgan 

fingerprints of radius two hashed to 1,024 bits).6 

The dataset consist of ten different PubChem HTS assays15 and 56,892 compounds with 

complete coverage of the assay data matrix, i.e. all compounds have been measured in all assays. 

The activity is binary (active, inactive). A summary of the dataset is shown in Table 1. 

Table 1. PubChem ID and percentage of active compounds in the ten HTSFP10 assays. The sets 

range from balanced to a fairly high imbalance of 1:12. 

AID 

assay 

id 

# active 

compounds 

% 

active 

687014 4,321 7.6 

463190 4,450 7.8 

588726 5,034 8.8 

652054 5,035 8.9 

485346 5,431 9.5 

2796 5,570 9.8 

504652 6,472 11.4 

743279 9,433 16.6 

1814 16,113 28.3 

2314 26,307 46.2 

 

Experiments 
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The dataset was randomly divided into a training set (75 %) and a test set (25 %). The training 

set was subsequently randomly subdivided into a calibration set (20 %) and a proper training set 

(80 %). 

Twenty pairs of calibration set and proper training set were generated for aggregated conformal 

prediction,16 each used to train and calibrate a model for prediction of the test set. Final prediction 

was made using the median of the predicted p-values. Each calibration set and test set contained 

8,533 and 14,223 compounds respectively. The Macau models were trained using the 20 proper 

training sets and the mean value used for prediction. 

Seven different experiments were performed, six of them with varying degrees and distributions 

of missing values in the proper training set (Table 2). The data was deleted either at random across 

the whole data frame (overall) or by randomly deleting the same fraction of active and inactive 

compounds for each outcome (individual). The introduction of missing values generated empty 

cells in the multi-target matrix, i.e. the matrix always contained the same number of rows and 

columns in all experiments, but maintained the size of the matrix making it sparser. 

Table 2. Experiments with various amounts of proper training set missing values. 

Experiment 

% proper 

training set 

missing values distributiona 

1 0   

2 20 individual 

3 50 individual 

4 80 individual 

5 20 overall 

6 50 overall 

7 80 overall 
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a. individual = same percentage of missing value in each assay; overall = percentage of missing 

values distributed across the entire multi-target matrix. 

Software 

The Macau Python package was installed from https://github.com/jaak-s/macau. For the 

classification, we used the code for the Macau classification analysis as deposited by de la Vega 

de León et al. (https://doi.org/10.5281/zenod o.1230488) with minor modifications to allow for 

the above mentioned split of train and test set and conformal post processing. 

All parameters (keywords) were kept at default values except for the number of iterations to 

drop during training (burnin) that was set to 300 (default: 400). 

Application of Conformal Prediction  

The framework of Mondrian Conformal Prediction17 was applied to each pair of calibration set 

and test set using an in-house Python script. This means that test set compounds were ranked 

against each of the two calibration class sets (one sorted list in descending order of prediction value 

for each class) and accordingly assigned a class label with respect to the chosen significance level 

(percentage of acceptable errors). Macau “classification” is a regression analysis with two types 

of class labels (1 = active and 0 = inactive), and the classification cut-off (decision boundary) is 

mid-way between the two classes at 0.5. The Conformal Prediction conformity value used in this 

analysis is the difference between the predicted value and the decision boundary keeping the class 

label in mind. If, for example, a test compound has a predicted value of 0.7 then the conformity 

value for the active class is 0.2 (0.7 – 0.5) and -0.2 for the inactive class (0.5 – 0.7). Comparing 

these two values against the sorted lists of corresponding values for the calibration compounds 

belonging to each class, respectively, determine the compounds’ corresponding CP p-value for 

each class. 
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The median p-value for each compound in the test set over all 20 predictions (one prediction for 

each generated calibration set) for each class were used for final class assignment (aggregated 

conformal prediction16) by comparing the p-value to the selected confidence level. A confidence 

level of 80 % (0.8) would correspond to a significance level of 0.2 (1 - confidence level) and any 

predictions having a p-value exceeding this significance level will be assigned the label under 

consideration. 

Evaluation of results 

Conformal predictors are usually evaluated based on their Validity and Efficiency. A 

consequence of the conformal approach is that instances can be assigned between zero and two 

labels for a binary classification problem. Validity measures how many instances have been 

assigned the correct label (including both predictions), and should correspond to the user 

determined confidence label of the predictor, while efficiency measures the number of instances 

assigned only one label irrespective of the predicted class (correct label or not). The desired 

outcome is a predictor that is valid while being as efficient as possible.  

Validity and efficiency are defined as: 

Validity (active class) = (NB + TPS) / (NB + TPS + FNS + NE) 

Validity (inactive class) = (NB + TNS) / (NB + TNS + FPS + NE) 

Efficiency = (TPS + FNS + TNS + FPS) / (TPS + FNS + TNS + FPS + NB + NE) 

where TPS, FNS, TNS, FPS are single-labeled true positives, false negative, true negative and 

false positives, respectively, and NB, NE are the number of compounds classified as both and 

empty, respectively. For a more in-depth introduction to these metrics and the principles behind 

conformal prediction we refer readers to Norinder et al.18 
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When evaluating if a predictor is valid, we consider a validity greater than one percent below 

the set validity level to be acceptable. For example, a predictor with a set confidence level of 80 

% is considered valid if the achieved validity is 79 %. 

For single label predictions we also calculate Matthews correlation coefficient (MCC), F1 score 

as well as recall, precision and sensitivity for the minority class and specificity for the majority 

class (see Supporting Information). Details on how the both or empty label predictions were 

handled for these methods is also given in the Supporting Information. 

 

RESULTS AND DISCUSSION 

Overall, all of the considered assay endpoints are well predicted. For convenience, we have 

chosen to display and discuss mainly around the results of the conformal predictors at an 80 % 

confidence level but additional results for other confidence levels are available in the Supporting 

Information. At this confidence level (80 %), the conformal predictors for the full dataset for all 

but one of the endpoints, inactive class of 743279, achieve the set validity of 80 % and an efficiency 

between 80.1 - 74.0 %, as depicted in Figures 1 – 3. The two methods used for generating sparser 

training data yielded comparable results. 
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Figure 1. Test set validities for the active class across the different datasets at confidence level 80 

% (0.8). Results for individual class deletions left and overall deletions right. Size of the deletion 

is indicated by the different bar styles; 0, 0.2, 0.5 and 0.8 from left to right for the respective 

datasets. The models achieve the expected validity of around 80 %. 

 

 

Figure 2. Test set validities for the inactive class across the different datasets at confidence level 

80 % (0.8). Results for individual class deletions left and overall deletions right. Size of the 

deletion is indicated by the different bar styles; 0, 0.2, 0.5 and 0.8 from left to right for the 

respective datasets. The models achieve the expected validity of around 80 %. 
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Figure 3. Test set efficiencies across the different datasets at confidence level 80 % (0.8). Results 

for individual class deletions left and overall deletions right. Size of the deletion is indicated by 

the different bar styles; 0, 0.2, 0.5 and 0.8 from left to right for the respective datasets. 

Figure 4 shows how the predicted labels distribute for outcome 2796 using conformal prediction 

at the 80 % confidence level. Only a small fraction of the compounds do not receive single label 

predictions. 
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Figure 4. Outcomes of the conformal predictor at the 80 % confidence level for AID 2796. Most 

compounds receive a single label prediction (Active or Inactive) and a small portion is predicted 

as Both. 

Using more traditional classification metrics, at the 80 % confidence level the conformal 

predictors achieve an average sensitivity for the test set single label predictions of 0.76 while 

generating single label predictions for between 80.1 - 74.0 % of the active compounds 

(corresponds to the efficiency). 

In previous applications of Macau on bioactivity data,6 one of the main limitations of Macau 

when applied to bioactivity data was the poor recall of the minority class. Gratifyingly, when 

combined with a conformal predictor the performance is excellent also on the minority class. A 

comparison of the model recall using Macau with and without conformal prediction is shown in 

Figure 5. On average, using the full data matrix, the recall of the active class was 0.14 for the 

Macau models and 0.62 with the addition of conformal prediction (80 % confidence level). It 

should here be noted that the recall calculated for the CP models is defined as: 

TPS / P 

where TPS are single-labeled true positives, P all active compounds with TPS ≤ TP (true positives). 

Thus, the recall reported and used for the CP comparison with the corresponding traditional recall 

value for Macau models can be looked upon as a lower estimate of recall for CP models since, in 

a traditional setting, some of the both class predicted active compounds would, in most cases, be 

classified as true positives. 

Looking at the results from a practical perspective, using the conformal Macau models at the 80 

% confidence level to predict the bioactivity and then screening the compounds that receive a 
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single label active prediction would result in an average of 3,733 compounds being screened while 

locating an average of 1,347 active compounds. 

A closer look at the retrieval of the minority class for non-conformal Macau shows that it is 

closely related to the ratio of active and inactive compounds of the specific assay endpoint. For 

endpoint 2314, where the classes are fairly well balanced, a similar performance with or without 

the CP framework is observed while for endpoints such as 687014 and 463190 with more 

pronounced imbalances (Table 1) the retrieval of the minority class is only a few compounds. For 

endpoints 687014 and 463190 very few minority class compounds are retrieved out of in total 

1,090 and 1,143 such compounds, respectively, in the test set. 

Although the CP based models handle the imbalance much better, there is a tradeoff with respect 

to the increased number of false positive predictions for the minority class (Supporting 

Information). While this might be a significant drawback in some applications, for bioactivity 

predictions it is likely a favorable tradeoff to identify more active compounds despite a 

corresponding increase in false positives. This is especially true if the predictions will subsequently 

be validated experimentally. 

Deleted: 0 Deleted: 0.2 
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Figure 5. The performance (recall) of Macau with and without conformal prediction for the test 

set at confidence level 80 % (0.8). When combined with conformal prediction the retrieval of the 

minority class is greatly enhanced. 

One of the main benefits with Macau is the ability to handle sparse data. To test how the method 

handles different amounts of missing data within the framework of CP, we deleted different 

proportions of proper training data and retrained the predictor. Results when deleting 20 %, 50 %, 

and 80 % of all data in each endpoint is shown in Figures 1-3. Not only do the models overall 
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handle large amounts of missing data, but looking at the individual class predictions the Mondrian 

conformal predictors still recover the minority class at the set level of confidence, i.e. the predictors 

are valid, in all but for a few endpoints. In six cases for the majority class of endpoint 743279 

(individual assay endpoint deletion of values) at the 75 % (Supporting Information) and 80 % 

confidence levels, respectively, the models are not valid. A few other endpoint cases (7) deviate 

from the set validity at the 75 % and 85 % confidence levels for the minority class out of a total of 

90 models built altogether. 

Looking at the efficiency of the models there is a slight drop in the number of single label 

predictions when the number of missing data points increase. However, this reduction, between 5 

% and 10 %, is relative minor considering the large amount of missing data. 

We also performed experiments by deleting 20 %, 50 %, and 80 % of the data but randomly 

across the entire bioactivity matrix (overall deletion). This will generate different distributions of 

missing data for the investigated endpoints. Also, in this case the models handled significant 

portions of missing data without any significant drop in performance (Figures 1-3). In four cases 

(out in total 90 models) the predictions for the minority class were not valid at the investigated 

confidence levels. 

It should here be noted that the total error in validities for the 9 and 8 models associated with the 

minority and majority class respectively, are on average only 1.30 % for the former and 1.24 % 

for the latter class. The breach in validity is minor for most practical applications and consequently, 

these models are most likely useful for predicting new compounds. 

Furthermore, a slight increase in the validities for the minority as well as the majority class is 

observed as the amount of missing data increase in the proper training sets (Figures 6 and 7). This 

is expected in CP since the efficiencies at the same time slightly decreased as a consequence of 
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more and more compounds being labels as “both” (Figure 8). However, the decrease in efficiency 

is quite modest considering the fact that the amount of missing data has increased from 0 % to 80 

% in the proper training sets that constitute the basis for building the models. 

Overall, the ability of Macau to handle missing data remains prominent also within the 

conformal framework.  

 

  

Figure 6. Average test set validities for the active class across all datasets at the 80 % (0.8) 

confidence level. Individual class deletions left and overall deletions right. Size of the deletion is 

indicated by the different bar styles; 0, 0.2, 0.5 and 0.8 from left to right for the respective deletions. 
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Figure 7. Average test set validities for the inactive class across all datasets at the 80 % (0.8) 

confidence level. Individual class deletions left and overall deletions right. Size of the deletion is 

indicated by the different bar styles; 0, 0.2, 0.5 and 0.8 from left to right for the respective deletions. 

  

Figure 8. Overall test set efficiencies across all datasets at the 80 % (0.8) confidence level. 

Individual class deletions left and overall deletions right. Size of the deletion is indicated by the 

different bar styles; 0, 0.2, 0.5 and 0.8 from left to right for the respective deletions. 

In this study, we have demonstrated that Mondrian conformal Macau is an excellent approach 

to multi-target bioactivity prediction that can handle both label imbalance and sparsity of data. 

However, a potential drawback with this approach is that the models are relatively computationally 

expensive to train, making the method unsuitable for models that need to be retrained at a high 

frequency. Still, for models that are expected to stay in production for some time, the presented 

method is a robust and high performing choice. It should also be noted here that the purpose of 

this investigation is not to primarily generate the best possible model, for which parameter 

(keyword) optimization is most likely needed, but to highlight the advantages of combining multi-

target matrix factorization with a confidence predictor such as conformal prediction. 
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CONCLUSIONS 

We show that confidence prediction using Macau coupled with conformal prediction is an 

excellent approach for predicting large scale multi-target bioactivity data. This approach can 

handle highly imbalanced data as well as missing data while delivering high quality predictions 

with associated confidence. 

When applied to ten assay endpoints the average performance of the conformal Macau predictors 

was very strong with validities closely corresponding to the set confidence levels and an efficiency 

(fraction of single label predictions) of 80.1 - 74.0 % at the 80 % confidence level, with similar 

performance for both the majority and minority class. This despite the fact that the most 

imbalanced target label had more than twelve times of the majority label. This is in stark contrast 

to the performance of the Macau models without CP where the minority class in many cases was 

poorly predicted. 
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