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ABSTRACT  

Mass spectrometric data are copious and generate a processing burden that is best dealt with 

programmatically. PythoMS is a collection of tools based on the Python programming language 

that assist researchers in creating figures and video output that is informative, clear and visually 

compelling. The PythoMS framework introduces a library of classes and a variety of scripts that 

quickly perform time-consuming tasks: making proprietary output readable; binning intensity vs 

time data to simulate longer scan times (and hence reduce noise); calculate theoretical isotope 

patterns and overlay them in histogram form on experimental data (an approach that works even 

for overlapping signals); render videos that enable zooming into the baseline of intensity vs. time 
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plots (useful to make sense of data collected over a large dynamic range) or that depict the 

evolution of different species in a time-lapse format; calculate aggregates; and provide a quick 

first-pass at identifying fragments in MS/MS spectra. PythoMS is a living project that will continue 

to evolve as additional scripts are developed and deployed.  

GRAPHICAL ABSTRACT  

 

  



3 

 

INTRODUCTION 

Mass spectrometers generate a substantial amount of complex data with every scan, which 

quickly amounts to an immense amount of data to process and interpret for any appreciable 

experiment length. Processing and interpreting these data is a time consuming and repetitive 

activity, particularly when trying to extract data series which were unforeseen by the programmers 

of the mass spectrometer’s software package. As an example, the Waters QToF micro used in our 

laboratory stores many instrument variables (including the time, collision energy, total ion current, 

etc.) in addition to a paired list of m/z and intensity values across the entire scan range for every 

scan acquired in an experimental run. Frequently, we extract reconstructed single ion monitoring 

(RSIM) data from full scans; the m/z and intensity values are accessible to the user using the Waters 

MassLynx software, but extracting the data into spreadsheet format is time consuming (requiring 

the user to integrate each peak, switch windows, copy the data, switch to the spreadsheet program, 

paste the time and integration, then repeat for every other peak of interest). It is also difficult for 

the user to access the instrument variables through the provided software. The PythoMS 

framework was created using the Python programming language to address these drawbacks and 

limitations of the provided instrumental software. It is open source, registered on the Python 

Package Index (PyPI), and available on GitHub under the MIT license 

(https://github.com/larsyunker/PythoMS).  

While there are more computationally efficient programming languages, the scripting 

language Python is attractive to researchers due to its ease of use and abundance of supporting 

libraries (allowing researchers to focus on the scripts themselves rather than building libraries). 

The great strength of Python is its ability to handle lists in an efficient manner, and since scientific 

research involves lists and arrays of data, it is well suited for scientific applications. The simple 

https://github.com/larsyunker/PythoMS
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set of objects and methods built into Python, combined with the ease of generating other objects 

and methods tailored to the user’s needs, makes the language a powerful tool for extraction, 

manipulation, and storage of data. Additionally, the user-specified methods allow for complete 

control over the manipulation of those data, leading to reliable and reproducible batch application 

of the same method to multiple data sets.  

The PythoMS framework has two main segments: a library of classes and a collection of 

scripts. The primary functionality of the framework is built into Python classes, providing 

fundamental tools required for the processing and interpretation of mass spectrometric data, and 

may be instantiated and implemented in user-created scripts as needed. Additionally, scripts have 

been written and generalized to enable straightforward execution of common mass spectrometric 

tasks like integration, spectrum summing, and isotope pattern overlays. There are existing 

examples of Python-based packages for both general chemistry and the analysis of mass 

spectrometric data (these are primarily focused on proteomics analysis), they did not meet our 

specific needs..1-4 We sought to create a generalized framework which might be applied to any 

mass spectrometric application with ease. There are also web services available for mass 

spectrometrists: one such is ChemCalc,5 which is a free platform allowing chemists to calculate 

isotope patterns, monoisotopic masses, find molecular formulae and more. This suite of programs 

is already heavily used in our laboratory, and PythoMS is a complement to these. 
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Framework 

Mass Spectrometric Data Access Classes 

In order to manipulate data in Python, one must first extract the data from the source data 

file, which can be non-trivial due to each manufacturer having their own proprietary data format 

(the encoding of which is not supported natively by Python). In an effort to address this, the mzML 

file format was defined by the Human Proteome Organization Proteomics Standards Initiative 

(HUPO-PSI) working group to be an open-source file format for mass spectrometry data, so that 

the files generated by any instrument could be read in a standardized fashion.6-8 The mzML files 

themselves are based on the Extensible Markup Language (XML) file format, where data are 

grouped together with tags so that a particular piece of data may be found easily by that tag. 

Additionally, ProteoWizard provides an accessible tool to convert the mass spectrometric data 

formats of several manufacturers into mzML, allowing full access to the data generated by a wide 

variety of spectrometers.9-10  

The mzML class serves as an abstraction layer between user and an mzML file, providing 

access to all functions, spectra, and attributes defined in the file. After instantiation (loading of the 

mzML file into the instance), the user may retrieve a single scan or chromatogram from the file or 

apply a method to every scan or chromatogram in the file (such as extract the time points or 

integrate a region of the spectrum). This functionality is enabled by a module created to access 

HUPO-PSI controlled variable (CV) definitions. Methods have been written to extract CV 

parameters or attributes from an XML branch, which gives the user simplified access to all variable 

names, values, and definitions associated with that branch. In the case of ProteoWizard, only 

accession IDs and CV names are included in the file, making it challenging for the user to inspect 
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or interpret the key. PythoMS addresses this by automatically retrieving the defined CV attributes 

from the HUPO-PSI file itself whenever an attribute is undefined in the mzML. Direct access to 

the CV parameter names or IDs of an mzML branch enables the user to create methods which will 

specifically extract or manipulate exactly which variables they choose, or to perform comparisons 

and conditionally evaluate spectra or chromatograms. Convenience wrappers have also been 

written which apply user-defined methods to spectra or chromatograms; combined with the 

flexibility and specificity of the CV accession keys, the mzML class provides a solid foundation 

for nearly any mass spectrometric data processing task. While there are other Python frameworks 

available for extracting data from mzML files (Pyteomics, pymzML, pyOpenMS, mMass),1-3, 11-12 

we have created an ecosystem which can be readily utilized by users for targeted data processing 

applications or developers in creating their own expanded framework. We foresee the built-in 

decorator functions of the mzML class being most useful to the end user, as they apply a user-

defined method to each spectrum or chromatogram in an mzML file. For instance, any aspect of 

the scan/chromatogram can be retrieved and interpreted, which allows for Pythonic conditional 

statements or item modification.  

 

Mass Spectrometric Data Classes  

A substantial issue with values stored by mass spectrometers is that they will track m/z 

values to precisions well beyond the spectrometer itself. For instance, the Waters QToF micro used 

in our lab records m/z values to the 7th decimal place, while it is only routinely accurate to the 1st. 

From the perspective of a script attempting to sum mass spectra together, it becomes challenging 

to address effectively identical but formally unequal m/z values in different scans. As an example, 
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one scan may have intensity at m/z 123.4567890 and another intensity at m/z 123.4567891; these 

are formally unequal, but in actuality indistinguishable by the spectrometer. This provides a 

challenge when one wants to combine multiple scans from a mass spectrometer, where m/z values 

differ minutely from one scan to the next. To address these discrepancies, the Spectrum class was 

created to efficiently consolidate intensities of the same effective mass.  

At its core, the Spectrum class is a container for two paired lists (one for m/z, one for 

intensity, with the first value of the m/z list corresponding to the first value of the intensity list, and 

so on), but has built-in methods for efficiently searching the m/z value list and adding new values 

while maintaining sorting. On instantiation, the user will specify a given number of decimal places 

that the instance is to track, and when new values are added, the m/z value rounded to the specified 

decimal place is compared to the existing m/z list, ignoring extraneous precision. This allows users 

to combine spectra that have slight mismatches for the m/z values, or to combine spectra of 

different numbers of (intensity, m/z) pairs (frequently, mass spectrum data files omit zero-intensity 

m/z values for data storage efficiency). Once complete, a single function of the class can be called 

to return a summed spectrum in the form of a pair of m/z and intensity lists. While this class was 

created with mass spectra in mind, it could be generally applied to the combination of any paired 

lists with similar but unequal x values or spectra of unequal length. The behaviour of the Spectrum 

class may be tweaked to the user’s needs to optimize run-time for different spectral types. The 

authors have found that the most significant performance-affecting attribute is whether the 

spectrum is “filled” (whether on instantiation a m/z value is generated for every value in the 

specified range incremented at the specified decimal place). If the spectrum is likely to have an 

intensity value for the majority of m/z possibilities, it was found to be more efficient to pre-
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populate, but when values are likely to be clustered it was more efficient to generate m/z values as 

necessary.  

The creation of this class allows PythoMS to have a spectrum binning script, which can 

very efficiently sum all spectra in a mzML file. It also allowed for the creation of the Molecule 

class, as the algorithms used to calculate an isotope pattern require rapid generation and 

manipulation of list (a specific method was built into the Spectrum class to add an element’s 

isotope distribution efficiently to an existing Spectrum object).  

Isotope patterns are a fundamental component of interpreting mass spectra, and we desired 

an efficient method of accurately calculating isotope patterns, with the resulting pattern being a 

Python paired list. Despite the ubiquitous necessity of accurate isotope patterns, few publications 

discuss algorithms or methods of constructing those patterns. While the patterns of small 

molecules are not particularly arduous for modern microprocessors, patterns for large molecules 

or those containing more polyisotopic elements quickly can become very time consuming to 

generate. We created the IPMolecule class to efficiently generate an isotope pattern which is as 

accurate as possible (in that the monoisotopic mass and complete pattern should match 

experimental spectra as closely as possible). This class relies heavily on the efficiencies of the 

Spectrum class and has several generation algorithms available.  

The IPMolecule class is based on a generic Molecule class which interprets a molecular 

formula and calculates basic molecular properties such as molecular weight. There are a wide 

variety of molecular weight calculators available, but the nature of IPMolecule required an object-

oriented structure to build upon, so we created a class to do this. For the convenience of the user, 

the Molecule class allows for specification of defined formula abbreviations (e.g. “L” for “PPh3”), 
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nested brackets, molecular charge, and single isotopes in the provided molecular formula. The 

IPMolecule generates three isotope patterns for each molecule, a “raw” pattern which preserves 

all mass defects, a “bar” isotope pattern which consolidates defects of similar mass into a combined 

intensity, and a “Gaussian” isotope pattern which simulates the observed pattern on a mass 

spectrometer of a given resolution. These patterns may be individually retrieved from the 

IPMolecule object (e.g. for isotope pattern overlay figures) or may be plotted directly with built-

in methods of the object itself. There are two isotopic exact mass dictionaries available which may 

be used for calculating isotope patterns: one with values from the CRC Handbook of Chemistry 

and Physics,13 and the other with values from National Institute of Standards and Technology 

(NIST) website and formatted by Pyteomics.1, 14 

 

Scripts 

The classes detailed above provide an agile framework to develop code for mass 

spectrometric applications, and we have utilized that framework in the development of several 

scripts which may be found in the PythoMS repository. These scripts are intended to be the point 

of interaction between the framework and the user, and we have structured them to be as user-

friendly and intuitive as possible even for novice python users. The framework was constructed in 

such a fashion that new scripts can be written quickly to accomplish a new task; as an example, a 

script was generated in less than 5 minutes which calculated the masses of a series of products 

expected from a Suzuki polycondensation reaction using the IPMolecule class (this script was later 

generalized to be an aggregate calculator script). With some knowledge of Python and the help of 
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the documentation of this framework, any MS user can construct scripts to ease otherwise time 

consuming or repetitive tasks.  

PyRSIR 

Single ion monitoring is the process of tracking the abundance of a single ion over a time 

course, and is the data in which our lab is interested in for the online study of reactions.15-18 To do 

this, we obtain full-spectrum scans on our instrument, then reconstruct a single ion monitoring 

trace by integrating the intensity of a particular ion over the entire time course of the experiment. 

The Python Reconstructed Single Ion Recording (PyRSIR) script automates this data interpretation 

and was the intended application of the PythoMS framework. The goal of this script is to automate 

how we process mass spectrometric data, tracking the integration of all the intensity associated 

with a given ion across all time points in a mass spectrometric experiment. This required not only 

interfacing with the scans, but also having access to low-level scan attributes to extract only the 

intended data, which is achieved using the mzML class.  

The script requires that the user provide a dictionary of names, start and end m/z for each 

peak they wish to integrate. This dictionary may either be defined as such, or generated in an Excel 

workbook which they may then provide to the script (the integration parameters are automatically 

extracted from the workbook in this case). The user may instead specify a molecular formula for 

an ion rather than bounds, and the script will automatically determine the bounds to integrate by 

simulating the isotope pattern with IPMolecule and generating a confidence interval for the bounds 

based on the pattern and an automatically calculated resolution of the instrument. This of course 

requires that the instrument in use is accurately calibrated, with no substantial calibration drift. 

Additionally, they must also provide the name of a mass spectrometric data file (either in mzML 
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or Waters’ .RAW format; support can be added as needed for any format interpretable by 

ProteoWizard). The script takes the supplied parameters and uses the mzML class to integrate 

between the provided bounds for every scan in the MS file. The returned data is then normalized 

normalized to the total ion current (a commonly applied transformation to MS data), and both the 

raw and normalized data is output to the Excel workbook.  

The intensity of MS data can varies from scan to scan, which makes the data noisy, visually 

unappealing and difficult to interpret in cases where there are multiple traces present. To address 

this, PyRSIR has a built-in binning algorithm, where the user can specify the number of adjacent 

scans to bin together. For example, if the user specifies 3 scans to bin, the intensity of every three 

scans is combined for each tracked ion and is stored as a single data point. This has the effect of 

visually reducing the noise of the spectrum, without eliminating any data in a smoothing process 

(Figure 1), essentially simulating a longer scan time in the spectrometer. These binned data are 

also output to the Excel workbook, and the user may select which of the raw, normalized, or binned 

data they wish.  
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Figure 1. The PyRSIR output illustrating the effect that several levels of binning has on scan-to-scan 

noise. These data were chosen as an example of particularly severe scan-to-scan noise. 

 

The script additionally sums spectra of all scans, as well as the isotope patterns contained 

within the supplied bounds of each ion, and outputs these to the Excel file. The former is retained 

for the user’s convenience, as we frequently show a region of the summed spectra for illustrative 

purposes (the summed spectra functionality also has a minimal impact on performance). The latter 

allows the user to verify visually that the bounds they specified are appropriate (this is not always 

apparent when selecting the bounds).  

This script automates the time consuming and repetitive actions involved in processing 

mass spectrometric data to extract reconstructed single ion monitoring traces, and it has 
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substantially improved the efficiency of our data processing. Historically, a researcher in our group 

might acquire reaction data for a day, then spend the next one or two days processing that data. 

This script fully automates the data extraction and processing, completing the same tasks in 

minutes. The substantial efficiency increase allows the student to spend more time considering the 

implications of the data, provides immediate feedback on the quality of their bound selection (the 

extracted isotope patterns provide excellent visual queues for whether there are multiple patterns 

overlapping in a bounded region), and enables rapid re-processing (e.g. if those bounds were 

incorrectly selected).  

 

Isotope pattern overlay 

When assigning a molecular formula to an observed ion in a mass spectrum, there are 

typically two matches made: the m/z value compared to the exact mass, and the comparison of 

observed and predicted isotope patterns. If there is a good visual match between predicted and 

observed patterns, the assignment as that formula is supported. These comparisons are generally 

qualitative in nature, but this is usually sufficient to decide whether a match is good (particularly 

for polyisotopic species). The isotope pattern overlay script was written to generate figures which 

allow the user to perform this comparison between experimental and predicted isotope patterns.  

The script takes one or more molecular formulae as input and predicts the isotope patterns 

using the IPMolecule class. It then loads a provided experimental spectrum and overlays the 

predicted patterns over top of an experimental spectrum (usually in an Excel workbook), then 

saves the figure to file (Figure 2). There are a wide variety of parameters which may be tweaked 

by the user to control the behaviour of the script, all of which are detailed in the script’s 
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documentation, and a set of commonly used defaults have been specified by the author to suit most 

applications (publication, inset, detailed analysis, etc.). A “detailed” preset for the script performs 

comparison calculations between the experimental exact mass and the predicted exact mass, 

including that information on the output figure (Figure 3). The script automatically scales the 

height of the predicted isotope pattern to match the maximum intensity of the spectrum within the 

bounds of that isotope pattern. Multiple isotope patterns can be predicted within a given figure in 

this way, allowing for analysis of adjacent or even overlapping isotope patterns (Figure 4). As 

well, the script automatically determines an appropriate m/z window to render for the output figure, 

which rarely requires end-user adjustment (typically the most time-consuming aspect of rendering 

an isotope pattern overlay image as it is an iterative process).  

 

Figure 2. An example output of the isotope pattern overlay script showing the experimental (line) and 

predicted (bars) isotope pattern of C61H52OP3Pd. This figure was generated using the publication preset 

of the isotope pattern overlay script. 
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Figure 3. An example output of the “detailed” preset of the isotope pattern overlay script showing the 

experimental orbitrap spectrum (line) and predicted (bars) isotope pattern of a titanium species. The 

preset includes an automatic printout of the mass delta (in both m/z and ppm) between the experimental 

and predicted exact mass. 
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Figure 4. An example output of the isotope pattern overlay script predicting and overlaying three isotope 

patterns on a complicated palladium dimer series. The detailed preset of the script was used here, which 

includes a label, mass delta between actual and predicted exact mass, as well as the resolution of the 

spectrum (the font size was intentionally reduced to avoid label overlap). 

 

Video frame renderers 

Figures generated for publication are by necessity designed in such a manner to be easily 

readable as a static image. However, when discussing data in an oral presentation, animation of 

data can be far more engaging for the audience. Two animation scripts were written to render 

frames for use in video format. The first of these, video frame renderer, takes a similar input to 

PyRSIR and extracts data from a specified mzML file. The script then plots a series of images 

showing the mass spectrum at a given time point on one half of the image, and the normalized 

abundance traces on the other half.19-20 When the entire series is rendered and encoded in video 
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format, it very effectively illustrates how we can observe the consumption and production of 

different ions in real time; it is essentially a time-lapse rendition of the evolving reaction.  

Another frame rendering script (y-axis zoom figure), was created to illustrate the massive 

observable dynamic range of a mass spectrometer. Using a similar user input to that of the video 

frame renderer, it plots an abundance trace over time figure (like those seen in Figure 6). It then 

“zooms” into the baseline, expanding the y axis so that traces that were previously in the baseline 

can be viewed. It does this vertical expansion as many times as the user specifies, and a rendered 

video was included in the supporting information of a recent publication from our group.15  

 

Spectrum binner 

Combined spectra are frequently used when examining isotope patterns or generating 

figures. While the Waters MassLynx software has a tool which allows this, it can only track m/z 

values to 4 decimal places and can take some time to complete a combination of a long or complex 

acquisition (we also frequently encounter program crashes when asking it to do so). The spectrum 

binner script was created to address this and utilizes the Spectrum and mzML classes to combine 

all spectra in a provided MS file, tracking the user-specified number of decimal places. In 

comparison to the algorithm implemented by MassLynxTM, the Spectrum outperforms the 

manufacturer with respect to computational resources and time (as an example, binning of a 3156-

scan experiment took MassLynx 4 minutes and 4 seconds and PythoMS only 1 minute and 32 

seconds on the same computer). The combined spectrum is saved to a Microsoft Excel workbook 

in both counts and normalized intensity for the user’s convenience (the data are also returned if 

the function is called within another Python script).  
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Aggregate calculator 

The calibration of an Electrospray Ionization Mass Spectrometer (ESI-MS) involves 

acquiring the spectrum of a solution known to aggregate (commonly NaI in MeOH, generating 

ions of the form [Nax+1Ix]
+ in positive ion mode and [NaxIx+1]

– in negative ion mode). The resulting 

aggregate series is compared to the exact masses, and a calibration polynomial is calculated by the 

software to move the observed masses to match the exact masses. The aggregate calculator script 

calculates the exact mass of a series of aggregates using the IPMolecule class, printing the exact 

masses of those aggregates in the console. The aggregate calculator may also be used to generate 

an accurate calibration file for use in calibrating mass spectrometers (this requires the user to 

predefine the syntax for the calibration files). We have also found this script useful in interpreting 

plots, as it can quickly calculate an aggregate series which the user can then compare to their 

spectrum to see if an aggregate assignment is reasonable.  

 

MSMS interpreter assistant 

When interpreting a tandem mass spectrometry experiment, typically the first action 

performed is to find the difference between the observed peaks and each other. This is yet another 

tedious and repetitive task, and the MSMS interpreter assistant was written to address this problem. 

The script sums an mzML file into a single spectrum, detects peaks in that spectrum, and calculates 

all the mass differences between those peaks. The resulting spectrum and output table are both 

printed to console and written to an Excel workbook. The user can then look at an appropriately 

formatted table of differences, making it substantially more straightforward to identify significant 

differences (e.g. a loss of 127 is likely I). The script also reads from a dictionary of common losses 
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predefined by the user (e.g. 77 is phenyl, 262 is triphenylphosphine, 79 is bromine, etc.) and 

guesses at what the observed difference might represent. While the guesses are by no means certain 

assignments, it is the experience of the author that the script has correctly assigned many 

differences, allowing the user to focus on assigning the more challenging differences.  

 

CONCLUSIONS 

 

Making sense of mass spectrometric data is assisted greatly by the development of programming 

tools, and PythoMS provides chemists with a starting collection of implements that we hope will 

not only prove useful but will inspire others to write and share their own. Learning to write Python 

code has become an essential part of training in our laboratory, and we anticipate continuing to 

build on the PythoMS tools in the near future. 
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