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Abstract 

Machine learning algorithms have attained widespread use in assessing the potential 

toxicities of pharmaceuticals and industrial chemicals because of their faster-speed and lower-

cost compared to experimental bioassays. Gradient boosting is an effective algorithm that often 

achieves high predictivity, but historically the relative long computational time limited its 

applications in predicting large compound libraries or developing in silico predictive models 

that require frequent retraining. LightGBM, a recent improvement of the gradient boosting 

algorithm inherited its high predictivity but resolved its scalability and long computational time 

by adopting leaf-wise tree growth strategy and introducing novel techniques. In this study, we 

compared the predictive performance and the computational time of LightGBM to deep neural 

networks, random forests, support vector machines, and XGBoost. All algorithms were 

rigorously evaluated on publicly available Tox21 and mutagenicity datasets using a Bayesian 

optimization integrated nested 10-fold cross-validation scheme that performs hyperparameter 

optimization while examining model generalizability and transferability to new data. The 

evaluation results demonstrated that LightGBM is an effective and highly scalable algorithm 

offering the best predictive performance while consuming significantly shorter computational 

time than the other investigated algorithms across all Tox21 and mutagenicity datasets. We 

recommend LightGBM for applications in in silico safety assessment and also in other areas 

of cheminformatics to fulfill the ever-growing demand for accurate and rapid prediction of 

various toxicity or activity related endpoints of large compound libraries present in the 

pharmaceutical and chemical industry. 

 

 

 

 



Introduction 

Early prediction of compound toxicity accelerates drug discovery and reduces the safety-

related attritions during drug development.1 One of the predominant approaches for such 

predictions is machine learning (ML). In this setting, ML uses statistical algorithms to 

summarize the historic experimental data and predict potential toxicities for the new 

compounds, as illustrated by examples published in recent literature.2 Remarkably, in some 

applications, ML even outperforms animal tests.3 

For toxicity predictions, as with all ML applications, the operator has to make a decision on 

which algorithm to deploy. Many different ML techniques have been employed successfully 

for the prediction of toxicity and there is currently no technique clearly outperforming the 

others.4 This is in part due to the high number of different scenarios that can be encountered in 

toxicity predictions, from small focused datasets to “big data” collected from diverse sources 

and from specific molecular interactions to organism level toxicities. It is therefore necessary 

that the computational scientists’ toolbox is diverse and emerging methods can be valuable 

additions to this. 

Gradient boosting5 (GB) is a powerful ML algorithm that has seen multiple uses for toxicity 

predictions.6,7 Although capable of generating highly predictive models, the main limitations 

with GB are the unsatisfactory long training time and scalability.8 This challenges its 

application to ever-growing compound datasets with high feature dimensions or its deployment 

in the drug discovery environment requiring regular retraining of the models. 

LightGBM,8 a recent modified GB algorithm, tackles these limitations by adopting a leaf-

wise tree growth strategy and introducing novel techniques, e.g. gradient-based one-side 

sampling and exclusive feature bundling. This approach results in a faster and less resource 

intensive implementation of GB suitable for frequent retraining and rapid assessment of larger 

high-dimensional datasets. LightGBM has been demonstrated to be up to 20 times faster to 



train on the same data,8 compared to the XGBoost9 implementation of GB. The algorithm has 

been implemented successfully on issuing peer-to-peer loan in FinTech industry10 and on 

forecasting wind power production in smart grid industry11. 

ML model evaluation and selection strategies for cheminformatics applications require the 

judicial use of both validation and test data, which has been highlighted previously by Tropsha 

et al.12 Not only is it important to establish the accuracy of a new algorithm, but also its 

robustness, transferability, and ease of deployment are important parameters to evaluate. This 

is a key aspect as methods are often chosen based on their performance on one set and then 

expected to deliver the same level of performance when applied to new data. Furthermore, 

factors like the random partitioning of data might influence the results, something that can be 

counteracted by training multiple models on the same data but using different train and test 

splits. Nested cross validation strategies have been proposed to provide more robust and 

generalized evaluation of the model performance.13 The inner cross validation is used to train 

the model and tune the model hyperparameter parameters, while the outer cross validation is 

used to evaluate general performance of the model selected by the inner cross validation. 

Bayesian optimization is an efficient method for global optimization of the ML algorithm 

hyperparameters as the method converges faster and requires fewer iterations for 

hyperparameter tuning than both grid search and random search.14 

The Tox21 and mutagenicity datasets are two compound datasets commonly used for in silico 

toxicity model development and comparison.15–18 The Tox21 datasets19 include the in vitro 

toxicity screening results of approximately 10,000 compounds against a total of 12 Nuclear 

Receptor (NR) and Stress Response (SR) targets. The mutagenicity dataset published by 

Hansen et al.20 contains screening results of approximately 6,500 compounds in the Ames 

bacteria mutagenicity test that measures if the tested compounds cause mutations in the DNA 

of the test microbial organism. 



In this study, we evaluate the performance of LightGBM algorithm on classification of 

compound toxicity against a collection of toxicologically relevant endpoints based on the 

Tox21 and mutagenicity datasets. We compare its predictive performance and the computation 

time to that of the closely related gradient boosting algorithm XGBoost and three other well-

established ML algorithms, deep feedforward neural network (DNN), random forest (RF), and 

support vector machine classifier (SVC). We also discuss the advantages of Bayesian 

optimization integrated nested cross validations in proper validation of new ML methods. 

 

Materials and Methods 

Computation. The computations were performed in Python v2.7.12 using one 28-thread 

Intel Xeon E5-2690v4 CPU on a Linux server with 128Gb memory. The following Python 

packages were installed for the calculations: Keras v1.2.121, LightGBM v2.1.08, Scikit-learn 

v0.18.122, Scikit-optimize v0.423, Tensorflow v0.12.124, and XGBoost v0.8.09. 

Compound Datasets and Features. We downloaded the compounds of the Tox 2125 and 

mutagenicity datasets20 along with their associated activities for toxicological endpoints. The 

number of active and inactive compounds in each dataset and the descriptions of the assay 

targets are shown in Table 1. The compound structures were standardized using the IMI eTOX 

project standardizer26 in combination with tautomer standardization using the MolVS 

standardizer27. RDKit28 molecular descriptors and Morgan fingerprints were calculated for all 

compounds. These two feature sets are referred to in this study as “molecular descriptors” and 

“fingerprints” respectively. The molecular descriptor set consists of 97 features describing the 

structural and physicochemical properties of the compounds, e.g. the number of rings, 

topological polar surface area, and lipophilicity. The Morgan fingerprint is a reimplementation 

of the extended-connectivity fingerprint (ECFP)29. The method generated the fingerprints by 

parsing each compound atom and obtain all possible paths through this atom with a predefined 



radius. Each unique path is hashed to predefined maximum number of bits. Here we set 

radius=4 when generating the fingerprints and hashed them to 1024 bits. The same structure 

preparation, descriptors/fingerprints generation, and feature/class preparation protocol have 

been used for classification problems with good performance in previous studies.30,31 

Table 1. Number of active and inactive compounds in each the Tox21 and mutagenicity 

datasets and the target and assay information. 

Dataset Target/Assay Number of active 

compounds 

Number of inactive 

compounds 

Tox21 Datasets    

nr-ahr Aryl hydrocarbon 

receptor 

942 7,103 

nr-ar Androgen Receptor 376 8,843 

nr-ar-lbd Androgen receptor 

(luciferase assay) 

302 8,174 

nr-aromatase Aromatase 346 6,759 

nr-er Estrogen receptor 927 6,665 

nr-er-lbd Estrogen receptor 

(luciferase assay) 

441 8,187 

nr-ppar-gamma Peroxisome 

proliferator-

activated receptor 

gamma 

219 7,848 

sr-are Nuclear factor 

(erythroid-derived 

2)-like 2 antioxidant 

responsive element 

1,078 6,003 

sr-atad5 Genotoxicity 

indicated by ATAD5 

334 8,628 

sr-hse Heat shock factor 

response element 

419 7,635 

sr-mmp Mitochondrial 

membrane potential 

1,127 6,096 

sr-p53 DNA damage p53-

pathway 

528 7,981 



Mutagenicity Data    

Hansen et al Ames test 

(mutagenicity) 

3,502 3,007 

The molecular descriptors were scaled using the scikit-learn MinMaxScaler to a range 

between 0 and 1. The datasets were divided into active and inactive and this investigation was 

accordingly formulated as a binary classification problem. Tox21 datasets are imbalanced with 

regards to active and inactive compound classes. Class weights of each dataset were calculated 

under the ‘balanced’ setting using the scikit-learn package and applied to penalize the ML 

algorithms for misclassification of the minority class to achieve balanced prediction results. 

Machine learning algorithms and modeling scheme. Classification models based on 

Tox21 and mutagenicity datasets were developed using LightGBM and four regularly used 

algorithms, namely DNN, SVC, RF, and XGBoost. The models were optimized and 

extensively evaluated with the following modeling scheme illustrated in Figure 1. 

 

Figure 1. Schematic illustrating how the inner and outer cross validation loops were used to 

tune the model parameters and perform the predictions on the validation and test data.  

The modeling scheme was designed to integrate nested cross validation and Bayesian 

optimization strategies because of the following reasons: 1) nested cross validation reduces 

bias in model performance evaluation and provides a more robust mean for assessing the model 

transferability on ‘unseen’ data, comparing to naïve cross validation;32 2) Bayesian 



optimization has been suggested as a recommended method for hyperparameter tuning, as it 

achieves better performance on the test set while requiring fewer iterations than grid search 

and random search.33 

Each dataset was split into inner and outer sets using a nested 10-fold cross validation split 

setting in the scheme. Inner cross validation sets were used to train the models based on the 

selected ML algorithms, decide the best set of hyperparameters achieving highest balanced 

accuracy for the models and to perform initial evaluation of model performance (referred as 

‘validation results’). Hyperparameter selection was performed using 100 iterations of Bayesian 

optimization with Gaussian processes as surrogate model and expected improvement as 

acquisition function from the scikit-optimize package. The generalization performance and 

transferability of the models were further evaluated on the outer cross validation sets (referred 

as ‘test results’). 

LightGBM 

LightGBM is a recent modification of the GB algorithm. It improves the efficiency and 

scalability of the algorithm without sacrificing its inherited effective performance. Seven 

hyperparameters governing the performance of the LightGBM classifier were optimized within 

the following predefined ranges suggested by the package manual: number of leaves 

(‘num_leaves’, 30-500), number of feature bins (‘max_bin’, 250-500), number of iterations 

(‘n_estimators’, 50-900), number of samples in one leaf (‘min_child_samples’, 30-500), model 

depth (‘max_depth’, 5-12), learning rate (‘learning_rate’, 10-6-10-1), and fraction of data used 

for training (‘bagging_fraction’, 0.8). 

XGBoost 

XGBoost is another variant of the GB algorithm. It was designed to be highly scalable by 

adopting a sparsity-aware algorithm for sparse data and weighted quantile sketch for 

approximate tree learning.9 We implemented the XGBoost classifier with the fast histogram 



optimized approximate greedy algorithm (tree_method=hist) and optimized the following 

hyperparameters to achieve a fair comparison between the XGBoost and LightGBM 

algorithms; number of iterations ('n_estimators', 50-900), model depth (‘max_depth’, 5-12), 

and learning rate (‘learning_rate’, 10-6-10-1). 

Deep Neural Networks 

Deep feedforward neural network has been identified as the ‘most effective’ classification 

algorithm during Merck Kaggle contest34 and Tox21 challenge15. We implemented a three-

hidden-layer DNN classification model using Keras with the Tensorflow backend. The model 

hyperparameters were optimized within the predefined range applied in Korotcov et al.35: 

number of hidden units (200-2,000), epoch (20-100), learning rate (10-4-10-2), size of mini 

batch size (128), initial weight (random normal), optimization algorithm (Adam), activation 

function (relu for hidden layers; softmax for output layer), dropout rates for hidden layers (layer 

1: 0.25, layer 2: 0.25, layer 3: 0.1). 

Support Vector Machine Classifier 

SVC performs classification by defining an optimal hyperplane that maximizes the margin 

between classes.36,37 Non-linear classification is achieved by transforming the data into a higher 

dimensional feature space using non-linear kernel function (‘kernel trick’) and then performing 

linear separation. LibSVM with radial basis function kernel from scikit-learn was used to 

develop the classification models with hyperparameters optimized within the predefined ranges 

suggested by Alvarsson et al.16: gamma (10-5-10), and C value:(1-1200). 

  Random Forest  

RF is an ensemble algorithm bagging the results of decision tree classifiers built on subsets of 

the data.38 RF models (number of trees: 100-1,000) were developed as baseline models to be 

compared with the corresponding models derived by the algorithms mentioned before. 



The list of optimized hyperparameters for each ML algorithm and their value ranges are 

provided in Table S1. 

Performance evaluation. The performance of the investigated algorithms was evaluated 

based on their balanced accuracy (BA), Cohen's kappa (Kappa), Matthews correlation 

coefficient (MCC), positive predictive value (PPV), negative predictive value (NPV), ROC- 

area under curve (AUC), sensitivity (SE) and specificity (SP) values. The equations of these 

performance metrics are given in the supporting information. Balanced accuracy was chosen 

as the scoring function for the Bayesian optimization algorithm since it provides good 

estimation of the model performance on imbalanced datasets.39 The computation time of the 

investigated ML algorithms was also recorded to indicate the speed of each method. 

Statistical hypothesis testing using Bonferroni correction was performed in order to compare 

the differences among algorithms and select the best performing one with the highest balanced 

accuracy values. The compute times were compared using Wilcoxon Signed-Rank Test 

corrected for multiple testing using Bonferroni correction (significance level = 0.05). 

The percentage of compounds in the test sets outside the model applicability domain was 

assessed by performing random projection (known for preserving inter-object distances) with 

a 10-fold reduction in dimensionality for the all datasets. 

Results and Discussions 

The thirteen Tox21 and mutagenicity datasets were described using both molecular 

descriptors and fingerprints, resulting in a total of 26 different datasets for each ML algorithm. 

The model performance was evaluated using subsets from inner 10-fold CV (validation sets) 

and outer 10-fold CV (test sets). The balanced accuracy values obtained for the 26 different 

datasets using the five ML algorithms varied between about 0.6 and 0.876 (Table S2). The 

balanced accuracy values of models developed in this study are comparable to the previous 

Tox21 Challenge winning model results that reported a span of balanced accuracy between 



0.68 to 0.9 for the datasets. Although, the evaluation used a specific leaderboard set not used 

in this study. The general trend shown in Figures 2, 3 and Table 2 is that LightGBM gave the 

best prediction for the Tox21 and mutagenicity datasets followed by XGBoost, SVC, DNN, 

and RF algorithms, when comparing their averaged evaluation metric values on the validation 

and test sets. We also examined the balance between sensitivity (SE) and specificity (SP) in 

the prediction of validation and test sets (Figure S1). Table 3 shows the number of instances 

each algorithm significantly outperformed the others (see Table S5 for p-values). The statistical 

testing demonstrated that LightGBM had significantly better performance on balanced 

accuracy than the other four algorithms in the majority of datasets. 

 

Figure 2. Balanced accuracy values of the five algorithms across validation and test subsets of 

the Tox21 and mutagenicity datasets described using RDKit molecular descriptors. 

 

Figure 3. Balanced accuracy values of the five algorithms across validation and test subsets of 

the Tox21 and mutagenicity datasets described using Morgan fingerprints.  



Table 2. Averaged values of area under curve (AUC), balanced accuracy (BA), Cohen's kappa 

(Kappa), Matthews correlation coefficient (MCC), sensitivity (SE) and specificity (SP) for the 

five ML algorithms on the validation (V) and test subsets (T) of the Tox21 and mutagenicity 

datasets described with RDKit molecular descriptors (MD) and Morgan fingerprints (FP). 

  LightGBM RF SVC XGB DNN 

Metrics Features V T V T V T V T V T 

AUC 
FP 0.836 0.786 a 0.859 0.723 0.805 0.762 0.835 0.768 0.733 0.736 

MD 0.855 0.800 0.865 0.728 0.836 0.795 0.857 0.784 0.682 0.694 

BA 
FP 0.775 0.786 0.698 0.723 0.747 0.762 0.754 0.768 0.733 0.736 

MD 0.784 0.800 0.701 0.728 0.781 0.795 0.763 0.784 0.682 0.694 

Kappa 

 

FP 0.415 0.424 0.480 0.531 0.367 0.368 0.504 0.534 0.522 0.532 

MD 0.433 0.440 0.484 0.538 0.393 0.402 0.494 0.524 0.430 0.463 

MCC 
FP 0.442 0.448 0.513 0.556 0.394 0.396 0.519 0.541 0.534 0.544 

MD 0.461 0.467 0.516 0.561 0.428 0.436 0.511 0.532 0.461 0.491 

SE 
FP 0.657 0.672 0.424 0.474 0.618 0.642 0.572 0.595 0.508 0.512 

MD 0.674 0.700 0.430 0.484 0.689 0.708 0.598 0.636 0.398 0.421 

SP 
FP 0.892 0.900 0.972 0.972 0.876 0.881 0.936 0.941 0.958 0.960 

MD 0.893 0.900 0.973 0.973 0.873 0.882 0.927 0.932 0.966 0.968 

a. The highest value in each metric for the validation and test sets were highlighted in bold. 

Table 3. Statistical comparison results on the balanced accuracy values of the five ML 

algorithms on the test subsets of the Tox21 and mutagenicity datasets. The performance of each 

algorithm was compared to that of the other algorithm across the 13 datasets described with 

RDKit molecular descriptors and Morgan fingerprints. 

Classification 

Algorithm 

Significant 

better cases 

Total significant 

cases 

Total cases 

LightGBM 76 79 104 

SVC 60 87 104 

XGB 34 61 104 

DNN 1 59 104 

RF 3 62 104 

 



We also observed that certain Tox21 datasets (e.g. nr-er and sr-hse sets) were more 

challenging to predict. The LightGBM algorithm outperformed the other algorithms also in 

prediction of these challenging datasets. For all the ML algorithms in this study, the models 

built using molecular descriptors resulted in higher balanced accuracies compared to the 

corresponding models based on fingerprints (Figure 4). 

 

Figure 4. Average values of area under curve (AUC), balanced accuracy (BA), Cohen's 

kappa (Kappa), Matthews correlation coefficient (MCC), sensitivity (SE) and 

Specificity (SP) for the five algorithms on the validation and test subsets of the Tox21 



and mutagenicity datasets described using RDKit molecular descriptors (MD) and 

Morgan fingerprints (FP), respectively. 

 

In addition to the predictive performance, we also compared the total computational time 

consumed by the five algorithms on tuning their hyperparameters using Bayesian optimization 

and performing model evaluations using nested cross-validation (Figure 5). All differences 

between the algorithms with respect to compute times are statistically significant (significance 

level = 0.05) over the 13 endpoints except for RF versus XGBoost (fingerprints) and 

LightGBM versus SVC (molecular descriptors). 

 

Figure 5. Computational time for the five algorithms across the Tox21 and mutagenicity 

datasets using molecular descriptors and fingerprints, respectively. 

LightGBM was the fastest algorithm among the investigated algorithms as it consumed the 

shortest computation time for all datasets in this study (Table S3), whereas DNN was the most 

time-consuming algorithm, requiring, on average, approximately 37 times longer 

computational time than LightGBM due to large number of algorithm parameters (Table 4). 

We also observed that the investigated algorithms required more computational time to model 

higher dimensional fingerprints compared to molecular descriptors. Interestingly, gradient 

boosting algorithms, i.e. LightGBM and XGBoost, showed highly scalable characteristics, as 

they required similar amount of computation time in developing models using molecular 

descriptors and fingerprints. This is contrasted by the other three investigated algorithms, as 



exemplified by SVC that required up to approximately nine times longer computational time 

to model fingerprint compared to molecular descriptor (Table 4 and Figure 5). 

Table 4. The average computation time for the five ML algorithms on the Bayesian 

optimization integrated nested cross validation scheme of the Tox21 and mutagenicity datasets 

described with RDKit molecular descriptors and Morgan fingerprints. 

 

 Average computation time (mins) 

Feature type LightGBM RF SVC XGB DNN 

Molecular descriptors 121 199 118 339 4,790 

Fingerprints 144 476 1,047 354 5,096 

 

Although recent trends in cheminformatics have seen a rise in more computationally 

intensive approaches by using different varieties of deep neural networks that have 

demonstrated their values in the area of image recognition, SMILES based sequence modeling, 

multi-tasking, and generative models,40 there is still a need for algorithms that are fast to train 

and easy to deploy while delivering high and robust predictive performance in the classical 

CPU computation environment. In this study we have shown through a thorough evaluation 

procedure that LightGBM fulfills these criteria and reliably outperformed the DNN algorithm 

in terms of both balanced accuracy as well as computation time, which emphasizes LightGBM 

as a suitable option for rapid in silico assessment of the toxicity of ever-growing number of 

industrial or pharmaceutical compounds.41,42 While we have applied LightGBM to predictions 

of toxicity data we expect this to be representative of the performance across many areas of 

cheminformatics as well. 

The percentage of test compounds outside the model applicability domain was assessed by 

performing random projection with a 10-fold reduction in dimensionality for the datasets. 

According to the assessment results (Table S6), the maximum percentage of test compounds 

outside the applicability domain is 3.7 % using the mean minimum distance to the closest 



neighbor for the test folds of the inner validation loop + 2*std (within 95 % confidence interval) 

of these minimum distances as cut-off when comparing to the minimum distance of the outer 

test compounds. 

The performance and speed of the LightGBM algorithm are mainly determined by the 

following six hyperparameters (given in Table S1) and the interquartile ranges and medians of 

suggested hyperparameter settings are provided in Table 5 and the exact values are shown in 

Table S4. 

1; the number of leaves in the classification tree controls the model complexity. Larger values 

could improve model accuracy but may lead to overfitting. The LightGBM models developed 

using either molecular descriptors or fingerprints adopted similar median values for the number 

of leaves ranging between 140 and 250 (except for nr-er-lbd set) that could improve model 

accuracy and also avoid overfitting.  

2; learning rate regulates the step size on the weights with respect to the loss gradient. The 

LightGBM models developed using the two feature types adopted comparable learning rates 

in the range of 0.004 to 0.042 to that could avoid local minima but reduce convergence time.  

3; model depth limits the complexity and prevents overfitting. A majority (18 out of 26) of 

the models were developed with depth smaller than 10.  The models (11 out of 13) developed 

with molecular descriptors are more likely to choose smaller values (median = 7) of the 

‘max_depth’ compared to models developed with fingerprints (median = 10), which might be 

related to their higher dimensionality.  

4; The LightGBM models in this study tend to require a significant number of iterations 

(approximate median = 570) to improve balanced accuracy. However, the computation times 

still remained short due to the leaf-wise growth structure and good parallel computational 

performance of this algorithm.  



5; Larger number of samples in one leaf prevent model overfitting. LightGBM models 

developed based on descriptors resulted in more samples (median = 298) in each leaf than the 

corresponding fingerprint based models (median = 55), which might be due to molecular 

descriptors having continuous values whereas fingerprints are represented as binary.  

6; LightGBM models used comparable number of feature bin values for both descriptor and 

fingerprint datasets, which could explain its similar computational time between the two feature 

types. 

Table 5. The interquartile ranges and medians of suggested hyperparameter settings for 

LightGBM models developed based on Tox21 and mutagenicity datasets described with RDKit 

molecular descriptors and Morgan fingerprints by the Bayesian optimization integrated nested 

cross validation scheme. 

Hyperparameter Definition Molecular 

descriptors 

interquartile range 

(median) 

Fingerprints 

interquartile range 

(median) 

'num_leaves' number of leaves 159-231 (190) 151-248 (212) 

'learning_rate' learning rate 0.009-0.02 (0.016) 0.01-0.02 (0.013) 

'max_depth' max model depth 7-8 (7) 8-11 (10) 

'n_estimators' number of iterations 448-625 (574) 421-627 (572) 

'min_child_samples' minimum number of samples  

in one leaf 

153-318 (298) 36-111 (55) 

'max_bin' number of feature bins 355-373 (365) 345-398 (372) 

 

We integrated a robust evaluation approach that validates the model performance and ensures 

the model transferability to new data with a hyperparameter tuning component to identify 

suitable setting for hyperparameters governing the model performance. 

Nested cross validation has been proposed to give the lower generalization error and less 

degradation in model performance by overcoming the bias and overfitting compared to single 

loop cross validation.32 Here we observed comparable model performance of the investigated 



algorithms on the internal validation and the external test sets for the individual datasets (Figure 

2 and 3) and also on average (Figure 4). This was true for models built using molecular 

descriptors and fingerprints as well. The comparable model performance on both validation 

and test sets indicates that the applied nested cross validation strategy offers generalizability 

and transferability of the developed model to previously unseen new data. In order to obtain 

the best performance from each investigated algorithm, we performed hyperparameter 

optimization to select the best hyperparameter settings for the modeling tasks at hand. This was 

performed using 100 iterations of Bayesian optimization with Gaussian process as the surrogate 

model and expected improvement acquisition functions23, identifying the settings which 

yielded the best predictive balanced accuracies on the inner validation data. The model 

performance under the same settings were then assessed using outer test data as well. This 

evaluation strategy has the following advantages: 

1) Bayesian optimization method allows faster and more robust hyperparameters 

optimization, comparing to grid search and random search, as the method keeps track of past 

evaluations that are used to form a probabilistic model mapping hyperparameters to a 

probability of the balanced accuracy scoring function.43 

2) In the 10-fold nested cross validation, the input dataset was split into training sets that 

were used to select the ‘best’ hyperparameter settings giving the ‘highest’ balanced accuracies 

on the inner validation data. Model performance under the same hyperparameter settings was 

assessed using outer loop test data. The Bayesian optimization integrated nested cross 

validation scheme incorporating the rapid hyperparameter tuning and robust evaluation 

features allowing us to select the hyperparameter set that resulted in the lowest generalization 

error and prevented the common risk of over-optimizing the algorithm hyperparameters for the 

internal test data, resulting in overestimation of performance on new independent data. 



When evaluating the results from this study, it is important to be aware that cytotoxicity has 

been detected in the Tox21 screening assays. Approximately 6-8% of the testing compounds 

were affected by the cytotoxicity and potentially incorrectly labeled as positives (false 

positives).44,45 The presence of the mislabeled false positives in the activity results might 

mislead the modeling algorithms causing misprediction of negative compounds to positives 

and increase false positive rate as well as reduce sensitivity in the prediction results. 

Conclusions 

In this study, we evaluated the emerging LightGBM classification algorithm using a model 

evaluation and selection scheme incorporating Bayesian optimization and nested 10-fold cross 

validations. The scheme allows rapid hyperparameter tuning and robust assessment of model 

evaluation and transferability. When applying this scheme to compare the predictive power of 

ML algorithms using Tox21 and mutagenicity datasets, LightGBM offered the best 

performance in terms of balanced accuracy for both internal validation and external test sets, 

compared to four widely used algorithms, DNN, RF, SVC, and XGBoost. In addition to the 

excellent predictive performance, LightGBM is also faster and more scalable in model 

development. This is especially apparent when using high dimensional data matrices such as 

fingerprint features. In conclusion, LightGBM is a more effective and scalable ML algorithm 

that is able to fulfill the ever-growing demand for rapid in silico toxicological assessment of 

emerging industrial or pharmaceutical compounds. 

 

Supporting Information 

Equations for calculating performance metrics, tabulated metrics results including balanced 

accuracy, Cohen's kappa, Matthews correlation coefficient, positive predictive values, negative 

predictive value, ROC- area under curve (AUC), sensitivity and specificity values, computation 



time for each of the Tox21 and mutagenicity dataset using the five ML algorithms, and p-values 

for algorithm comparisons. 
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